| Home  | About ScienceAsia  | Publication charge  | Advertise with us  | Subscription for printed version  | Contact us  
Editorial Board
Journal Policy
Instructions for Authors
Online submission
Author Login
Reviewer Login
Volume 43 Number 6
Volume 43 Number 5
Volume 43 Number 4
Volume 43 Number 3
Volume 43 Number 2
Volume 43 Number 1
Earlier issues
Volume 43S Number 1 Volume 43 Number 1

previous article 1

Research articles

ScienceAsia 43S(2017): 79-89 |doi: 10.2306/scienceasia1513-1874.2017.43S.079


Conformal mappings of bounded multiply connected regions onto circular and parallel slits regions and their inverses using a GUI


Ali W.K. Sangawia,b, Ali H.M. Muridc,d,*, Khiy Wei Leec,d

 
ABSTRACT:     We present a boundary integral equation method for the numerical conformal mappings and their inverses of bounded multiply connected regions onto circular and parallel slits regions. The method is based on two uniquely solvable boundary integral equations with Neumann-type and generalized Neumann kernels. These boundary integral equations are constructed from a boundary relationship satisfied by a function analytic on a multiply connected region. A method to calculate the inverse mapping functions from circular and parallel slits regions onto the original region is presented. Some numerical examples and numerical results with the graphical user interface are presented to illustrate the efficiency of the presented method.

Download PDF

26 Downloads 226 Views


a Department of Computer, College of Basic Education, Charmo University, 46023 Chamchamal, Sulaimani, Kurdistan, Iraq
b Development Centre for Research and Training–University of Human Development, 46001 Sulaimani, Kurdistan, Iraq
c UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
d Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

* Corresponding author, E-mail: alihassan@utm.my

Received 7 Jan 2018, Accepted 0 0000