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ABSTRACT: In [J Theor Biol 203(2) (2000):177–186], a size-structured PDE population model has been proposed
for characterizing the growth (in number of cells) of metastatic tumors. Recently, such simple transport PDE models
were carefully validated through laboratory experiments with tumor-bearing mice. Many efforts have been devoted
to developing more efficient numerical algorithms for solving such interesting PDE models, but its computational cost
remains high in the framework of optimal control for seeking optimized treatment strategy due to a huge spatial
domain. In particular, the computed cell-level metastatic density from PDE model is not of direct biological interest,
instead, its weighted integration (e.g., the total number of tumor cells) is of more clinical importance in practice. In this
work, we reformulate such a transport PDE model into a lumped ODE model that involves a Volterra integral equation
of convolution type which is independent of the control variable. Such a reformulation can significantly reduce the
computational cost by only computing the lumped (or aggregated) quantity without spatial dependence. Moreover, for
better practicality, we incorporate the nonlinear Pharmacokineticv and Pharmacodynamic effects of treatment into our
lumped ODE model. Based on the open-source nonlinear optimal control software ICLOCS2, numerical examples are
presented to illustrate some interesting findings on optimal treatment that may inspire clinical practice.
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INTRODUCTION

Cancer is a leading cause of death worldwide. The
spread of cancer tumor cells from one location to many
other locations, called metastasis, accounts for the ma-
jority of cancer-related deaths [1]. Unfortunately, the
mechanism of metastasis remains the least understood
aspect of cancer biology [2–4]. Recent studies [5] on
breast cancer suggest that, contrary to more traditional
thinking, metastatic dissemination can occur rather
early. Such early occult metastasis [6] is undetectable
by the existing standard diagnosis/imaging modalities.
Hence, we need alternative methodologies for quanti-
fying and controlling such lethal metastasis as early as
possible, so that tumor growth can be controlled by
effective therapy at the earliest time.

Quantitative approaches based on mathematical
modeling and optimal control theory have become
increasingly important in cancer treatment research,
see e.g. [7–11]. Such insightful mathematical mod-
els were validated by experimental data, which can
augment experimental and clinical studies by deep-
ening our understanding of mechanisms driving tu-
morigenesis. More importantly, they can be utilized
to further optimize current cancer treatment strategies
[12, 13].The use of deterministic ODE optimal control
theory to optimize cancer treatment (e.g., chemother-
apy) is an old topic, see for example [14, 15]. To
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accommodate the spatial interactions, size-structured
PDE-based optimal control models for cancer treat-
ment optimization were also studied, see for instance
[16–18]. Although such PDE models can provide
better capacity with higher resolution in describing
more detailed system dynamics, their computational
costs become significantly higher due to the invovled
huge spatial domain. In addition, the optimal control
or treatment is only a function of time (independent
of the spatial size variable) and the clinically mean-
ingful qualities is reconstructed by integrating the PDE
solutions in space. This leads to unnecessary computa-
tional burden, especially in the framework of optimal
control or treatment.

In this paper, we contribute to reformulating the
size-structured PDE model [19] into a lumped ODE
model through integration along the characteristic
lines, so that its optimal control or treatment becomes
easier to analyze and also much faster to compute.
The derived optimal control based on our proposed
linear lumped ODE model is shown to be bang-bang
control, which matches with the conclusion obtained
with PDE model [20]. Furthermore, we augment the
proposed lumped ODE model with nonlinear Pharma-
cokineticv (PK) and Pharmacodynamic (PD) effects,
which leads to a quite different control structure that
often consists of a transition phase of singular control
from the maximum dosage to the minimal. This
suggests it can be more effective to gradually phase
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out the drug dosage in clinical practice. Although
the size-structured PDE model can provide more detail
information on the distribution of tumor sizes, the
computation of size-independent optimal control does
not necessary benefit from such detail information.
Therefore, it is computationally more efficient to work
with the corresponding simpler ODE model after elim-
inating the size variable through integration in space.
This reformulation assumes the drug dosage is only
time-dependent.

REVIEW OF A SIZE-STRUCTURED PDE MODEL
AND ITS OPTIMAL CONTROL

In [19], the authors proposed an ODE-PDE dynamical
model, which describes the colony size distribution of
metastatic tumors. It consists of an ODE for the growth
of the primary tumor size:

x ′p(t) = g(xp(t)), xp(0) = x0, (1)

with xp(t) being the primary tumor size with an esti-
mated growth rate g(x), and a size-structured trans-
port PDE for the distribution of metastatic tumors of
continuous sizes:










ρ̄t(x , t)+ (g(x)ρ̄(x , t))x = 0, t > 0, x ∈ (1, b),

g(1)ρ̄(1, t) = β(xp(t))+
∫ b

1
β(x)ρ̄(x , t)dx , t > 0,

ρ̄(x , 0) = 0,

(2)

with ρ̄(x , t) being the metastatic density with colo-
nization (birth) rate β(x) = µxα,α ∈ (0, 1]. In [19],
a Gompertz growth model with g(x) = ax ln(b/x) is
used, where a is growth rate constant and b ≈ 108–
1012 is the maximum tumor size (in number of cells).
In [19] the authors also derived an infinity series solu-
tion of the above PDE model via the Laplace transform
technique, which is however not applicable to the more
general cases. As discussed in [21], the solution of PDE
(2) has a singularity near x = 1 due to the nonlocal
boundary condition with a huge spatial domain (1, b),
which needs careful numerical treatment if a high
approximation accuracy is desired.

The optimal control (treatment) based on the
above metastatic PDE model was first discussed in
[22, 23], where the control (treatment) u(t) is as-
sumed to directly reduce the growth rate g(x) and the
combinations of chemotherapy and anti-angiogenic
therapy are considered. Recently, this metastatic PDE
model was validated through laboratory experiments
with tumor-bearing mice [24–26] and applied to mod-
eling of metastatic breast cancer after neoadjuvant
treatment [27], which highly motivates us to further
study and improve this model.

In our recent work [20], we developed a bilin-
ear optimal control model for treatment, where the
chemotherapy drug dosage rate over time is treated
as a control variable u(t) that affects the mortal-
ity (death) rate. Here we assumed the drug has a

uniform treatment effectiveness [28] on all tumors
that are independent of the tumor’s size. Based on
the assumption that both the primal and metastatic
tumor emit new metastases at the same colonization
rate (see [19, 29, 30]), in [20] we proposed a unified
size-structured PDE model. By introducing a Dirac
delta density function for the primal tumor ρ̂(x , t) =
δxp(t)(x), and then defining the total tumor density
function ρ(x , t) = ρ̄(x , t)+ ρ̂(x , t), the model (1)–(2)
can be unified into a McKendrick-Von Foerster type
model [31–33]










ρt(x , t)+(g(x)ρ(x , t))x=0, 1⩽ x⩽ b, 0< t<T,

g(1)ρ(1, t) =
∫ b

1
β(x)ρ(x , t)dx , t > 0,

ρ(x , 0) = δx0
(x), 1⩽ x ⩽ b,

(3)

where the Dirac delta initial condition δx0
(x) is from

xp(0) = x0. Such a size-structured PDE model allows
us to handle more general initial tumor size distribu-
tion by choosing any initial condition ρ(x , 0) = ρ0(x)
based on the actual observation data (e.g., from CT
scans). For the efficient numerical solution of such
linear PDE models with a nonlocal boundary condition,
we refer to the recent contributions [34, 35] for related
discussion.

Next, we consider a optimal control model for
treatment. Let w(x) > 0 be a given weight function
and define the weighted total metastases

Mw(t) :=

∫ b

1

w(x)ρ(x , t)d x , (4)

which gives the total number of tumor cells (resp. the
total metastatic mass) if w(x) = 1 (resp., w(x) = x).
To find the optimal treatment strategy u(t) ∈ [0, ū], we
can minimize the following objective functional of total
metastases and weighted drug toxicity (θ ∈ {0,1})

min
0⩽u(t)⩽ū

Jθ (ρ, u) :=

Mw(T )+θ

∫ T

0

Mw(t)dt +γ

∫ T

0

u(t)dt, (5)

whereρ(x , t) satisfies the following PDE that describes
the controlled growth of metastatic tumors


















ρt(x , t)+ (g(x)ρ(x , t))x = −u(t)ρ(x , t),
1⩽ x ⩽ b, 0< t < T,

g(1)ρ(1, t) =
∫ b

1
β(x)ρ(x , t)d x , t > 0,

ρ(x , 0) = ρ0(x), 1⩽ x ⩽ b.

(6)

Here 0 ⩽ u(t) ⩽ ū is the prescribed drug dosage
rate bounds. The linear log-kill term u(t)ρ(x , t) de-
scribes the simplest (but unrealistic) PK/PD effects of
chemotherapy on the cancer, that is chemotherapy kills
cancer cells at a rate proportional to their population
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and the used drug dosage. In the objective functional
Jθ , we assume the weight parameters γ > 0 and θ ⩾
0. If the patient only cares about the outcomes at
the end of the treatment period, one may take θ =
0, which allows the possible large growth of tumor
during treatment and it also leads to non-uniqueness
of optimal control [20]. In [20], we have derived the
following first necessary optimality KKT conditions for
the model (5)–(6). Notice that u(t) only depends on
the integration of p(x , t) in space.

Theorem 1 ([20]) A control u∈ Uad :={u∈ L∞(0, T ) :
0 ⩽ u(t) ⩽ ū} with the associated state ρ is optimal for
the optimal control problem (5)–(6) if and only if the
corresponding Lagrange multiplier (adjoint state) p sat-
isfies the following adjoint equation (marching backward
in time)

pt(x , t)+g(x)px(x , t)−u(t)p(x , t)+β(x)p(1, t)=θw(x),

1⩽ x ⩽ b, 0< t < T, (7)

p(x , T ) = −w(x), 1⩽ x ⩽ b,

and the optimal control u is given by the variational
inequality for almost every t ∈ [0, T]:

�

γ+

∫ b

1

ρ(x , t)p(x , t)dx
�

(v−u(t))⩾ 0, ∀ v ∈ [0, ū]. (8)

In [20], the authors proved that the optimal con-
trol is of bang-bang type when it is unique (i.e.,
θ = 1). Based on a second-order accurate character-
istic scheme, a projection gradient descent (PGD) al-
gorithm is developed to iteratively solve the optimality
system with a linear convergence rate. Each iteration
requires forward and backward time-marching along
the characteristic curves to solve the PDE for ρ and p,
respectively. Such a PGD algorithm based on charac-
teristic schemes in space has a high computational cost
since it needs to iteratively solve PDEs many times with
a very fine mesh. This stimulates us to reformulate the
size-structured PDE model into the following Volterra
integral equation model that allows more efficient nu-
merical algorithms by eliminating the spatial variable
and then reducing it into a lumped ODE model. Since
the size-structured metastatic densityρ(x , t) itself may
not be of direct biological interest, it is clinically more
meaningful to compute the biological quantities (e.g.
Mw(t)) directly without explicitly computing ρ(x , t)
first.

A NEW LUMPED ODE MODEL WITH PK/PD
EFFECTS

Inspired by the interesting idea in [36], we will refor-
mulate the above PDE optimal control model into a
Volterra integral equation regarding Mw(t), where the
control term u(t) acts on Mw(t) globally or collectively
and there is no need to compute or approximateρ(x , t)
anymore. Essentially, this procedure reduces the above

PDE model to an ODE model together with a Volterra
integration equation that is independent of the control
term.

Reformulation of the PDE model into a linear
lumped ODE model

Let X (s) be the solution of X ′(s) = g(X (s)) with initial
condition X (0) = 1, there holds X (∞) = b if choosing
g(x) = ax ln(b/x). After some tedious calculation (see
Appendix for detail), the above PDE-based treatment
model (5)–(6) can be reformulated into the following
minimization problem

min
0⩽u(t)⩽ū

Jθ (ρ, u) :=

Mw(T )+θ

∫ T

0

Mw(t)dt +γ

∫ T

0

u(t)dt, (9)

subject to a linear Volterra integral equation (VIE) on
Mw(t):

Mw(t) =

∫ t

0

β(X (r))eU(t−r)−U(t)Mw(t − r)dr

+ eU(0)−U(t)F(t) (10)

where

U(t) :=

∫ t

0

u(τ)dτ (11)

is the total drug usage up to time t and F(t) only
depends on w, β , g, and ρ0. In our considered case
with ρ0(x) = δ1(x) we will have a simple expression
F(t) = w(X (t)).

By defining Φ(t) := eU(t)Mw(t) and noting U(0) =
0, the above VIE-based treatment model (9)–(10) can
be further simplified as

min
0⩽u(t)⩽ū

Jθ (U , u) := e−U(T )Φ(T )

+θ

∫ T

0

e−U(t)Φ(t)dt +γU(T ), (12)

where Φ(t) is given by the following Volterra integral
equation of convolution type

Φ(t) =

∫ t

0

β(X (t − r))Φ(r)dr + F(t). (13)

Here Φ(t) is independent of the control u(t) or U(t).
In addition, there is a simple ODE constraint

U ′(t) = u(t), U(0) = 0. (14)

Due to the simplified structure, we expect the above
ODE model (12)–(14) to be much cheaper to solve nu-
merically. In fact, Φ(t) can be computed very efficiently
from (13) by FFT-based techniques [37].

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


4 ScienceAsia 51S (1): 2025: ID 2025s015

To find the first-order necessary optimality condi-
tions of (12)–(14), we construct the Hamiltonian

H (U , u, p) := θ e−U(t)Φ(t)+ p(t)u(t),

where p(t) is the adjoint state or Lagrange multiplier.
The necessary optimality system [38, p. 233] consists
of both the state equation on U(t) and the adjoint
equation on p(t):

U ′(t) = u(t), U(0) = 0, (15)

p′(t) = −
∂H
∂ U

= θ e−U(t)Φ(t),

p(T ) = γ− e−U(T )Φ(T ),
(16)

and by the Pontryagin’s Minimum Principle, the opti-
mal control u∗(t) satisfies the condition

H (U , u∗, p) = min
0⩽u(t)⩽ū

H (U , u, p)

= min
0⩽u(t)⩽ū

{θ e−U(t)Φ(t)+ p(t)u(t)}.

By defining the switching function

φ(t) :=
∂H
∂ u

= p(t),

then the optimal control u∗ is expected to have the
following typical piece-wise structure

u∗(t) =







0, whenever φ(t)> 0,
singular, whenever φ(t) = 0,
ū, whenever φ(t)< 0,

(17)

where the optimal control u∗ is bang-bang type if
φ(t) ̸= 0 holds almost everywhere.

Similar to the results obtained in [20], we have the
following interesting conclusions:

• If θ = 0, then p′(t) = 0 and hence φ(t) = p(t) =
p(T ) = γ− e−U(T )Φ(T ). By letting φ(t) ≡ 0 we
can obtain the optimal total drug dosage

U∗(T ) = ln(Φ(T )/γ),

which implies the optimal (singular) control u∗(t)
is not unique as long as its satisfies the global
integral relation

∫ T

0

u∗(τ)dτ= ln(Φ(T )/γ).

The same conclusion was also derived in [20]
using a simple function minimization argument.
We will not consider this situation further since it
has no control over total metastatic mass.

• If θ = 1, then p′(t) = e−U(t)Φ(t) > 0. Hence
φ(t) = p(t) is strictly increasing and it can change
sign only once (from negative to positive) de-
pending on the sign of p(T ) = γ − e−U(T )Φ(T ).
This implies the optimal control can switch at
most once from ū to 0 at some time t1 ∈ [0, T] and
hence it is unique and of bang-bang type. Clearly
0⩽ U(T )⩽ Tū. If γ > 0 is very small such that

p(T ) = γ− e−U(T )Φ(T )⩽ γ− e−TūΦ(T )⩽ 0,

then p(t) < p(T ) ⩽ 0 and hence u∗(t) = ū for
all t ∈ [0, T], which says the maximum dosage
should be used if the drug side effect is very low. If
γ > 0 is large enough such that p(T )> 0, then we
may solve for p(t) and then construct a nonlinear
equation to find t1 ∈ (0, T ) such that p(t1) = 0 if
it exists. We refer to [20] for the discussion on
how to find t1 numerically.

Integrate nonlinear PK/PD effects in treatment

The previous treatment model is based on a simple
but unrealistic assumption that the drug’s dosage u(t)
is identical to its concentration and effects (on death
rate), which leads to a bilinear control problem that
is relatively simpler to analyze and solve. For more
practical use of our model, we will incorporate more
realistic cell-kill hypotheses, such as the Norton–Simon
hypothesis [39], in which chemotherapy kills cancer
cells at a rate proportional to their growth rate, and
the (sigmoid) Emax model [40], in which chemotherapy
kills cancer cells at a saturable rate.

Pharmacokinetic (PK) models [41] delineate the
time evolution of a drug’s concentration in the blood
plasma, i.e., what the body does to the drug. Pharmaco-
dynamic (PD) models describe the effects that the drug
concentrations have on the tumor cells, i.e., what the
drug does to the body. Given a time-varying continuous
drug dose rate u(t) ∈ [0, ū], the drug concentration
c(t) in the bloodstream can be described by a simple
1-compartment linear ODE model

c′(t) = u(t)−σc(t), c(0) = 0, (18)

where σ > 0 is the clearance rate of the drug from the
body that reduces the drug concentration. This leads
to the following concentration solution formula and its
upper bound

c(t) = e−σt

∫ t

0

u(τ)eστ dτ

⩽ ū e−σt

∫ t

0

eστ dτ= ū
1− e−σt

σ
⩽ ū/σ =: cmax.

In [42], the authors proposed a bilinear ODE
model (which reduces to the above model if η= 0)
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c′(t) = u(t)− (σ+ηu(t))c(t)
= (1−ηc(t))u(t)−σc(t), c(0) = 0,

(19)

where the free parameter η is assumed to satisfy (σ+
ηū) > 0. The added nonzero parameter η allows the
concentrations to build up to the maximum level at a
rate different from how fast the drug is cleared by the
system after the drug has been stopped. In the case of
η > 0, there holds

c(t) = e−σt−η
∫ t

0 u(τ)dτ

∫ t

0

�

u(τ)eστ+η
∫ τ

0 u(z)dz
�

dτ

<
ū

σ+ηū
=

1
σ/ū+η

=: cmax <min{ū/σ, 1/η}, (20)

which implies the drug concentration saturates at 1/η
regardless of the maximum drug dosage ū. In particu-
lar, if η > 0 then it follows from (20) that c(t) < 1/η
or equivalently (1−ηc(t))> 0.

The effectiveness of a chemotherapy drug, de-
noted by s, is often modeled as a function of the drug
concentration c according to the Michaelis-Menten
(Emax) type pharmacodynamic model

s(c) := Emax
c

EC50+ c
, (21)

where Emax denotes the maximum effect and EC50
is the concentration at which half of the maximum
effect Emax is realized. Such type of Emax model
or its sigmoidal variants can approximate the actual
effectiveness at both lower and higher levels of concen-
trations more accurately than the simple linear log-kill
model with merely s(c) = c. In general, we may only
assume s to be strictly increasing (i.e., s′(c)> 0) and it
satisfies s(0) = 0 meaning no drug effect with zero drug
concentration. We refer to [43] for more discussion on
the properties of various PK/PD models.

Abstractly, the nonlinear function s(c(t)) repre-
sents the PK/PD effects of the treatment, and the drug
concentration c(t) depends nonlinearly on the drug
dosage rate u(t). Define the integrating factor (of
accumulative drug effectiveness)

V (t) =

∫ t

0

s(c(τ))dτ. (22)

Combining such PK/PD effects, we propose an ODE
treatment model of the following form

min
0⩽u(t)⩽ū

Jθ (V, c, u) := e−V (T )Φ(T )

+θ

∫ T

0

e−V (t)Φ(t)dt +γ

∫ T

0

u(t)dt, (23)

subject to the nonlinear ODE system (with σ > 0 and
s′(c)> 0)

V ′(t) = s(c(t)), V (0) = 0, (24)

c′(t) = u(t)− (σ+ηu(t))c(t), c(0) = 0, (25)

where Φ(t) := eV (t)Mw(t) is the solution of the similar
VIE (independent of u, V, c)

Φ(t) =

∫ t

0

β(X (t − r))Φ(r)dr + F(t) (26)

Obviously, if s(c(t)) = u(t) then this model reduces to
the previous model by noting V (t) = U(t).

To find the first-order necessary optimality condi-
tions, we construct the following Hamiltonian

H (V, c, u, p1, p2) := θ e−V (t)Φ(t)
+γu(t)+ p1(t)s(c(t))+ p2(t)(u(t)− (σ+ηu(t))c(t)),

where p1(t) and p2(t) are the adjoint-states or La-
grange multipliers. Clearly, we have

∂ 2H
∂ u2

= 0,

which indicates the following necessary optimality
condition may not be sufficient. The necessary opti-
mality system [38, p. 233] consists of the system state
equations and the adjoint equations

V ′(t) = s(c(t)), V (0) = 0, (27)

c′(t) = u(t)− (σ+ηu(t))c(t), c(0) = 0, (28)

p′1(t) = −
∂H
∂ V

= θ e−V (t)Φ(t),

p1(T ) = −e−V (T )Φ(T );
(29)

p′2(t) = −
∂H
∂ c

= −p1(t)s
′(c(t))+p2(t)(σ+ηu(t)), p2(T ) = 0.

(30)

By Pontryagin’s Minimum Principle, the optimal con-
trol u∗ satisfies

H (V, c, u∗, p1, p2) = min
0⩽u(t)⩽ū

H (V, c, u, p1, p2).

By defining the switching function (notice γ > 0 and
(1−ηc(t))> 0 from the bound (20))

φ(t) :=
∂H
∂ u

= γ+ p2(t)(1−ηc(t)),

the optimal control u∗ is expected to have the following
typical piece-wise structure

u∗(t) =







0, whenever φ(t)> 0,
singular, whenever φ(t) = 0,
ū, whenever φ(t)< 0.

(31)
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Due to non-linearity of the above necessary optimality
system (27)–(30), it becomes too intricate to derive the
analytical expression of the optimal control; see [38,
p. 300] for further discussion on how to analytically
find singular control under rather simplified cases. We
will explore the characteristics of the optimal control
based on the numerical experiments with the MATLAB-
based open software package ICLOCS2. We remark
that there are many other high-standard ODE-based
optimal control softwares, such as GPOPS-II [44],
which are based on pseudospectral methods.

NUMERICAL RESULTS

In this section, we will present several numerical ex-
amples to illustrate our proposed lumped ODE model
with nonlinear PK/PD effects in treatment. We used
the MATLAB-based Imperial College London Optimal
Control Software (ICLOCS2, http://www.ee.ic.ac.uk/
ICLOCS/default.htm) for numerically solving our ODE
optimal control problem. ICLOCS2 will transcribe the
optimal control problems into nonlinear programming
problems that are solved by the well-known Interior
Point OPTimizer (IPOPT) [45]. We choose β(x) =
µxα, g(x) = ax ln(b/x), θ = 1 and w(x) = x in our
numerical examples, and denote M(t) = Mw(t) for
simplicity. As used in [20], we will test three different
cases of model parameters:

(A) (Toy case) a = 1, b = e, µ = 1, α = 1, ū = 2, T =
10, γ= 0.1;

(B) (Preclinical case) a= 0.08, b= 6×108, µ= 10−5,
α= 2/3, ū= 2, T = 15, γ= 0.1;

(C) (Clinical case) a = 0.0084, b = 6.25× 108, µ =
10−3, α= 2/3, ū= 1/2, T = 30, γ= 0.1.

We will only consider the typical case with ρ0(x) =
δ1(x) such that F(t) = w(X (t)) = X (t). Since Φ(t)
is independent of the control u and state variables,
we can evaluate Φ(t) numerically offline before or
during the optimization procedure. Fig. 1 shows the
expected exponential growth of numerically computed
Φ(t) of different model parameters, which are effi-
ciently computed by FFT techniques as described in
[36, 37]. Notice that Φ(t) in different cases has a
different growth rate.

The linear case without PD/PK effects

In the first example, we consider the linear lumped
ODE model without the nonlinear PD/PK effects,
which corresponds to the linear optimality system
(15)–(16). Fig. 2 compares the dynamics of metastatic
mass M(t) and the corresponding optimal drug dosage
u(t) for the three different sets of model parameters,
respectively. As expected from our discussion, the
optimal drug dosage u(t) in all cases are bang-bang
control switching from the maximum dosage ū to zero
only once. Such obtained optimal bang-bang control

structures in our lumped ODE model are compatible
to the results in [20] based on the transport PDE
model. Hence, there is no need to solve the expensive
transport PDE model from the viewpoint of practical
use.

The nonlinear case with PD/PK effects

In the second example, we consider the lumped ODE
model with nonlinear PD/PK effects, which corre-
sponds to the nonlinear optimality system (27)–(30).
Here we first fix parameters Emax = 6, EC50 = 0.5 and
then test different combination of parameters η= 0,2,
σ = 0.4,4. Notice that the max drug concentration
cmax is decreasing as the clearance rate σ gets larger.
Fig. 3 and Fig. 4 illustrate the dynamics of metastatic
mass M(t) and the corresponding optimal drug dosage
u(t) with η = 0,2 and σ = 0.4, 4, respectively. Except
for the case of η= 0 and σ = 0.4, all the optimal con-
trol u(t) displays similar pattern of three pieces: starts
a period of maximum drug dosage, then a transition
phase of singular control, and finally no drug in the
last stage. The length of the singular control segment
seems to depend on the value of σ and η.

When η = 0, for a small clearance rate σ = 0.4,
the overall optimal control pattern is closer to the
typical bang-bang control since the drug concentration
decreases very slowly, but when η = 2 we do ob-
serve a very prolonged very low drug dosage following
the maximum dosage. This interesting observation
matches the recommendation of a low-dose, continu-
ous, metronomic administration scheme over a more
classical maximum tolerated dose schedule [23].

If the drug has a larger clearance rate σ, it re-
mains in the body for a shorter period and at a lower
concentration. Therefore, adopting a regimen with a
longer period of maximum drug dosage followed by a
maintenance phase of lower drug dosage could help
maintain adequate drug levels in the body to control
metastatic growth effectively. The smooth transition
pattern agrees with the clinical practice of phasing
out the maximum drug dosage gradually, which is in
contrast to the previous bang-bang control without
PD/PK effects.

Finally, we study the effects of the PD parameters
Emax and EC50. In particular, we fix the parameters
η = 0 and σ = 0.4 and then vary the PD parameters
Emax and EC50. It is observed from Fig. 5 that the
optimal control decreases with increasing Emax and
increases with increasing EC50, respectively. Recall
that Emax represents the maximum effect of the drug,
and EC50 is the drug concentration at which half of the
maximum effect (i.e., Emax/2) is achieved. A higher
Emax indicates a more effective drug, thereby requiring
a lower dosage. Conversely, a higher EC50 means that
a higher drug concentration is needed to effectively
control the metastatic growth, leading to a higher
optimal drug dosage.
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Fig. 1 Computed Φ(t) with model parameters from left to right: Case A, Case B, and Case C.
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Fig. 2 J1 model without PD/PK effects: dynamics of metastatic mass under the optimal drug dosage. The model parameters
from left to right: Case A, Case B, and Case C.
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Fig. 3 J1 model with η= 0: dynamics of metastatic mass and drug concentration under the optimal drug dosage (withσ= 0.4
(top) and σ = 4 (bottom)). The model parameters from left to right: Case A, Case B, and Case C.
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Fig. 4 J1 model with η= 2: dynamics of metastatic mass and drug concentration under the optimal drug dosage (withσ= 0.4
(top) and σ = 4 (bottom)). The model parameters from left to right: Case A, Case B, and Case C.
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Fig. 5 J1 model (Case A) with η = 0 and σ = 0.4: dynamics of metastatic mass and drug concentration under the optimal
drug dosage (top to bottom: Emax = 3,6, left to right EC50 = 0.5,1, 2.

In summary, the nonlinear PD/PK effects indeed
dramatically change the bang-bang control patterns of
optimal drug dosage as observed in the previous linear
lumped ODE models.

CONCLUSION

In this paper, we proposed a lumped ODE model
through the integral reformulation of a size-structured
transport PDE model for describing metastatic tumor
growth. With the standard optimal control theory, we

can easily obtain similar conclusions as derived from
the size-structured PDE model in our previous work.
With this lumped ODE model, the nonlinear PK and PD
effects of treatment are also integrated for better prac-
ticality. Different possible optimal control (treatment)
strategies are demonstrated through numerical exam-
ples with the state-of-the-art optimal control software
ICLOCS2. From the point of view of clinical practice,
such a simple lumped ODE model is advantageous to
the size-structured PDE model since it is mathemati-
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cally simpler to analyze and computationally faster to
optimize. Our provided simulation results indicate that
the optimal drug dosage is monotonically dependent
on the related PK/PD parameters. Specifically, the
optimal control u(t) decreases as Emax increases and
it increases as EC50, η, and σ increases. The rigorous
proof of this observed monotonicity property remains
an open problem.

Appendix A. The derivation of Volterra integral
equation (13)

Given f (x) (e.g., f (x) = w(x)), define

M f (t) :=

∫ b

1

f (x)ρ(x , t)dx . (32)

Let x = X (s) be the solution of X ′(s) = g(X (s)) with
initial condition X (0) = 1. We then have X (∞) = b
and

M f (t) =

∫ ∞

0

f (X (s))g(X (s))ρ(X (s), t)ds

=

∫ ∞

0

f (X (s))v(s, t)ds, (33)

where v(s, t) := g(X (s))ρ(X (s), t). The transport PDE
in (6)

∂tρ+ ∂x (gρ) = −uρ

can be written as

∂t v(s, t) = g(X (s))∂tρ(X (s), t)

= −g(X (s))∂x[g(X (s))ρ(X (s), t)]−u(t)g(X (s))ρ(X (s), t)

= −∂s v(s, t)−u(t)v(s, t).

Solving this equation along the characteristic line
yields

v(s, t) =

�

v(0, t − s)eU(t−s)−U(t), s ⩽ t,
v(s− t, 0)eU(0)−U(t), s ⩾ t,

(34)

where U(t) =
∫ t

0 u(r)dr is an antiderivative of u(t).
The boundary condition is

v(0, t) = g(1)ρ(1, t) =

∫ b

1

β(x)ρ(x , t)dx

=

∫ ∞

0

β(X (s))v(s, t)ds, (35)

and the initial condition is

v(s, 0) = g(X (s))ρ(X (s), 0) =: v0(s). (36)

A combination of (34), (35) and (36) yields

∫ ∞

0

f (X (s))v(s, t)ds

=

∫ t

0

f (X (s))eU(t−s)−U(t)

∫ ∞

0

β(X (r))v(r, t − s)dr ds

+

∫ ∞

0

f (X (s+ t))eU(0)−U(t)v0(s)ds. (37)

Especially, by choosing f = β and t = t − s, we have

∫ ∞

0

β(X (r))v(r, t − s)dr

=

∫ t−s

0

β(X (z))eU(t−s−z)−U(t−s)

∫ ∞

0

β(X (r))v(r, t−s−z)dr dz

+

∫ ∞

0

β(X (z+ t − s))eU(0)−U(t−s)v0(z)dz. (38)

Substituting (38) into (37) gives

∫ ∞

0

f (X (s))v(s, t)ds =

∫ t

0

f (X (s))eU(t−s)−U(t)×

∫ t−s

0

β(X (z))eU(t−s−z)−U(t−s)

∫ ∞

0

β(X (r))v(r, t − s− z)dr dz ds

+

∫ t

0

f (X (s))eU(t−s)−U(t)

∫ ∞

0

β(X (z+t−s))eU(0)−U(t−s)v0(z)dz ds

+

∫ ∞

0

f (X (s+ t))eU(0)−U(t)v0(s)ds.

On account of (37), the first integral on the right-hand
side becomes

∫ t

0

β(X (z))eU(t−z)−U(t)

∫ t−z

0

f (X (s))eU(t−z−s)−U(t−z)×

∫ ∞

0

β(X (r))v(r, t − z− s)dr ds dz

=

∫ t

0

β(X (z))eU(t−z)−U(t)

∫ ∞

0

f (X (s))v(s, t − z)ds dz

−
∫ t

0

β(X (z))eU(t−z)−U(t)

∫ ∞

0

f (X (s+t−z))eU(0)−U(t−z)v0(s)ds dz.
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Coupling the above two equations yields

∫ ∞

0

f (X (s))v(s, t)ds

=

∫ t

0

β(X (z))eU(t−z)−U(t)

∫ ∞

0

f (X (s))v(s, t − z)ds dz

− eU(0)−U(t)

∫ t

0

β(X (z))

∫ ∞

0

f (X (s+ t − z))v0(s)ds dz

+ eU(0)−U(t)

∫ t

0

f (X (z))

∫ ∞

0

β(X (s+ t − z))v0(s)ds dz

+ eU(0)−U(t)

∫ ∞

0

f (X (s+ t))v0(s)ds.

In view of (32), the above equation can be written as
the integral equation

M f (t) =

∫ t

0

β(X (r))eU(t−r)−U(t)M f (t − r)dr

+ eU(0)−U(t)F(t), (39)

where

F(t) :=

∫ ∞

0

§

f (X (s+ t))+

∫ t

0

�

f (X (z))β(X (s+ t−z))

−β(X (z)) f (X (s+ t − z))
�

dz
ª

v0(s)ds (40)

depends only on the initial condition, time t and the
functions f , β , and g. From the definition of U(t), we
have U(0) = 0. If we define Φ(t) = eU(t)M f (t), then
the equation (39) becomes

Φ(t) =

∫ t

0

β(X (r))Φ(t − r)dr + F(t)

=

∫ t

0

β(X (t − r))Φ(r)dr + F(t), (41)

which is independent of the control u(t). For the
special case when the initial profile is a delta function
ρ(x , 0) = δ1(x), we obtain F(t) = f (X (t)), which is
the weighted size of the primary cell. The kernel
function β(X (r)) combines tumor growth rate (g) and
colonization rate (β).

Acknowledgements: The first author’s work was sup-
ported by the National Natural Science Foundation of China
(No. 11801097) and the Scientific Research Capacity Im-
provement Project of the Doctoral Program Construction
Unit of Guangdong Polytechnic Normal University in 2022,
Grant/Award Number: 22GPNUZDJS31. The authors would
like to thank the anonymous referees for their constructive
comments that have significantly improved the quality and
presentation of this paper.

REFERENCES

1. Gupta GP, Massagué J (2006) Cancer metastasis: Build-
ing a framework. Cell 127, 679–695.

2. Lambert AW, Pattabiraman DR, Weinberg RA (2017)
Emerging biological principles of metasta sis. Cell 168,
670–691.

3. Qian JJ, Akçay E (2018) Competition and niche con-
struction in a model of cancer metastasis. PLoS One 13,
e0198163.

4. Bergers G, Fendt S-M (2021) The metabolism of cancer
cells during metastasis. Nat Rev Cancer 21, 162–180.

5. Yang XH (2017) Metastasis: Slipping control. Cell 168,
547–549.

6. Hawes D, Neville AM, Cote R (2001) Occult metastasis.
Biomed Pharmacother 55, 229–242.

7. Martin R, Teo K (1994) Optimal Control of Drug Ad-
ministration in Cancer Chemotherapy, World Scientific,
Singapore.

8. Dominik W, Natalia K (2014) Dynamics Of Cancer: Math-
ematical Foundations Of Oncology, World Scientific, Sin-
gapore.

9. Schättler H, Ledzewicz U (2015) Optimal Control for
Mathematical Models of Cancer Therapies: An Application
of Geometric Methods, Interdisciplinary Applied Mathe-
matics, Springer, New York, NY.

10. Angaroni F, Graudenzi A, Rossignolo M, Maspero D,
Calarco T, PiazzaR, Montangero S, Antoniotti M (2020)
An optimal control framework for the automated design
of personalized cancer treatments. Front Bioeng Biotech-
nol 8, 523.

11. Ocaña-Tienda B, Pérez-García VM (2024) Mathematical
modeling of brain metastases growth and response to
therapies: A review. Math Biosci 373, 109207.

12. Altrock PM, Liu LL, Michor F (2015) The mathematics of
cancer: integrating quantitative models. Nat Rev Cancer
15, 730–745.

13. Benzekry S, Lamont C, Beheshti A, Tracz A, Ebos JML,
Hlatky L, Hahnfeldt P (2014) Classical mathematical
models for description and prediction of experimental
tumor growth. PLoS Comput Biol 10, e1003800.

14. Martin R (1992) Optimal control drug scheduling of
cancer chemotherapy. Automatica 28, 1113–1123.

15. Moore H (2018) How to mathematically optimize drug
regimens using optimal control. J Pharmacokinet Phar-
macodyn 45, 127–137.

16. Hritonenko N, Yatsenko Y, Goetz R-U, Xabadia A (2009)
A bang-bang regime in optimal harvesting of size-
structured populations. Nonlinear Anal Theory Methods
Appl 71, e2331–e2336.

17. Pyy J, Ahtikoski A, Lapin A, Laitinen E (2018) Solution
of optimal harvesting problem by finite difference ap-
proximations of size-structured population model. Math
Comput Appl 23, 22.

18. Yousefnezhad M, Kao C-Y, Mohammadi SA (2021) Opti-
mal chemotherapy for brain tumor growth in a reaction-
diffusion model. SIAM J Appl Math 81, 1077–1097.

19. Iwata K, Kawasaki K, Shigesada N (2000) A dynamical
model for the growth and size distribution of multiple
metastatic tumors. J Theor Biol 203, 177–186.

20. Liu J, Wang X-S (2019) Numerical optimal control of a
size-structured PDE model for metastatic cancer treat-
ment. Math Biosci 314, 28–42.

www.scienceasia.org

http://www.scienceasia.org/
http://dx.doi.org/10.1016/j.cell.2006.11.001
http://dx.doi.org/10.1016/j.cell.2006.11.001
http://dx.doi.org/10.1016/j.cell.2016.11.037
http://dx.doi.org/10.1016/j.cell.2016.11.037
http://dx.doi.org/10.1016/j.cell.2016.11.037
http://dx.doi.org/10.1371/journal.pone.0198163
http://dx.doi.org/10.1371/journal.pone.0198163
http://dx.doi.org/10.1371/journal.pone.0198163
http://dx.doi.org/10.1038/s41568-020-00320-2
http://dx.doi.org/10.1038/s41568-020-00320-2
http://dx.doi.org/10.1016/j.cell.2017.01.033
http://dx.doi.org/10.1016/j.cell.2017.01.033
http://dx.doi.org/10.1016/S0753-3322(01)00052-X
http://dx.doi.org/10.1016/S0753-3322(01)00052-X
http://dx.doi.org/10.1142/2048
http://dx.doi.org/10.1142/2048
http://dx.doi.org/10.1142/2048
http://dx.doi.org/10.1142/8973
http://dx.doi.org/10.1142/8973
http://dx.doi.org/10.1142/8973
http://dx.doi.org/10.1007/978-1-4939-2972-6
http://dx.doi.org/10.1007/978-1-4939-2972-6
http://dx.doi.org/10.1007/978-1-4939-2972-6
http://dx.doi.org/10.1007/978-1-4939-2972-6
http://dx.doi.org/10.3389/fbioe.2020.00523
http://dx.doi.org/10.3389/fbioe.2020.00523
http://dx.doi.org/10.3389/fbioe.2020.00523
http://dx.doi.org/10.3389/fbioe.2020.00523
http://dx.doi.org/10.3389/fbioe.2020.00523
http://dx.doi.org/10.1016/j.mbs.2024.109207
http://dx.doi.org/10.1016/j.mbs.2024.109207
http://dx.doi.org/10.1016/j.mbs.2024.109207
http://dx.doi.org/10.1038/nrc4029
http://dx.doi.org/10.1038/nrc4029
http://dx.doi.org/10.1038/nrc4029
http://dx.doi.org/10.1371/journal.pcbi.1003800
http://dx.doi.org/10.1371/journal.pcbi.1003800
http://dx.doi.org/10.1371/journal.pcbi.1003800
http://dx.doi.org/10.1371/journal.pcbi.1003800
http://dx.doi.org/10.1016/0005-1098(92)90054-J
http://dx.doi.org/10.1016/0005-1098(92)90054-J
http://dx.doi.org/10.1007/s10928-018-9568-y
http://dx.doi.org/10.1007/s10928-018-9568-y
http://dx.doi.org/10.1007/s10928-018-9568-y
http://dx.doi.org/10.1016/j.na.2009.05.070
http://dx.doi.org/10.1016/j.na.2009.05.070
http://dx.doi.org/10.1016/j.na.2009.05.070
http://dx.doi.org/10.1016/j.na.2009.05.070
http://dx.doi.org/10.3390/mca23020022
http://dx.doi.org/10.3390/mca23020022
http://dx.doi.org/10.3390/mca23020022
http://dx.doi.org/10.3390/mca23020022
http://dx.doi.org/10.1137/20M135995X
http://dx.doi.org/10.1137/20M135995X
http://dx.doi.org/10.1137/20M135995X
http://dx.doi.org/10.1006/jtbi.2000.1075
http://dx.doi.org/10.1006/jtbi.2000.1075
http://dx.doi.org/10.1006/jtbi.2000.1075
http://dx.doi.org/10.1016/j.mbs.2019.06.001
http://dx.doi.org/10.1016/j.mbs.2019.06.001
http://dx.doi.org/10.1016/j.mbs.2019.06.001
www.scienceasia.org


ScienceAsia 51S (1): 2025: ID 2025s015 11

21. Devys A, Goudon T, Lafitte P (2009) A model describ-
ing the growth and the size distribution of multiple
metastatic tumors. Discrete Contin Dyn Syst Ser B 12,
731–767.

22. Benzekry S (2011) Mathematical and numerical analysis
of a model for anti-angiogenic therapy in metastatic
cancers. ESAIM Math Model Numer Anal 46, 207–237.

23. Benzekry S, Hahnfeldt P (2013) Maximum tolerated
dose versus metronomic scheduling in the treatment of
metastatic cancers. J Theor Biol 335, 235–244.

24. Hartung N, Mollard S, Barbolosi D, Benabdallah A,
Chapuisat G, Henry G, Giacometti S, Iliadis A, et al
(2014) Mathematical modeling of tumor growth and
metastatic spreading: Validation in tumor-bearing mice.
Cancer Res 74, 6397–6407.

25. Benzekry S, Tracz A, Mastri M, Corbelli R, Barbolosi
D, Ebos JM (2016) Modeling spontaneous metastasis
following surgery: An in vivo-in silico approach. Cancer
Res 76, 535–547.

26. Baratchart E, Benzekry S, Bikfalvi A, Colin T, Cooley LS,
Pineau R, Ribot EJ, Saut O, et al (2015) Computational
modelling of metastasis development in renal cell carci-
noma. PLoS Comput Biol 11, e1004626.

27. Benzekry S, Mastri M, Nicolò C, Ebos JML (2024)
Machine-learning and mechanistic modeling of
metastatic breast cancer after neoadjuvant treatment.
PLoS Comput Biol 20, e1012088.

28. Murray JM (1990) Optimal control for a cancer
chemotheraphy problem with general growth and loss
functions. Math Biosci 98, 273–287.

29. Hoover HC, Ketcham AS (1975) Metastasis of metas-
tases. Am J Surg 130, 405–411.

30. Talmadge JE, Wolman SR, Fidler IJ (1982) Evidence for
the clonal origin of spontaneous metastasis. Science 217,
361–363.

31. Iannelli M (1995) Mathematical Theory of Age-Structured
Population Dynamics, Applied Mathematics Mono-
graphs, Vol 7, Consiglio Nazionale delle Ricerche, Pisa.

32. Ani̧ta S (2000) Analysis and Control of Age-Dependent
Population Dynamics. Mathematical Modelling: Theory
and Applications, Springer, Dordrecht, The Netherlands.

33. Iannelli M, Milner F (2017) The Basic Approach to Age-
Structured Population Dynamics: Models, Methods and

Numerics, Lecture Notes on Mathematical Modelling in
the Life Sciences, Springer, Dordrecht, The Netherlands.

34. De Bonis M, Laurita C, Sagaria V (2022) A numerical
method for linear Volterra integral equations on infi-
nite intervals and its application to the resolution of
metastatic tumor growth models. Appl Numer Math 172,
475–496.

35. Bulai IM, De Bonis MC, Laurita C, Sagaria V (2023)
Modeling metastatic tumor evolution, numerical reso-
lution and growth prediction. Math Comput Simul 203,
721–740.

36. Hartung N (2015) Efficient resolution of metastatic tu-
mor growth models by reformulation into integral equa-
tions. Discrete Continuous Dyn Syst Ser B 20, 445–467.

37. Hairer E, Lubich C, Schlichte M (1985) Fast numerical
solution of nonlinear Volterra convolution equations.
SIAM J Sci Stat Comput 6, 532–541.

38. Kirk D (2012) Optimal Control Theory: An Introduction,
Dover Books on Electrical Engineering, Dover Publica-
tions, Mineola, New York.

39. Simon R, Norton L (2006) The Norton–Simon hypothe-
sis: designing more effective and less toxic chemothera-
peutic regimens. Nat Clin Pract Oncol 3, 406–407.

40. Holford N, Sheiner LB (1981) Pharmacokinetic and
pharmacodynamic modeling in vivo. Crit Rev Bioeng 5,
273–322.

41. Welling P (1997) Pharmacokinetics: Processes, Mathe-
matics, and Applications, ACS Professional Reference
Book, American Chemical Society, Washington, DC.

42. Ledzewicz U, Schättler H (2021) On the role of phar-
macometrics in mathematical models for cancer treat-
ments. Discrete Contin Dyn Syst B 26, 483–499.

43. Leszczynski M, Ledzewicz U, Schaettler H (2020) Opti-
mal control for a mathematical model for chemotherapy
with pharmacometrics. Math Model Nat Phenom 15, 69.

44. Patterson MA, Rao AV (2014) GPOPS-II: A MATLAB soft-
ware for solving multiple-phase optimal control prob-
lems using hp-adaptive gaussian quadrature collocation
methods and sparse nonlinear programming. ACM Trans
Math Softw 41, 1–37.

45. Wächter A, Biegler LT (2006) On the implementa-
tion of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Math Program 106,
25–57.

www.scienceasia.org

http://www.scienceasia.org/
http://dx.doi.org/10.3934/dcdsb.2009.12.731
http://dx.doi.org/10.3934/dcdsb.2009.12.731
http://dx.doi.org/10.3934/dcdsb.2009.12.731
http://dx.doi.org/10.3934/dcdsb.2009.12.731
http://dx.doi.org/10.1051/m2an/2011041
http://dx.doi.org/10.1051/m2an/2011041
http://dx.doi.org/10.1051/m2an/2011041
http://dx.doi.org/10.1016/j.jtbi.2013.06.036
http://dx.doi.org/10.1016/j.jtbi.2013.06.036
http://dx.doi.org/10.1016/j.jtbi.2013.06.036
http://dx.doi.org/10.1158/0008-5472.CAN-14-0721
http://dx.doi.org/10.1158/0008-5472.CAN-14-0721
http://dx.doi.org/10.1158/0008-5472.CAN-14-0721
http://dx.doi.org/10.1158/0008-5472.CAN-14-0721
http://dx.doi.org/10.1158/0008-5472.CAN-14-0721
http://dx.doi.org/10.1158/0008-5472.CAN-15-1389
http://dx.doi.org/10.1158/0008-5472.CAN-15-1389
http://dx.doi.org/10.1158/0008-5472.CAN-15-1389
http://dx.doi.org/10.1158/0008-5472.CAN-15-1389
http://dx.doi.org/10.1371/journal.pcbi.1004626
http://dx.doi.org/10.1371/journal.pcbi.1004626
http://dx.doi.org/10.1371/journal.pcbi.1004626
http://dx.doi.org/10.1371/journal.pcbi.1004626
http://dx.doi.org/10.1371/journal.pcbi.1012088
http://dx.doi.org/10.1371/journal.pcbi.1012088
http://dx.doi.org/10.1371/journal.pcbi.1012088
http://dx.doi.org/10.1371/journal.pcbi.1012088
http://dx.doi.org/10.1016/0025-5564(90)90129-m
http://dx.doi.org/10.1016/0025-5564(90)90129-m
http://dx.doi.org/10.1016/0025-5564(90)90129-m
http://dx.doi.org/10.1016/0002-9610(75)90473-0
http://dx.doi.org/10.1016/0002-9610(75)90473-0
http://dx.doi.org/10.1126/science.6953592
http://dx.doi.org/10.1126/science.6953592
http://dx.doi.org/10.1126/science.6953592
http://dx.doi.org/10.1007/978-94-015-9436-3
http://dx.doi.org/10.1007/978-94-015-9436-3
http://dx.doi.org/10.1007/978-94-015-9436-3
http://dx.doi.org/10.1007/978-94-024-1146-1
http://dx.doi.org/10.1007/978-94-024-1146-1
http://dx.doi.org/10.1007/978-94-024-1146-1
http://dx.doi.org/10.1007/978-94-024-1146-1
http://dx.doi.org/10.1016/j.apnum.2021.10.015
http://dx.doi.org/10.1016/j.apnum.2021.10.015
http://dx.doi.org/10.1016/j.apnum.2021.10.015
http://dx.doi.org/10.1016/j.apnum.2021.10.015
http://dx.doi.org/10.1016/j.apnum.2021.10.015
http://dx.doi.org/10.1016/j.matcom.2022.07.002
http://dx.doi.org/10.1016/j.matcom.2022.07.002
http://dx.doi.org/10.1016/j.matcom.2022.07.002
http://dx.doi.org/10.1016/j.matcom.2022.07.002
http://dx.doi.org/10.3934/dcdsb.2015.20.445
http://dx.doi.org/10.3934/dcdsb.2015.20.445
http://dx.doi.org/10.3934/dcdsb.2015.20.445
http://dx.doi.org/10.1137/0906037
http://dx.doi.org/10.1137/0906037
http://dx.doi.org/10.1137/0906037
http://dx.doi.org/10.1038/ncponc0560
http://dx.doi.org/10.1038/ncponc0560
http://dx.doi.org/10.1038/ncponc0560
https://pubmed.ncbi.nlm.nih.gov/7023829/
https://pubmed.ncbi.nlm.nih.gov/7023829/
https://pubmed.ncbi.nlm.nih.gov/7023829/
http://dx.doi.org/10.3934/dcdsb.2020213
http://dx.doi.org/10.3934/dcdsb.2020213
http://dx.doi.org/10.3934/dcdsb.2020213
http://dx.doi.org/10.1051/mmnp/2020008
http://dx.doi.org/10.1051/mmnp/2020008
http://dx.doi.org/10.1051/mmnp/2020008
http://dx.doi.org/10.1145/2558904
http://dx.doi.org/10.1145/2558904
http://dx.doi.org/10.1145/2558904
http://dx.doi.org/10.1145/2558904
http://dx.doi.org/10.1145/2558904
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1007/s10107-004-0559-y
www.scienceasia.org

