| Home  | About ScienceAsia  | Publication charge  | Advertise with us  | Subscription for printed version  | Contact us  
Editorial Board
Journal Policy
Instructions for Authors
Online submission
Author Login
Reviewer Login
Volume 50 Number 5
Volume 50 Number 4
Volume 50 Number 3
Volume 50 Number 2
Volume 50 Number 1
Volume 49 Number 6
Earlier issues
Volume  Number 

previous article next article

Research articles

ScienceAsia (): 27-34 |doi: 10.2306/scienceasia1513-1874...027


Novel multihoming-based flow mobility scheme for proxy NEMO environment: A numerical approach to analyse handoff performance


Shayla Islam, Aisha-Hassan Abdalla, Mohammad Kamrul Hasan*

 
ABSTRACT:     With Network Mobility Basic Support Protocol (NEMO BSP), each communication should pass via the home agents of all mobile routers earlier reaching their destination at the time of frequent movement among the inter-technology handoff. This eventually results in performance deterioration of the real time application scenarios conducted on mobile nodes. Accordingly, applying the multihoming technique at any place, anywhere to provide uninterrupted internet connection in NEMO is becoming a significant area for current researchers. Although multiple care-of address registration between mobile routers along with its home agents can overcome some of the multihoming issues for NEMO, one still requires a dynamic flow redirection mechanism to support mobility management in NEMO. With the intention of reducing handoff delay, a novel multihoming-based flow mobility scheme on the PMIPv6 domain in NEMO (MF-PNEMO) is proposed in this paper. In addition, the performance of the MF-PNEMO scheme is evaluated through a numerical approach. The evaluation results confirms that the MF-PNEMO scheme outperforms the standard NEMO BSP as well as fast-proxy NEMO (FPNEMO) concerning handoff delay during inter-technology handoff.

Download PDF

31 Downloads 1947 Views


Department of Electrical and Computer Engineering, Faculty of Engineering, International Islamic University, Kuala Lumpur, 53100, Malaysia

* Corresponding author, E-mail: hasankamrul@ieee.org

Received 22 Aug 2014, Accepted 21 May 2017