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ABSTRACT: Ecytonucleospora hepatopenaei (EHP) is a microsporidian parasite that causes growth retardation and
size variation, resulting in severe economic losses. In this review, we summarize the pathogenesis and host immune
response to the EHP infection and highlight recent studies that are progressing our understanding on the EHP infection
mechanism. EHP forms environmentally resistant spores as parts of its life cycle. The characteristics of the EHP spores
vary between different shrimp hosts. EHP utilizes an invasion organelle called the polar tube to infect the host. The polar
tube is used as a conduit to transfer EHP’s nucleus and possibly other infectious cargos into host cytoplasm. EHP contains
a compacted genome with ∼3.26 Mbp in size. Several metabolic genes are absent in EHP, making EHP rely solely on
host for nutrients. EHP-infected shrimp are more susceptible for secondary infections. Transcriptomic and proteomic
analyses of EHP-infected shrimp identified several immune genes and proteins that are differentially expressed after the
parasite infection. Immune signaling pathways such as Toll, JAK/STAT pathways and the prophenoloxidase-activating
cascade are mainly induced while apoptosis might be suppressed to facilitate the EHP invasion. Antimicrobial peptides
such as a c-type lysozyme reduce EHP infection by inhibiting EHP spore germination while lectins promote spore
aggregation. Oxidative stress contributes to the pathology of EHP and the antioxidant system balancing the excess
reactive oxygen species to protect host cell damage. Further research on pathogenesis mechanisms and host-pathogen
responses is required for developing and implementing strategies for prevention and control of EHP infection.

KEYWORDS: Ecytonucleospora hepatopenaei, EHP pathogenesis, hepatopancreatic microsporidiosis, polar tube firing,
shrimp immunity

INTRODUCTION

Thailand is one of the world’s largest shrimp produc-
ers which exports more than 603,995 tons in 2011.
However, the shrimp production drastically dropped by
∼50% in 2020 [1]. The major cause of this reduction
is due to infections from several pathogens, including
viruses, bacteria, and parasites [2]. The infections
of these pathogens lead to morbidity and mortality,
resulting in severe economic losses [3]. Recently,
a disease caused by a fungi-related parasite called
hepatopancreatic microsporidiosis (HPM), has been
found to be a serious threat to the shrimp indus-
try worldwide [4]. The causative agent of HPM is
a microsporidian parasite Ecytonucleospora hepatope-
naei (EHP, formerly known as Enterocytozoon hepatope-
naei) [5]. HPM is associated with serious size variation
and growth retardation. Ponds infected with EHP
showed reduction in feed intake, resulting in lower
biomass production [6]. It has been estimated that
EHP infection causes more than 76 million US dollars
loss annually in Thailand, and over $571 million US
dollars loss in India [3, 7]. Currently, EHP outbreaks
have been reported in many major shrimp producing
countries, for example Thailand, Indonesia, Vietnam,
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China, India, South Korea, and Venezuela [5, 8–11].
Typically, EHP and other microsporidian species de-
velop environmentally resistant spores as a part of their
life cycles [12]. These spores are equipped with a spe-
cialized invasion organelle called the polar tube [13].
The polar tube is a hundred-micron long tube which
usually coils inside the spore like a spring [14]. When
the spores are under suitable environments, the polar
tube is rapidly fired out of the spores and later pierces
the host cell membrane [14]. The polar tube serves
as a conduit for the parasite to release its infectious
materials into the host [13]. Once the parasite is
in the host, it starts to undergo nuclear division and
develop into new spores. Host cells fully loaded with
newly synthesized spores bursts and these spores are
released into external environments [15]. For EHP,
the parasite uses a hepatopancreatic cell as a host.
The infection causes sloughing of the hepatopancreatic
tubules [5]. This results in malfunction of hepatopan-
creas – a major organ in digesting food and producing
several enzymes [6]. As a result, EHP-infected shrimp
experience growth retardation.

Although the EHP infection has led to huge
economic losses to the shrimp aquaculture industry,
the knowledge on shrimp’s immune response to this
fungal-related parasite has been poorly understood.
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Lacking an adaptive immune system, shrimps mainly
depend on innate immunity to fight against invad-
ing pathogens [16, 17]. The innate immune system
serves as the first line of defense which is composed
of cellular and humoral responses. The cellular im-
mune responses are cell-mediated immunity such as
phagocytosis, nodulation, encapsulation, and apop-
tosis [18] while the humoral immune responses in-
clude antimicrobial peptide (AMPs), melanization and
blood clotting system [19]. Invading pathogens are
recognized through the pattern recognition receptors
(PRRs), which bind to pathogen-associated molecu-
lar patterns (PAMPs) and activate several immune
signaling pathways to secrete immune effectors such
as AMPs, to eliminate the pathogens. Integrated
multi-omics analyses provide insights into molecular
responses of shrimps to various stressors including
pathogen infections [20–22]. Transcriptomic and pro-
teomic analyses of EHP-infected shrimp reveal differen-
tially expressed genes and proteins after the parasite
infection, but the mechanisms involved are not well-
documented [23–26]. Immune signaling pathways
such as Toll, JAK/STAT pathways and the prophenolox-
idase (proPO)-activating cascade are mainly induced
while others are suppressed to facilitate EHP invasion.

In this review, we summarize recent studies on
pathogenesis and the immune response to EHP in-
fection which provide basic information essential for
understanding and preventing the infection.

EHP PATHOGENESIS

Characteristics of the EHP spores

Like other microsporidian species, EHP exists outside
the host in the form of spores which are environmen-
tally resistant [27]. The shape of the EHP spore is
oval, and composed of two spore wall layers, includ-
ing a proteinaceous, electron-dense exospore and a
chitin rich, electron-lucent endospore [5] (Fig. 1). EHP
employs a harpoon-like invasion organelle called the
polar tube in order to infect host cells. The polar tube
of EHP has approximately 20–30 µm in length and is
typically coiled inside the spores [5]. Ultrastructural
studies of the EHP spores showed that the EHP spore
characteristics vary depending on shrimp host species
[5, 28]. Comparison between the EHP spores isolated
from P. monodon and L. vannamei reveals variations
in spore size, numbers of polar tube coils, and thick-
ness of the spore wall layers [28]. EHP spores from
L. vannamei (EHPPv) are slightly bigger than those from
P. monodon (EHPPm). The average size of the spores
is 1.65±0.15 µm×0.92±0.05 µm in EHPPv, while it
is 1.1±0.2 µm×0.6±0.2 µm in EHPPm [5, 28]. In
addition, the numbers of polar tube coils are different.
It is reported that the polar tube of EHPPm is organized
into 5–6 coils, while it is 4–5 coils in EHPPv [5, 28].
However, it is important to note that these numbers
of the polar tube coils are visualized from 2D electron

Fig. 1 The ultrastructures of the EHP mature spores. Ma-
ture EHP spores were isolated from hepatopancreas of EHP-
infected L. vannamei. Ex = exospore layer, En = endospore
layer, PT = polar tube, PV = posterior vacuole, and PL =
polaroplasts.

micrographs which greatly depend on how the sections
were cut. The accurate polar tube coils should be
quantified from 3D reconstruction of the spores [14].
Surprisingly, the thickness of the spore wall layers in
EHPPv is ∼4 times thicker than those of EHPPm. The
exospores layer is 10–15 nm thick for EHPPv and∼2 nm
thick for EHPPm. While the endospore thickness ranges
between 40–60 nm in EHPPv, compared to ∼10 nm
in EHPPm [5, 28]. Inside the mature EHP spores, they
contain several organelles, and they seem to be similar
between EHPPv and EHPPm [5, 28].

The polar tube is connected to the anchoring disk
which is located at the anterior end of the spore [28].
The thickness of the spore wall at this anterior end is
the thinnest compared to other regions. It is suggested
that the thinnest part of the spore wall determines
where the polar tube is protruded out of the spore [14].
Similar to other species, EHP polar tube can be divided
into two parts, including a straight segment which is
connected to the anchoring disk, and a polar tube coil
located to the posterior part of the spore [28]. The
straight part of the EHP polar tube is surrounded by
lamella polaroplasts and posterior polaroplasts [28]. It
is hypothesized that the polaroplast might provide new
membranes during infectious material transport [29].
The EHP spores contain a single nucleus, situated at
the lower right of the spore center [28]. Polyribosomes
are also clearly observed in the mature spores. They
are tightly associated with polaroplasts and the polar
tube coils [28]. The function of these polyribosomes
is unclear. It is plausible that the polyribosomes are
important for parasite protein translation once it is in-
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side the host cell. In addition, posterior vacuole can be
observed at the posterior end of the EHP spores [28].
In other microsporidian species, the posterior vacuole
is expanded during the spore germination. However,
the function of the posterior vacuole in EHP remains
unclear.

EHP infection biology and its life cycle

In order to start the infection process, microsporidian
spores need to fire their polar tubes, followed by the
translocation of infectious materials into host cells
(Fig. 2A). The primary infection site of EHP in shrimp
is found in cytoplasm of the hepatopancreatic cells,
including B-cells, E-cells, F-cells, and R-cells [4, 5, 28].
Two possible mechanisms have been proposed on how
the microsporidian spores gain an entry into the host
cells. First, the spore germination is triggered by
suitable stimuli inside the host. Due to high forces gen-
erated during the polar tube firing and its rapid time
scale, it is hypothesized that the polar tube may pierce
the host cell membrane [14, 30]. Later, the infectious
materials or sporoplasms travel through the polar tube
into the host cell cytoplasm where it is deposited. The
second mechanism suggests that the spores possibly
enter the cells by phagocytosis [27]. The study was
done in human-infecting microsporidian Encephalito-
zoon cuniculi. The phagocytosed spores are encapsu-
lated in the phagosome compartment, which later be
fused with lysosomes. Lower pH in the phagolysosome
potentially triggers the polar tube germination. The
polar tube then transfers the infectious materials into
the neighboring cell’s cytoplasm [12, 27]. It is still
largely unclear what mechanism EHP takes to gain an
entry into shrimp hepatopancreatic cells.

The polar tube firing or spore germination in
microsporidia is a one of the fascinating, ultrafast
processes in biology [30]. The spores typically ger-
minate when they encounter host cells or under suit-
able environments (Fig. 2A). It remains unknown what
physiological conditions within the host can induce
the germination process. Many studies have been fo-
cused on the in vitro germination conditions [31–34].
Typically, conditions to trigger spore germination vary
greatly among microsporidian species, for example
Encephalitozoon spp. require hydrogen peroxide and
high salt concentrations [35]. While dehydration and
pH shift are common triggers for Nosema spp. [35].
In EHP, a red, water-soluble dye, phloxine B can be
used to initiate polar tube firing [36]. The polar
tube firing happens on an extremely fast timescale
(less than 2 s) [14]. Due to its fast nature, it is
challenging to study the germination process. Recent
works have utilized high-speed live cell imaging to
better understand the kinetics of polar tube firing in
three microsporidian species that infects mosquitoes
and humans, including Anncaliia algerae, Encephalito-
zoon hellem, and Encephalitozoon intestinalis [14]. The

results showed that the polar tube firing can be divided
into 3 phases, including (1) polar tube elongation,
(2) polar tube static phase, and (3) emergence of
the infectious material or sporoplasm [14]. In the
first phase, the polar tube elongates to its maximum
length, which takes ∼200 ms for Encephalitozoon spp.
and 500 ms for A. algerae [14]. Velocity of the polar
tube elongation is extremely high, reaching 235 µm/s
in A. algerae and 336 µm/s in E. hellem [14]. At
this velocity, the polar tube possibly generates enough
forces to penetrate the host cell membrane. After the
polar tube reaches the maximum length, the polar tube
enters the second phase where the length of the polar
tube is stable. It is possible that the infectious material
is transported through the polar tube at this time [14].
In phase 3, the infectious cargo emerges at the distal
end of the polar tube [14]. The sporoplasm appears
as a membrane bound structure [37]. Composition
of the sporoplasm is not known. However, it has
been shown that nucleus and ribosomes are found in
this compartment [37] (Fig. 2B). From this kinetics
study, variations between species are clearly observed,
even between closely related-species such as E. hellem
and E. intestinalis [14]. For EHP as well as other
microsporidian species that infects aquatic animals,
the kinetics of the polar tube firing remain largely
unexplored.

Once the parasite is inside the host, it starts to
divide its nucleus by binary fission. This stage of
EHP is called a plasmodial stage. Branched plasmodia
typically grow around the host nucleus [28, 38]. Since
EHP and other microsporidian species are well known
to have a compact genome, many of the genes involved
in metabolic pathways have been lost [39]. These
gene losses are compensated with the expansion of
transporter proteins, possibly facilitating the parasite
to uptake energy and nutrients from the host [40]. It
has been shown that EHP contains at least four nu-
cleotide transporters and two of them highly expressed
in the plasmodial stage [40]. Moreover, the growing
plasmodia have been found to tightly associate with
host mitochondria [28], possibly facilitating energy ex-
ploitation from the host. In the late plasmodial stage,
the parasite starts to form new organelles, such as polar
tube, anchoring disks, and endoplasmic reticulum [5].
Later, evagination of the parasite’s plasma membrane
occurs to form individual spores. This stage is called
sporogony. Finally, chitin – a major component of the
parasite spore wall begins to pack outside the plasma
membrane. When the spore wall layer is built to
∼10 nm thick for EHPPm or ∼50 nm thick for EHPPv,
the parasite becomes mature [5, 28]. In the next step,
newly developed spores need to be released from the
host cell. It is still unclear what might be the exit
mechanism of EHP mature spores. One possibility
is that the hepatopancreatic cells fully loaded with
spores burst, releasing newly developed spores into
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Fig. 2 The life cycle of EHP. (A) Mature EHP spores begin their infections by protruding the polar tube which is believed to
penetrate the host cell membrane. The infectious cargo travels through the polar tube and is deposited into host cytoplasm.
Later, the parasites start to divide by binary fission and develop into plasmodial and sporogony stages, respectively. Finally, the
mature spores exit from the host cells into the external environment. (B) EHP polar tube firing process observed under a light
microscope. Blue represents the nuclear content of EHP, which was stained with NucBlue dye. Note that (A) was illustrated
using BioRender.

the environment. This hypothesis is supported by the
fact that heavily infected hepatopancreas show signs of
damaged hepatopancreatic tubules [38]. Alternatively,
EHP spores may utilize the exocytosis process involving
Rab protein families, similar to a Caenorhabditis ele-
gans-infecting microsporidian Nematocida parisii [41].
The evidence supporting this idea is that some infected
hepatopancreas show intact tubules with the parasites
shaded into the hepatopancreatic lumen [28]. The
released EHP spores can be transmitted into new, naive
shrimp through an oral-fecal transmission [42]. So far,
there is no report of a vertical transmission of EHP.

EHP genome and its reduced metabolic genes

EHP and other microsporidia have been recognized as
minimalist organisms due to their compact genomes.
Microsporidia have been widely used as a model to
study genome reduction to the lowest limit of eukary-
otic organisms [43]. The genomes of human-infecting
microsporidian species in the Genus Encephalitozoon
are among the smallest eukaryotic genomes known
to date. Their genome sizes range between 2.3 to
2.9 Mbps. The 2.3 Mbp genome of E. intestinalis
encodes only 1,833 genes, suggesting a massive gene
loss [44]. To put this into perspective, E. intestinalis
genome is ∼5 times smaller than the genome of a
baking yeast Saccharomyces cerevisiae [45], and ∼10
times smaller when compared to another unicellular

parasite Plasmodium falciparum [46]. For EHP, a whole
genome sequencing study reveals 3.26 Mbp in size,
which encodes ∼2,540 genes [39]. Typically, an or-
ganism with a large genome needs to pay the price
for genome replication, in the form of time, nutrients,
and space. All three costs increase with the genome
size [43]. Hence, EHP and other microsporidia try
to reduce these costs by reducing their genomes to
rapidly proliferate and efficiently spend limited energy.
Genomic studies of several microsporidian genomes
reveal strategies that microsporidia use to reduce their
genomes. These include loss of introns, shortening
of intergenic spaces, gene minimization, gene dele-
tion, and decreasing redundancy genes [43]. Even
though genes involved in essential processes such as
DNA replication, DNA repair, and protein synthesis
are evolutionally maintained in microsporidia, several
genes in metabolic and regulatory pathways are par-
tially deleted [47]. Most of the genes involved in
energy production (e.g. glycolysis, pentose phosphate
pathway, fatty acid metabolism, amino acid and nu-
cleotide biosyntheses and oxidative phosphorylation)
are mainly lost. Almost all of the glycolytic enzymes
in EHP are lost, except hexokinase and glyceraldehyde
3-phosphate dehydrogenase [39]. This suggests that
EHP fully relies on hosts for energy.

To compensate for the loss of several genes in
metabolic pathways, microsporidia expand families of
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transporter proteins to import what is needed for their
replications. For example, EHP and other microsporid-
ian species contain at least 3 isoforms of nucleotide
transports or ATP/ADP translocases [39, 40]. Duplica-
tion of the nucleotide transporter genes diversifies the
functions of these transporters to not only import ATP,
but also other substrates such as GTP and NAD+ [48].
Localization studies of the nucleotide transporters
from human-infecting microsporidian species Tra-
chipleistophora hominis showed that they are expressed
on the surface of the parasites, suggesting their func-
tions in stealing host ATP and other purine nucleotides
to support parasite growth [49]. For EHP, nucleotide
transporter 1 and 2 (EhNTT1 and EhNTT2) were
found to localize on both the parasite surface inside
host cells and on the spore wall [40]. Knocking
down of the EhNTT2 by RNA interference revealed
that EHP copy numbers were significantly reduced,
suggesting that EhNTT2 is important for EHP pro-
liferation in shrimp [40]. In addition to nucleotide
transporters, microsporidia also expand genes en-
coded for other transporters, including ATP-binding
cassette (ABC) transporters, V/F type ATPases, UDP-N-
acetylglucosamine transporters, and mechanosensitive
ion channels. Interestingly, there are over 120 unchar-
acterized transporters found in EHP [39]. This high-
lighted the crucial roles of transporters to compensate
for metabolic gene losses.

Another strategy that microsporidia use to rec-
ompense for the gene loss is manipulation of host
metabolism by secreting proteins into host cytoplasm.
Using a proximity labeling method to identify pro-
teins from microsporidian N. parisii that come into
contact with the C. elagans host, 72 proteins were
identified [50]. Most of them contain signal peptides
or transmembrane domains. Recent work on the EHP
genome showed that there are 184 proteins of EHP
with predicted signal peptide sequences [51]. How-
ever, the majority of these proteins have unknown
functions. Microsporidia can also secrete metabolic en-
zymes into host cells. One of them is hexokinase [52].
It is proposed that microsporidia hexokinase could
perform a classical function to phosphorylate glucose
of the hosts, which is later taken up and metabolized
by the parasites [53]. However, it is important to note
that some microsporidian species, such as EHP, lack
the complete set of glycolytic enzymes. Only hexoki-
nase and glyceraldehyde 3-phosphate dehydrogenase
remain, suggesting that these enzymes may contain
alternate, unknown functions.

HPM and association of EHP with white feces
syndrome

EHP is a causative agent of HPM. HPM is associated
with growth retardation and severe size variation [4].
The primary infection site of EHP is shrimp hepatopan-
creas. This organ is a major organ for synthesizing

digestive enzymes and plays a role in nutrient absorp-
tion [54]. Compared to healthy shrimp, EHP-infected
shrimp show enlarged hepatopancreatic tubules and
loosen muscle fibril connections, suggesting that the
hepatopancreas of these infected shrimp might func-
tion abnormally [55]. In addition, EHP-infected shrimp
show reductions in feed intake, average daily growth
(ADG), and average body weight (ABW) [6]. These
reductions impair shrimp growth, resulting in growth
retardation. Transcriptomic analysis of hepatopan-
creas obtained from EHP-infected shrimp showed that
genes involved in carbohydrate degradation and ab-
sorption (e.g. amylase and galactosidase) are down-
regulated, as well as genes encoded for ABC trans-
porters [55]. These transporters are important for
cholesterol and lipid transport into the cells [56].
Hence, EHP-infected shrimp may impair in nutrient
uptake and possibly result in growth retardation [55].
Moreover, it has been reported that the production
of ecdysteroid-regulated protein (ERP) is higher in
EHP-infected shrimp [23]. High level of ERP results
in low production of ecdysteroid hormone, which is
essential for the molting process [57]. Hence, EHP-
infected shrimp would experience abnormal molting
and result in stunting growth. Recently, a metabolomic
study revealed that lipid peroxidation products in EHP-
infected shrimp were significantly higher compared to
healthy shrimp, indicating that EHP-infected shrimp
are under oxidative stress [58]. In addition, immune-
related genes are also down-regulated during EHP in-
fection, including proPO 2 – a component of the proPO
activating system, alkaline phosphatase (ALP), and
pattern-recognition protein (PRP) genes, e.g. lectin A
(LecA) and lectin D (LecD). This suggests that EHP
infection reduces shrimp antimicrobial activity, and
it may influence the ability of shrimp to recognize
pathogens [55]. These reductions in immune-related
genes lead to susceptibility of EHP-infected shrimp to
other secondary infections such as viruses and bacteria
[59, 60].

White Faces Syndrome (WFS) is characterized by
a pathology that leads to shedded fecal strings floating
on the surface of shrimp ponds [61]. Two types of WFS
have been identified, including ATM-WFS and EHP-
WFS [61]. ATM-WFS involves sloughing of tubules
epithelial cells of hepatopancreas with aggregated mi-
crovilli and no bacterial infection [61]. The second
type of WFS has been found to be associated with EHP
infections in grow-out farms (EHP-WFS) [62]. High
amounts of EHP spores, bacterial cells, and sloughed
hepatopancreatic cells are detected in the white feces
strings. Recent study showed that bacteria in the genus
Vibrio and Propionigenium are abundant in shrimp with
WFS [60]. Co-infection of EHP and specific strains
of Vibrio parahaemolyticus results in WFS in labora-
tory and farm settings [63]. Through their combined
actions, co-infection of V. parahaemolyticus and EHP
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dramatically increases damages to the hepatopancreas,
to the point of causing total tissue failure and morbid-
ity. Apart from bacteria, co-infection with viruses has
been reported [59, 64]. In India, there was a report of
co-infection between EHP and infectious myonecrosis
virus (IMNV) [59]. The co-infected shrimp exhibited
clinical lesions of both IMNV and EHP which are white
in the abdominal segment and slow growth [59]. In
addition, screening of shrimp samples collected from
grow-out ponds in India showed that 4 samples were
tested positive with both EHP and white spot syndrome
virus (WSSV) [64]. It is possible that EHP infection
would lead to susceptibility to the WSSV infection.
However, laboratory infection challenges need to be
tested to reproduce this co-infection.

INNATE IMMUNE RESPONSE TO THE EHP
INFECTION

Transcriptional and proteomic responses to the
EHP infection

The host immune responses to the EHP infection
have been primarily reported by transcriptomic and
proteomic analyses. The differential expressed pro-
teins (DEPs) and metabolites that were altered in the
hepatopancreas of L. vannamei after EHP infection
have been reported [23]. The results found that the
innate immune system of L. vannamei was activated
while the hormone regulation and energy metabolism
pathway was downregulated. The DEPs involved in
immune response include peritrophin-44-like protein,
alpha2 macroglobulin, proPO-activating enzymes, fer-
ritin, Rab11A, and cathepsin C. Furthermore, signifi-
cant changes of apoptosis-related proteins were also
found among differentially expressed proteins between
EHP-infected and uninfected shrimp L. vannamei which
indicated that the apoptosis pathway was activated
upon the EHP infection [25]. Transcriptomic data of
intestine and hepatopancreas of EHP-infected L. van-
namei showed many differentially expressed genes
(DEGs) [24]. Among the DEGs, several immune genes
were significantly changed compared with the control
of uninfected shrimp suggesting that the shrimp im-
mune defense system was activated or suppressed after
the EHP infection. In addition, the differential expres-
sion analysis showed that shrimp’s intestines had more
downregulated genes compared with the upregulated
ones while the opposite was observed in the hep-
atopancreas of the EHP-infected shrimp. Many down
regulated genes are related to digestion and absorp-
tion such as PvTrypsin, and genes in the pathways of
vitamin digestion and absorption and ABC transporter,
suggesting that EHP infection reduces the nutritional
supply of shrimp. While many up-regulated genes
were significantly enriched in O-glycan biosynthesis
and mannose type O-glycan biosynthesis pathways,
which reveals the alteration in the energy metabolism

pathways [24]. This might indicate the reduction
of the intestinal absorption capacity but the induc-
tion of the hepatopancreas metabolic energy con-
sumption, resulting in growth retardation in the in-
fected shrimp. Minichromosome maintenance proteins
(MCMs) and Interleukin-1 Receptor Associated Kinase1
(IRAK1) genes involved in phagocytosis and Toll sig-
naling pathways, respectively, were among the upreg-
ulated immune-related genes suggesting that both cel-
lular and humoral immune responses were activated
upon EHP infection. A comparative transcriptomic
analysis reveals that EHP infection considerably influ-
ences host gene expression including those involved
in detoxification, apoptosis, and lipid metabolism, and
unveils the dynamic molecular interactions between
EHP and the white shrimp L. vannamei, during the
early and late stages of infection [26]. These omics
analyses reveal the overall changes of genes and pro-
teins in the EHP-infected shrimp, but the mechanisms
involved in host response and the interplay of host-
pathogen interactions to regulate host immunity re-
quire further investigation.

Toll, JAK/STAT signaling pathways and
antimicrobial peptides

Toll, IMD, and JAK/STAT pathways are the major
immune pathways regulating the immune response of
invertebrates including shrimps [65]. These signaling
pathways act synergistically to activate the production
of AMPs and other immune effector proteins leading
to a broad-spectrum host response. Genes in the Toll
and JAK/STAT pathways, were found to be upregulated
upon the EHP infection in L. vannamei [66]. Mean-
while, gene silencing of LvDOME and LvTLR2 resulted
in increased EHP copy number, suggesting that both
JAK/STAT and Toll pathways are important immune
signaling pathways involved in EHP infection. The
results were corresponded to those previously reports
in N. bombycis-infected silkworms that the activation
of the Toll and JAK/STAT pathways were found upon
the microsporidia infection [67].

AMPs are the key components of the innate im-
mune system in shrimps [68]. AMPs are mainly
produced in shrimp hemocytes and rapidly released
into the hemolymph to eliminate invading pathogens.
In response to the EHP infection, it was found that
the expression of L. vannamei AMPs including anti-
lipopolysaccharide1 (LvALF1), penaeidin 3 (LvPEN3)
and c-type lysozyme (LvLyz-c), was significantly in-
creased, indicating that these AMPs might play a key
role in combating the EHP infection [66]. The function
of a c-type lysozyme, LvLyz-c, in reducing the EHP
infection was further elucidated and the results found
that LvLyzc, regulating under the JAK/STAT pathway,
can significantly inhibit the EHP spore germination
possibly by its ability to digest a chitinous endospore
layer [66]. It has been reported that AMPs can inhibit
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spore germination and reduce enterocytes infection in
E. intestinalis and E. hellem, and in the insect parasite
Nosema algerae [69]. While many AMPs can directly
kill microorganisms, some AMPs protect hosts against
microsporidia infection by inhibiting spore germina-
tion [66, 69]. However, this inhibitory activity of AMPs
is not applicable to all microsporidian species and is
likely due to different germination mechanisms.

The crustin genes were also found to be induced
after the EHP infection, in L. vannamei [70] but their
antimicrobial actions against EHP have not been ex-
plored. Many AMP genes (e.g. gloverins, lebocins,
cecropin and moricins) were also shown to defend the
silkworm against N. bombycis [67]. In honeybees, the
expression of some AMPs (abaecin, denfesin and hy-
menoptaecin) was increased after the N. apis infection.
In contrast the transcript levels of these AMPs were sig-
nificantly suppressed in N. ceranae infection [71]. This
seems to correlate with a more prevalent and virulent
of N. ceranae than N. apis. Transcriptional responses in
shrimp L. vannamei showed downregulation of small
open reading frame-encoded peptides (SEPs)-related
genes during the early stages of EHP infection [26].
SEPs are involved in various biological processes and
might be involved in activation of the NF-κB pathway
and regulation of the expression of AMPs in shrimp.
Therefore, down-regulation of SEPs might lead to a
decrease in AMP levels to promote EHP invasion.
However, the mechanism of AMP suppression by EHP
remains unclear and requires further investigation.

Melanization response to the EHP infection

Melanization mediated by a proPO-activating cascade
is an important innate immune response in inverte-
brates that produces melanin and toxic reactive in-
termediates against invading pathogens [72]. It has
been reported that the proPO cascade plays a crucial
role in defense against microsporidia infections in
both vertebrates and invertebrates [73]. In shrimp
L. vannamei, the proPO activating enzyme (PPAE), the
key serine protease in the proPO activation cascade,
was found among the upregulated immune protein in
hepatopancreas of the EHP-infected shrimp [23]. Re-
cently, it has been reported that the proPO-activating
system-related genes were highly responded to the
EHP infection, and the hemolymph PO activity was in-
creased after the parasite infection [74]. Furthermore,
the melanization products can inhibit the EHP spore
germination. Suppression of the proPO-activating
system resulted in increased EHP copy number, re-
duced expression of several genes in the JAK/STAT
and Toll signaling pathways, as well as antimicrobial
peptides and reduced hemocyte adhesion and encap-
sulation of the EHP spores. These results suggest
that the proPO cascade plays a vital role in reducing
EHP infectivity and cross-talks with other humoral
and cellular responses to coordinately defend the EHP

infection [74]. In silkworm, the key genes involved
in melanization were also found to be upregulated
among the differentially expressed genes. However, it
has been reported that the hemolymph melanization
is partially suppressed by a serpin, NbSPN6, secreted
by microsporidian N. bombycis to reduce the activity of
serine proteases, and inhibit host melanization [75]. In
shrimps, there has been no evidence yet of a parasite
serpin that could inhibit the proPO cascade.

Lectins

Lectins are proteins that recognize carbohydrates on
the surface of pathogenic microorganisms and mediate
immune responses through several mechanisms, such
as neutralization, agglutination and opsonization [76].
C-type lectins (CTLs) recognize and bind microbial
carbohydrates through a carbohydrate recognition do-
main (CRD) – and play important roles in inverte-
brate immunity [77]. Previous studies in invertebrates
showed that microsporidian infections induce the ex-
pression of various immune proteins including C-type
lectins [53]. In contrast, some C-type lectins in shrimp
have been found to be downregulated after the EHP in-
fection and are possibly involved in controlling home-
ostasis of gut microbiome during EHP infection [78].
Likewise, Aedes aegypti C-type lectins, mosGCTLs, have
been shown to facilitate bacterial colonization by coat-
ing the bacterial surface and counteract AMP-mediated
elimination to enabling eco-adaption of the gut micro-
biome in mosquitoes [79].

Hemocytin is a lectin with a unique structure
homolog to hemolectin in Drosophila melanogaster and
a von Willebrand factor (vWF), the hemostasis-related
protein in human blood [80]. Hemocytin plays a vital
role in insect immunity by mediating the agglutination
of hemocytes, pathogens, and various immune factors,
which promote nodulation or encapsulation around
pathogens and also participate in wound healing [81].
In shrimp, L. vannamei hemocytin (LvHCT), plays a
vital role in shrimp innate immunity against the EHP
infection by promoting EHP spore aggregation and
possibly activating the proPO-activating cascade [82].
Similarly, silkworm hemocytin combats N. bombycis by
binding onto the surface of the pathogen and facili-
tating pathogen agglutination, together with hemocyte
aggregation and melanization [81].

Oxidative stress

Oxidative stress, particularly reactive oxygen species
(ROS), are a vital part of the innate immune sys-
tem’s defense against pathogens. ROS can directly
attack pathogens, activate inflammation, and regulate
immune signals [83]. However, an excess of ROS
can damage cellular components including lipids, pro-
teins, and DNA, alter immune functions, inflamma-
tory responses and induce organ and tissue dysfunc-
tion. The activities of many antioxidant enzymes (e.g.,
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Fig. 3 Schematic overview of the innate immune response to the invasion of Ecytonucleospora hepatopenaei in shrimp.
Following the EHP infection, shrimps activate Toll and JAK/STAT signaling pathways to secrete many antimicrobial peptides
and immune effector proteins [19, 66]. The proPO-activating cascade is activated leading to synthesis of melanin and cytotoxic
intermediates to encapsulate the parasite and inhibit spore germination [72, 74]. Oxidative stress [58] and apoptosis [25, 86]
are also influenced by the parasite infection.

manganese superoxide dismutase (MnSOD), catalase
(CAT), glutathione peroxidase (GPX), glutathione-S-
transferases (GST) can neutralize free radicals to avoid
oxidative stress. During EHP infection, the antioxidant
genes, MnSOD, CAT, GPX, GST, and a nuclear factor
erythroid 2p45-related factor2 (Nrf2) were upregu-
lated in the EHP challenged shrimp. In addition, the
EHP infection also induces accumulation of the lipid
peroxidation products, lipid peroxide (LPO) and mal-
ondialdehyde (MDA) that causes oxidative damage to
the cell membrane of epithelial cells of the hepatopan-
creas corresponding to the histopathological features
that the hepatopancreas was significantly damaged,
with vacuoles and membrane damage between the
hepatic tubules [38] and may lead to the growth
retardation of L. vannamei [58]. Transcriptomic anal-
ysis of EHP infected L. vannamei also found that the
glutathione antioxidant system is suppressed in the
early phase of the infection but becomes activated in
the later stages that could facilitate the early invasion
of EHP while assisting the host in mitigating oxidative
damage caused by the late-stage infection [26]. Previ-
ous studies reported that microsporidian infections can
upregulate proteins involved in oxidative stress and
energy metabolism in the host. In silkworms, N. bom-
bycis infection induces changes in oxidative stress-
related proteins in the fat body [84]. In addition, GST
and thiol peroxiredoxin were significantly upregulated
after N. bombycis-infected BmN cells [85].

Apoptosis
Apoptosis is the process of programmed cell death that
is also one of the host responses to pathogen infec-
tion. It is recognized as an important defense mech-
anism against viral, bacterial and parasitic pathogens
during innate and adaptive immunity. Interestingly,
pathogens including some microsporidia can modulate
apoptosis by either inducing or inhibiting apoptosis
allowing successful pathogen proliferation [86]. Like-
wise, shrimp pathogens such as white spot syndrome
virus (WSSV) and yellowhead virus (YHV), can in-
fluence the host apoptosis system and the balance
between the pro- and anti-apoptosis activation pro-
cesses is crucial to viral pathogenesis [87, 88]. Pro-
teomic analysis showed that apoptosis-related proteins
were significantly upregulated after the EHP infection,
which indicated that the apoptosis pathway was acti-
vated in L. vannamei hepatopancreas. In addition, the
expression level of caspase3 gene was upregulated in
EHP-infected shrimp [25]. In contrast, analysis of cell
apoptosis during the first and second weeks of EHP
infection showed no significant difference in apop-
tosis of hepatopancreas cells [89]. The honeybees’
microsporidia N. apis and N. ceranae infections induce
regulation of genes involved in apoptosis and the cell
cycle. Interestingly, N. bombycis can inhibit host apop-
tosis by downregulating the expression of apoptotic
protease activating factor-1 (apaf1) and cytochrome
c (cyt-c) and upregulating the expression of buffy,
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confirming that the inhibition of apoptosis is a common
response to benefit the parasite infection [90]. Besides,
Encephalitozoon infection can suppress apoptosis of
Vero cells by inhibiting the cleavage of caspase-3, phos-
phorylation and translocation of p53 [91]. Nonethe-
less, the regulation of apoptosis by EHP remains to be
further elucidated.

In summary, the host responses to the EHP in-
fection have recently been studied but are far from
fully elucidated. To combat the EHP infection, shrimps
induce the innate immune signaling pathways such
as Toll and JAK/STAT signaling to produce lysozyme
and antimicrobial peptides and the proPO-activating
cascade is also induced to activate melanization and
encapsulation to reduce the parasite infectivity. Mean-
while, oxidative stress and antioxidant enzymes as
well as pro- and anti-apoptosis processes are strictly
regulated to maintain host cell homeostasis (Fig. 3).

CONCLUSION AND PERSPECTIVES

EHP has emerged as a serious threat to the shrimp
aquaculture causing growth retardation and poten-
tial susceptibility to other diseases resulting in severe
economic losses. EHP infects the hepatopancreas of
shrimp through a polar tube firing mechanism, allow-
ing the sporoplasm to enter into host cells where they
infect, replicate and eventually leading to hepatopan-
creatic cell damages and malfunction. The EHP infec-
tion disrupts shrimp’s metabolism and suppresses the
immune system, making shrimp more susceptible to
other infections. Understanding of EHP pathogenesis
and shrimp’s innate immunity are crucial fundamental
knowledge that will contribute to a proper and effec-
tive management to prevent and control the disease
such as development of therapeutic substances that
inhibit the EHP life cycle or modulate shrimp’s immune
responses against the pathogen.
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