| Home  | About ScienceAsia  | Publication charge  | Advertise with us  | Subscription for printed version  | Contact us  
Editorial Board
Journal Policy
Instructions for Authors
Online submission
Author Login
Reviewer Login
Volume 50 Number 5
Volume 50 Number 4
Volume 50 Number 3
Volume 50 Number 2
Volume 50 Number 1
Volume 49 Number 6
Earlier issues
Volume  Number 

previous article next article

Research articles

ScienceAsia (): 51-57 |doi: 10.2306/scienceasia1513-1874...051


Computation of a real eigenbasis for the Simpson discrete Fourier transform matrix


Virath Singha, Pravin Singha,*

 
ABSTRACT:     In this paper, we demonstrate the usefulness of the duality property by using it to determine the spectrum of the Simpson discrete Fourier transform (SDFT) matrix of dimension N×N, where Nequiv2±od4, in finding an expression for the minimal polynomial. We determine the eigenvalues and their corresponding multiplicities. The SDFT matrix is diagonalizable. Thus there exists a basis for the underlying vector space consisting of eigenvectors. In light of this, we construct an eigenbasis for each subspace associated with each of the eight distinct eigenvalues.

Download PDF

2 Downloads 1474 Views


a School of Mathematical Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa

* Corresponding author, E-mail: singhprook@gmail.com

Received 13 Feb 2014, Accepted 0 0000