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ABSTRACT: Extracellular vesicles (EVs) are submicron membrane-bound structures released from various cell types
into extracellular space. EVs are divided by biogenesis into exosomes, microvesicles and apoptotic bodies; moreover,
they can also be subtyped into natural, engineered and hybrid EVs. EVs play a vital role in cell-to-cell communication,
allowing cells to exchange cargos including proteins, lipids and nucleic acid materials, therefore making them valuable
tools as novel biomarkers of diseases, as therapeutic agents and as drug delivery messengers. In this review, we describe
several methods for isolation and characterization of EVs. Furthermore, engineered EVs as target drug delivery systems
as well as recent advances in hybrid EVs and the engineering of EVs with synthetic lipid nanoparticles will also be
discussed.

KEYWORDS: extracellular vesicles, engineered EVs, hybrid EVs, cell-to-cell communication, drug delivery vehicles,
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INTRODUCTION

Extracellular vesicles (EVs) are nano-sized lipid bi-
layer vesicles released from almost all prokaryotic and
eukaryotic cells under both normal and pathological
conditions. EVs are generally classified into three main
subtypes depending on their size and modes of bio-
genesis. Exosomes are 30–150 nm membrane-bound
vesicles with cup-shaped morphology and are formed
by inward budding of endosomal membranes into
the lumen and progressively form intraluminal vesi-
cles (ILVs) within large multivesicular bodies (MVBs).
After fusion of MVBs with plasma membrane, ILVs
are expelled into extracellular milieu in the form of
exosomes. Ectosomes (microvesicles or microparti-
cles) are heterogeneous membrane vesicles of 100–
1000 nm in size and are released by outward bud-
ding directly from plasma membrane in response to
activation. Apoptotic bodies, a final subtype of EVs,
are formed through a process termed programmed cell
death characterized by a series of regulated morpho-
logical steps, including DNA fragmentation, membrane
protrusion formation, and plasma membrane blebbing
with the size of 800–5000 nm in diameter [1]. In
addition, various terms have been used to define EV
subtypes. For example, small EVs refer to those EVs
smaller than 200 nm, while large EVs refer to those
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larger than 200 nm, as classified based on their size.
Oncosomes describe EVs derived from cancer cells and
cardiosomes refer to EVs involved in cardiac signaling
and repair during myocardial infarction and ischemic
injury [2, 3].

It has been shown that physiological and patho-
logical conditions affect EV number and composition.
These findings lead to exploring EVs as diagnostic
and prognostic biomarkers in many diseases [1, 4, 5].
EVs can also act as a cargo carrier capable of trans-
porting exogenous biomolecules, such as microRNAs
(miRNAs), proteins and lipids, from donor cells to
recipient cells. This intercellular communication high-
lights the crucial roles of EVs in health and diseases.
Additionally, EVs are excellent therapeutic vehicle due
to their higher biocompatibility and less toxicity when
compared to synthetic drugs. They are also non-
immunogenic and capable of diffusing into the blood,
penetrating into tissues, targeting various cells, and
even crossing the blood-brain barrier [5–10]. Further-
more, EVs are also highly engineerable [11, 12]. Engi-
neering of EVs by packaging certain chemical drugs or
biomolecules as cell-free drug delivery vehicles has a
great potential for precise targeting [13, 14].

In this review, the isolation and characterization
of EVs according to Minimal Information for Studies
of Extracellular Vesicles 2023 (MISEV2023) guidelines
[15] is described. An overview of the current knowl-
edge of EVs and approaches to studying EVs are pro-
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Fig. 1 Type of EVs: natural EVs, engineered EVs and hybrid
EVs (Created with https://BioRender.com/z81x007).

vided. We also cover different engineered EVs, com-
bining targeted cell-type specific EVs and biomolecule
encapsulation for therapeutic applications. Recent
advancements in hybrid EVs and the engineering of
EVs with synthetic lipid nanoparticles (LNPs), partic-
ularly focusing on strategies for various targeting and
therapeutic applications, will also be discussed.

TYPE OF EXTRACELLULAR VESICLES

According to the recent MISEV2023 guidelines, the
terminology of EVs is defined as particles that are
released from cells, enclosed by a lipid bilayer, and
incapable of self-replication [15]. Generally, EVs are
classified based on their size, biogenesis, function,
modification, and applications; here we will focus on
the classification of EVs into natural, engineered, and
hybrid EVs (Fig. 1).

Natural EVs

Natural EVs are released from the cells in physiological,
pathological, and activator-induced conditions. Each
cell type produces EVs with unique biomolecule cargo.
Natural EVs come from various sources, including
blood, cell culture condition medium, urine, and cow’s
milk. Serum and plasma are common biological fluids
used in EV studies as they contain large amounts of
EVs from many cell sources. However, these biological
fluids also contain lipids and non-vesicular proteins,
which might interfere with EV purity. The cell culture
supernatant is used to study EVs from a single-cell
source. The typical biomedical applications of natu-
ral EVs include the study of cellular communication,
their role in disease pathogenesis, and their use as

biomarkers for diagnosis and prognosis, for example,
in cancers, cardiovascular diseases, and neurologic
diseases [16–19].

Engineered EVs

Engineered EVs become potential tools for therapeutic
delivery systems capable of carrying drugs, nucleic
acid, and proteins to specific target cells. These EVs are
engineered to modify their surface ligands or internal
cargo to enhance their capacity and functionality when
compared to natural EVs, such as increasing thera-
peutic activity by improving the quality and quantity
of biomolecule loading or increasing the specificity to
target cells and EV’s stability. There are two main
approaches for engineered EV production. Firstly,
endogenous loading of cargos involves enriching the
expression of the molecules of interest in the EV-
originated cells, then allowing natural EVs production
to occur with the enrichment of desired biomolecules
[20, 21]. Secondly, exogenous loading of cargos entails
incorporating molecules into post-isolated natural EVs
[22, 23]. Engineered EVs have been used to deliver
biomolecules for treatment in a wide variety of disease
models; for example, various types of cancers [20, 24],
stroke [25], and atrial fibrillation [26].

Hybrid EVs

Hybrid EVs represent a cutting-edge technology of EV
production that combine natural EVs with other nano-
materials such as liposomes, iron nanoparticles, and
organic or inorganic nanoparticles [27–29]. These EV
types combine the advantages of natural EVs and the
advantages of synthetic nanoparticles. Thus, hybrid
EVs enhance their natural properties or convey new
functionalities that are not present in purely natural
or synthetic EVs. For decades, nanoparticle systems
have been recognized as breakthroughs for efficient
drug delivery. The suitable nanoparticle transports its
drug payload effectively to a specific target, where it
can release the drug either inside the cell or in the
extracellular environment, allowing for direct uptake
and therapeutic action. During transportation, the
nanoparticle prevents undesirable interactions with
non-target tissues, prolongs the circulation time of the
encapsulated drug, and supports controlled release.

The concept of integrating natural EVs with
nanoparticles (NPs), such as polymers or liposomes,
has led to the creation of what are termed hybrid EVs.
This has emerged as an alternative approach and a
promising strategy in drug delivery systems (DDS).
These hybrid systems address several limitations as-
sociated with natural EVs, including cargo loading,
circulation stability, and targeting capabilities [30–32].
This review explores the preparation methods, types of
liposomes used, and applications of hybrid EVs, with a
focus on their potential in cancer and cardiovascular
disease (CVD) therapies.
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ISOLATION OF EXTRACELLULAR VESICLES

The standard methods for EV isolation are based on
four main principles: centrifugation, filtration, chro-
matography, and precipitation. (i) The centrifugation-
based methods are conventional methods for EV isola-
tion. Differential ultracentrifugation (UC) and density
gradient ultracentrifugation (DG-UC), such as cushion
or iodixanol and sucrose gradient centrifugation, sep-
arate EVs based on size and density. Although they are
proposed as the gold standard method for EV isolation,
they can be time-consuming, require large amounts
of samples and expensive equipment, and have low
throughput and limited scalability. (ii) The filtration-
based methods, such as ultrafiltration and tangential
flow filtration (TFF), separate EVs based on their size
by using porous membranes with specific membrane
types and pore sizes to trap EVs of particular size. How-
ever, these methods are at risk of membrane clogging
by accumulated particles. Clogging not only prolongs
the isolation process but can also affect the purity and
yield of the recovered EVs. (iii) The chromatography-
based methods include size exclusion chromatography
(separation based on molecular size), anion exchange
chromatography (separation based on net charge dif-
ferences), and immunoaffinity chromatography (sep-
aration based on specific binding between surface
marker proteins of EVs and immobilized antibodies
coated column). These methods enhance specificity
and enrich target EV populations but are limited in
quantities of samples processed and the amount of
recovered EVs. (iv) The precipitation-based method,
such as polyethylene glycol (PEG) polymer-based pre-
cipitation, separates EVs based on the aggregation
of EVs in the precipitated solution. This approach
is a cost-effective and scalable method but requires
prolonged incubation and additional processes to re-
move the polymer from isolated EVs. Since 2020,
the field of EV isolation has been invigorated by the
development of new technologies. These innovative
methods, detailed in Table 1, hold great potential for
the future of EV isolation.

The selection of suitable EV isolation methods
depends on many factors, such as the type of EV
source, the quantity and quality of source material, the
specific type of isolated EVs, the purity and yield of
isolated EVs, available instruments, and downstream
applications. The efficiency of each method is eval-
uated by purity, yield, morphology of enriched EVs,
time efficiency, and the requirement for specialized
instruments. Combining these methods provides sig-
nificant benefits with high purity of isolated EVs, but
the recovery amount might decrease. Many studies
compared these methods in terms of purity, yield,
and characteristics of isolated EVs, their biomolecule
content, and their downstream analysis compatibility
[33–37].

CHARACTERIZATION OF EXTRACELLULAR
VESICLES

EVs characterization is the critical step following their
separation to achieve downstream application in the
diagnosis or therapeutic. Several approaches are em-
ployed to confirm isolated EVs’ physical and functional
properties. According to the MISEV2023 recommen-
dations, characterization of EVs should include quan-
tification in terms of particle number concentration
and particle size, EV morphology, and detection of
specific EV and non-EV protein markers. In addition,
the quantification of total protein, total lipids, and total
RNA in isolated EV samples, as well as the localization
of EV-associated components are recommended [15].

The morphology of EVs can be analyzed by a
diverse range of electron microscopy approaches, such
as transmission electron microscopy, scanning electron
microscopy, and cryogenic electron microscopy, each
offering unique insights [48]. The concentration of
EVs is generally determined by nanoparticle tracking
analysis (NTA), which reports the number of EV parti-
cles versus particle size; and dynamic light scattering
(DLS), which efficiently analyzes the overall number of
EVs in solution [49, 50]. NTA is appropriate for poly-
disperse samples such as EVs from biological fluids,
while DLS is suitable for rapid analysis of monodis-
perse samples such as EVs from culture supernatant.
Other methods include resistive pulse sensing (RPS)
which measures the concentration and diameter of
particles along with their zeta potential, and single-
particle interferometric reflectance imaging sensing
(SP-IRIS) which measures the size, concentration, and
identifies EV surface markers [51, 52]. The zeta po-
tential measurement at the EV surfaces is useful for
analyzing surface charge changes after EV modifica-
tion and assessing stability [53]. Western blotting
and flow cytometry are widely used for evaluating
EV markers, their cellular origin, and protein cargo.
Western blotting requires large amounts of EV proteins
and the lysis of EVs; therefore, it cannot differentiate
between surface-expressed and intravesicular proteins.
Conventional flow cytometers have a detection limit
of 300–500 nm for EVs, whereas high-resolution flow
cytometers (hFCM) with high-sensitivity laser scat-
tering are suitable for the analysis of single small
EVs. For functional tracking and localization of EVs
in target cells, fluorescence microscopy techniques
such as diffraction-limited fluorescence microscopy,
total internal reflection microscopy (TIRF-M), confocal
microscopy, and light-sheet microscopy are used. In
addition, imaging flow cytometry is used for studies of
EV internalization [15, 54].

ENGINEERED EXTRACELLULAR VESICLES

Methods of loading cargo

Recently, engineered EVs are mostly produced
from stem cells (especially mesenchymal stem

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


4 ScienceAsia 51S (1): 2025: ID 2025s007

Table 1 Recent technologies for EV isolation.

Method Principle of isolation Type of sample Advantages Limitations

Asymmetrical flow
field-flow fractionation
(AF4) [38]

Field flow fractiona-
tion

Plasma and serum High purity, scalable Limited by sample viscosity and
concentration, resolution limits for
EVs with very similar hydrody-
namic sizes

Electric field assisted
tangential flow filtration
system (E-TFF) [39]

Size-based filtration
with electrophoretic
migration-based
separation

Cell-culture condi-
tioned media

Improve purity,
increase yield, and
reduce isolation time
compared to UC

Membranes can be damaged by
strong electric field

Column-based CD9-anti
body-immobilized HPLC
immunoaffinity
chromatography [40]

Immunoaffinity
chromatography

Serum Enhance specificity
and enrich EVs at
microliter scale

Potential loss of EV subpopulations
that have no or low CD9 expression

Paramagnetic bead-based
surface epitope
immunoaffinity [41]

Immunoaffinity-
based isolation

Plasma High-throughput,
improve specificity
in isolating EV
subpopulations

Unable to release and collect intact
EVs from magnetic bead

Bifunctional immunoaffin-
ity magnetic nanoparticles
[42]

Immunoaffinity-
based isolation
under a magnetic
field

Cell-culture condi-
tioned media

High purity enrichment
performance

Potential loss of EV subpopulations
that have no or low expression of
selected marker

Polysaccharide chitosan-
based magnetic beads [43]

Affinity-based
isolation under a
magnetic field

Cell-culture condi-
tioned media,
saliva, urine,
plasma, and serum

Simple, high-throughput,
applicable to various
biological fluids

Limited specificity, Lower purity
with non-EV contaminants

Gold-nanoparticle-coated
silicon (Si) wafer [44]

Immunoaffinity-
based isolation

Serum Simple and reusable
Si wafer, compatible
with microfluidic
platforms

Potential loss of EV subpopulations
that have no or low expression of
selected marker

Exosome precipitation by
ionic strength modulation:
ExoPRISM [45]

Precipitation Culture medium,
urine, plasma, and
serum

Simple, low cost,
user-friendly, readily
scalable, applicable
to a broad range of
biological fluids

Low purity

NTI-EXO precipitation [46] Precipitation Serum and plasma More efficient for
smaller sample sizes

Low purity and potential non-EV
contaminant

Immuno-magnetophoresis-
based microfluidic chip
[47]

Microfluidic
platform

Conditioned media Integrated multiple
functions: isolation
and detection, rapid
preparation, require
small sample volumes

Magnetic beads or antibodies may
carry over and interfere with down-
stream assay

cells) [20, 25, 26] or cancer cell lines (especially
HEK293T/HEK293FT cells) [20–22, 24]. The
modification of EV-originated cells can occur through
viral vector transduction or transient transfection with
recombinant plasmids expressing miRNAs, siRNAs,
or mRNAs of interest to produce EVs enriched with
specific nucleic acids or proteins [20, 21, 24, 55–57].

There are additional methods to enrich the cargo
of interest more specifically. For example, fusing target
proteins with transmembrane proteins involved in EV
biogenesis, particularly CD63, or other proteins that
have been demonstrated to be parts of EV, such as
PTGFRN and BASP1, has been shown to enhance their
inclusion in EVs [57, 58]. However, this approach
may not be generalized to all proteins involved in EV
biogenesis, potentially due to interference from the
fusion proteins [57]. Additionally, when the desired
cargo is RNA, EV-enriched proteins fused with an RNA

binding domain have been shown to increase RNAs
loaded into EVs [56, 58]. Another strategy involves
anchoring target proteins to the plasma membrane to
enhance their inclusion in EVs. One study achieved
this by fusing the target protein with Cryptochrome 2,
which could dimerize with its ligand CIBN. Modifica-
tion of CIBN was performed by adding a short peptide
tag known to be myristoylated and palmitoylated and,
thus, be anchored to the plasma membrane [21].

Forced expression of the spike glycoprotein of the
vesicular stomatitis virus (VSV-G) could induce host
cells to increase EV budding from the plasma mem-
brane [55]. The characteristics of these VSV-G induced
EVs, as they termed it “gesicles”, do not match those of
exosomes and are believed not to originate from the
multivesicular bodies [55]. However, they have the
advantage in inducing EV release without mechanical
or chemical perturbations. Studies have shown that
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these EVs are quite stable after freeze/thaw cycles
and can be used to deliver biomolecules of interest,
including proteins and nucleic acids [55, 59, 60].

Similar to endogenous EVs, exogenous engineered
EVs can be produced to transport not only pro-
teins and nucleic acids, but they can also be loaded
with other molecules such as drugs as their cargos.
Biomolecule loading and surface functionalization can
be achieved using techniques such as co-incubation,
electroporation, extrusion, freeze-thawing, and sonica-
tion [22, 23, 25, 61]. These methods have the advan-
tage that they do not require genetic manipulation of
the source cells of EVs.

The selection between endogenous or exogenous
loading of cargos to produce engineered EVs depends
on several considerations. If the desired EV cargos are
gene products, including proteins or miRNAs, it is pos-
sible to do either transient or stable expression of the
desired genes in the originated cells to endogenously
load them. Stable expression would allow multiple
rounds of EV production without having to genetically
manipulate the originated cells every time [20]. How-
ever, for drugs that cells cannot produce, they would
need to be supplemented into the originated cells or in
the post-released EVs in order to enrich them [62, 63].
And for biomolecules that are toxic to the originated
cells, it might be difficult to use endogenous loading
techniques to highly enrich them in EVs because the
viability of originated cells may decrease. On the other
hand, there are also limitations in the amount of cargo
that could be incorporated into EVs by exogenous
loading techniques.

Targeting specific cell types

While natural EVs may have their preferred target cells,
in order to use EVs in drug and/or treatment delivery,
researchers also investigated methods to make EVs
more specific to desired target cells than to normal cells
or other cell types. The main method is to incorporate
targeting molecules. For example, it has been shown
that fusing a membrane protein Lamp2b in EVs to a
neuro-specific RVG peptide sequence could target the
EVs to the brain [25].

Endosomal escape and reaching target cellular
compartments

Even when EVs get to the desired recipient cell types,
some studies still encountered the problems of getting
the cargo out of the endosomes to the target cellular
compartments. There have been several methods to
enhance the endosomal escape; for example, VSV-G
has been incorporated into the EVs’ membrane, though
not fused to cargo molecules, to improve membrane
fusion and cargo release from the endosomes [21].
Other chemical compounds have also been demon-
strated to improve endosomal escape of EV proteins
[64]. Then, after EVs manage to release their content

from the endosome, methods have also been employed
to send them to where they should function. For
example, a nuclear localization signal was added at the
N-terminus of EV-loaded Cas9 protein to get it to the
nucleus to perform DNA cleavage [21].

HYBRID EXTRACELLULAR VESICLES

The preparation methods for hybrid EVs

In general, the methods used to prepare hybrid EVs rely
on physicochemical techniques. These involve the mix-
ing of EVs and NPs through electrostatic or hydropho-
bic interactions, facilitated by the temporary disruption
or permeabilization of the lipid membrane, which then
reassembles to form a hybrid complex, or through the
fusion of lipid layers. A previous study reported that
amphiphilic cationic nanogels were successfully com-
bined with EVs through electrostatic and hydrophobic
interactions between their cholesteryl groups and the
lipid bilayer of EVs. The complex formation improves
the stability and enhances its cellular uptake [65]. The
hybridization of EVs and poly(lactic-co-glycolic acid)
(PLGA) NPs functionalized with aptamers was pre-
pared using microfluidic sonication. By the transient
opening of lipid bilayers, core–shell structures could
be formed and EVs act as a shell. The resulting hybrid
EVs exhibited a prolonged in vivo circulation time [66].

Recently, hybrid membrane engineering of EVs
joining with various types of LNPs has been reported.
Liposomes, a category of synthetic LNPs, are preferred
as DDS due to self-assembly characteristics, ability to
encapsulate both water-soluble and lipophilic drugs,
and improved pharmacokinetic profile [67]. The
strategy of hybridizing EVs with liposomes has been
employed to improve the surface characteristics of
EVs in order to alter their immunogenicity, improve
colloidal stability, extend their half-life in circulation,
and promote cellular uptake [68]. Due to the similar
surface properties of EVs and liposomes which are
lipid-based, the hybridization of EVs and liposomes is
prepared by fusion of lipid bilayers. Common methods
for achieving membrane fusion include incubation,
sonication, and freeze-thaw cycles [69].

Several studies have been carried out on EVs/li-
posome hybrids to assess their potential as DDS. The
composition of liposomes, described in the following
subsection, plays a key role in hybrid EVs to obtain the
desired characteristics for effective DDS.

Type of liposome used in hybrid EVs

Liposomes consist of numerous phospholipid
molecules that allow for customization of the lipid
composition. Lipids, from both synthetic and natural
sources, have a wide range of head groups, chain
lengths, and saturation levels. The different charges
of lipids depend on the head groups. Cationic lipids
provide a positive charge to the liposome surface.
Liposomes containing cationic lipids can promote
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Table 2 Summary of hybrid EVs based on the type of liposome.

Type of liposome EVs source Technique for EVs
isolation

Therapeutic
agent

Main findings

Zwitterionic (DOPC-based liposomes)
Cationic (DOTAP-based liposomes)
Anionic (DOPS-based liposomes) [70]

Raw 264.7
macrophages

Differential centrifugation
and micro-filtration

– Lipid composition of hybrid EVs in-
fluenced cellular uptake

Cationic (DOTAP-based liposomes)
Anionic (PC was substituted for
DOTAP) [73]

Adipose-derived
mesenchymal
stem cells

Ultracentrifugation Paclitaxel The fusion ability of EVs with
cationic liposome was better than
with anionic liposome.

Anionic DOPS-based, DOPG-based,
and BMP-based liposomes [75]

HepG2 cell line Ultracentrifugation
and affinity method

– Fusion activity depended on the ra-
tio of particle number between EVs
and anionic liposomes, liposomes
diameter, and pH.

Cationic (DOTAP-based liposomes)
[76]

B16–F10 cell line Differential centrifugation
and size exclusion filter

PD-L1 trap
plasmid

Hybrid EVs demonstrated effective
penetration into lymph nodes, pro-
moting dendritic cell maturation
and activating cytotoxic T cell.

Cationic (DODEAC-based liposomes)
[78]

MCF-7 cell line Differential centrifugation siRNA Hybrid EVs improved efficiency of
the siRNA delivery to breast cancer
cells.

Cationic (DODAG-based liposomes)
[79]

Skimmed bovine
milk

Differential ultracentrifu-
gation

siRNA Hybrid EVs-liposome exhibited
higher stability in simulated
intestinal fluid compared to
liposome.

Ionizable (DLin-MC3-DMA-based
liposomes) [80]

Cardiac progeni-
tor cells

Tangential flow filtration
(TFF) and size exclusion
chromatography (SEC)

siRNA Hybrid EVs were effective in deliv-
ering siRNA to various cell types,
with altered cellular uptake, re-
duced toxicity, and retained gene-
silencing effects.

electrostatic interactions with cell membranes and
negatively charged DNA. Anionic lipids, which
are negatively charged, are more similar to cell
membranes and the membranes of EVs. Zwitterionic
lipids, the neutral lipids, compose of both positive
and negative charges [70–72]. The fusion of EVs
with various types of liposomes can generate hybrid
EVs exhibiting distinct characteristics (Table 2).
The generation of EV-based hybrid systems using
cationic liposomes seems to be more widely studied
compared to other types of liposomes. Regarding the
EV surface, the EV membrane is negatively charged
so it can interact with positively charged liposomes
when mixed, leading to the fusion of lipid bilayers
[73, 74]. A previous report suggested that the cationic
liposome had the fusion ability higher than anionic
liposome [73]. However, to increase the fusion
capacity of anionic liposome, some factors such as
the particle number ratio between the EVs and the
anionic liposomes, diameter of liposomes, and buffer
pH should be considered [75]. The EVs-liposome
hybrid systems overcome the limitation of single
used EVs by promoting the cellular uptake, stability,
and targeting capacity in DDS [70, 73, 76–78]. In
addition, the enhancement of immunogenicity using
EVs-cationic liposome has been reported, such as in
controlling the activation of B cells, production of
mediating molecules of the immune response, and

lymphocyte-mediated immunity [76]. The choice
of liposome type to integrate with EVs depends on
the specific objectives of the intended application.
Optimizing the stability, targeting capabilities, and
functionality of the resulting hybrid EVs can establish
them as a highly versatile platform for developing
next-generation therapeutic strategies. In addition,
to enhance the therapeutic effect, hybrid EVs can be
loaded with various types of biomolecules such as
siRNA, miRNA, and drugs.

Application of hybrid EVs

The most significant advancements in nanotechnology
are focused on the detection and treatment of cancer.
Many studies have focused on examining the drug
delivery properties of EVs and NPs. These studies have
examined a variety of compounds, ranging from large
molecules like siRNA, miRNA, and proteins to tiny
molecules like paclitaxel (PTX), doxorubicin (DOX),
and curcumin [73, 78, 79, 81]. The hybrid EVs, from
EVs and liposomes, increase loading efficiency while
toxicity remains low. A previous study fused exosomes
derived from HEK293FT cells expressing sgRNA with
liposomes and loaded with a dCas9-expressing vector
by incubating the mixture for 12 h at 37 °C. The re-
sulting hybrids effectively delivered CRISPR–Cas9 to
mesenchymal stem cells (MSCs) [82]. Wu et al [83]
developed exosome–liposome hybrid NPs using the
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freeze-thaw technique. They combined exosomes with
ALKBH5 mRNA-loaded liposomes in a 1:1 ratio and
subjected the mixture to three cycles of freezing and
thawing to facilitate particle fusion. This method
effectively addresses the challenge of encapsulating
mRNA within exosomes and reduces the toxicity as-
sociated with liposomes, significantly enhancing the
therapeutic impact on colorectal cancer [83]. The
hybridization of exosomes from murine macrophage
and liposomes with DOX loaded was shown to enhance
pH-sensitive drug release in the acidic tumor microen-
vironment and increased toxicity toward cancer cells
[84]. The hybrid EVs can be engineered to increase the
effectiveness at targeting cells and shown to be a great
carrier for targeted delivery. Hybrid exosome system
by combining folate-targeted liposomes with exosomes
of MSCs for delivering the anticancer drug PTX has
been reported. The findings indicated that combining
EVs with folate-modified liposomes significantly im-
proved target recognition and uptake. Moreover, in
vivo experiments showed that hybrid EVs significantly
inhibited tumor growth in colorectal tumor-bearing
mouse models [73].

In addition, recent advancements have explored
the development of hybrid nanovesicles through the
fusion of liposomes with EVs to improve therapeutic
outcomes in CVDs. For example, Tan et al [85] intro-
duced platelet-mimicking hybrid nanovesicles by inte-
grating platelet-derived vesicles with liposomes encap-
sulating mesoporous silica particles loaded with miR-
21. These hybrid EVs demonstrated targeted delivery
to monocytes and macrophages in the bloodstream,
accumulating in myocardial vascular lesions. The pre-
cise delivery of miR-21 facilitated the transition of pro-
inflammatory M1 macrophages to anti-inflammatory
M2 phenotypes, thereby reducing inflammation and
promoting cardiac tissue repair following myocar-
dial ischemia-reperfusion injury. Hybrid EVs by fus-
ing MSC-EVs with monocyte–macrophage membranes
were developed by Zhang et al [86] to facilitate the
cardiac repair and functional remodeling. In vitro and
in vivo studies showed that integrating monocyte mem-
brane components provided these hybrid NPs with a
highly specific targeting ability for injured myocardium
by mimicking the recruitment properties of monocytes
post-myocardial infarction/reperfusion injury (MI/RI)
[86].

The development of hybrid EVs thus represents a
significant advancement in DDS, particularly for cancer
treatment and cardiovascular therapy. By combining
the advantages of natural EVs with the enhanced ca-
pabilities of liposomes or other nanoparticles, hybrid
systems address key limitations and offer promising
potential for effective and targeted drug delivery.

CONCLUSION

Recent advancements in isolation and characterization

of EVs allow the study of their properties and the
application in DDS. In addition to EVs isolated from
natural sources, various methods have also currently
been developed to produce engineered EVs and hy-
brids EVs to further tailor them for specific therapeutic
purposes.
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