| Home  | About ScienceAsia  | Publication charge  | Advertise with us  | Subscription for printed version  | Contact us  
Editorial Board
Journal Policy
Instructions for Authors
Online submission
Author Login
Reviewer Login
Volume 50 Number 2
Volume 50 Number 1
Volume 49 Number 6
Volume 49 Number 5
Volume 49S Number 1
Volume 49 Number 4
Earlier issues Botak Empire
Maxwin Botak Empire
Botak Empire Scatter
Daftar Botak Empire
Botak Empire Rekomendasi
Botak Empire Menang
Botak Empire Akun Pro
Scatter Botak Empire
Botak Empire Deposit Receh
Empire88 Slot 4D
Botak Empire Alternatif
Volume  Number 

previous article next article

Research articles

ScienceAsia 49 (2023):ID 706-709 |doi: 10.2306/scienceasia1513-1874.2023.064

Enhanced cycle-capacity of micron scale silicon anode materials for lithium-ion batteries using embedded nanoparticles

Zhiheng Wanga,†, Fengxiang Guob,†, Xiaoli Hua, Jinqi Wanga, Wei Wanga,*, Caiyun Genga, Guangyuan Xub, Yao Wanga, Laurence A. Belfiorec, Jianguo Tanga,*

ABSTRACT:     Micron scale Silicon (Si) powders embedded with nanoparticles were fabricated by dealloying methods and extracted from antimony (Sb)-inoculated Aluminum-10 wt.% Silicon (Al-10Si) alloys. From TEM observation, most of these nanoparticles were not connected with adjacent ones, with radii ranging from 3 to 10 nm. The cycling performance of Si powders with nanoparticles delivered a specific capacity of 105.2 mAh/g after 30 cycles at a current density of 0.05 mA/g, which was 40% higher than those without nanoparticles, due to the formation of preferential channels for electrolytes. Therefore, the micron size Si structures with nanoparticles have shown a potential as highperformance anode materials for lithium-ion batteries.

Download PDF

67 Downloads 453 Views

a Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071 China
b Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Ocean Environment Monitoring Technology, Qingdao 266001 China
c Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523 USA

* Corresponding author, E-mail:,

Received 29 Dec 2021, Accepted 8 Jun 2023