@LSEARCH ARTICLE ScienceAsia 51 (4): 2025: ID 2025064: 1-10

doi: 10.2306/scienceasial513-1874.2025.064

Global attractors for non-Newtonian equations on BCS-BEC
crossover

Chunyan Xiong?, Shuhong Chen®®*

2 Institute of Electromagnetics and Acoustics School of Electronic Science and Engineering, Xiamen University,
Xiamen, Fujian 361005 China

b School of Information Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang 316022 China

¢ School of Mathematics and Computer, Wuyi University, Wuyishan, Fujian 354300 China

*Corresponding author, e-mail: shiny0320@163.com
Received 29 Mar 2023, Accepted 27 Jun 2025
Available online 13 Jul 2025

ABSTRACT: This paper considers the global attractor problem for the non-Newtonian equations on BCS (Bardeen-
Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover. These non-Newtonian equations can be translated
into the time-dependent Ginzburg-Landau equations. In order to establish the attractors, we first prove the existence
and uniqueness theorem of weak solutions by the standard Faedo-Galerkin approximation method. Then, we establish
some suitable prior estimates of the weak solutions by combining Gagliardo-Nirenberg inequality, Agmon’s inequality
and Gronwall inequality, etc. Finally, using the existence theorem of the global attractor, we prove that there exists
a compact global attractor for the time dependent Ginzburg-Landau equations of BCS-BEC crossover on atomic fermi
gases near the Feshbach resonance.
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INTRODUCTION

The Ginzburg-Landau theory is a useful tool for study-
ing superconductivity and has very fruitful results
[1-5]. However, there are few results for the Fermion-
Boson model given by mathematical analysis. Most
of them are obtained by physicist [6-8,15]. In 2006,
Machida and Koyama [9] developed a time-dependent
Ginzburg-Landau (TDGL) theory for the superfluid
atomic Fermion-Boson model based on the functional
integral formalism, which has the following form:

dg’+1
—idu, = (— gU +a)u+g[a+d(2v—2u)]<p

+—— Aut S (c—d)Ap—blutgpPutgy), (1)
4m 4m

i, =—§‘P+(2V—2M)<P—LA% 2
U 4m
where the functions u and ¢ stand for the fermion
pair field and the condensed boson field, respectively.
The coupling coefficient d is generally complex with
d = d, +id;, and the others coupling coefficients of
(1)-(2) are all real numbers. Especially, u is the chem-
ical potential, and U > 0 denotes the BCS (Bardeen-
Cooper-Schrieffer) coupling constant. Just as illustra-
tion in [9], the coefficient d is a critical feature of
the system (1)-(2), which dominates the dynamics of
the superfluid atomic Fermi gases. In other words,
d is used to as purely imaginary in the BCS limit,
and the conventional TDGL equation for u enjoys the

dissipative mechanism. On the contrary, the real part
of d dominates the dynamics and the imaginary part of
d vanishes. Usually, d is a complex number in the BCS-
BEC (Bose-Einstein condensation) crossover region.

In order to analyze such Ginzburg-Landau equa-
tions on BCS-BEC crossover, we need to rearrange the
equations. Thus, let u+ gy = w, the equations (1)-(2)
can be rewritten as:

dw, —(a— %) iw— lﬁgcp— 41—CmAw+ib|W|2W =0, (3)
ig g o oy
%—UW‘FFSO'H( v— M)<P—4—m ¢=0. 4@

Through this method, Chen and Guo et al [10-13]
constructed the existence theory of the solutions to the
Ginzburg-Landau equations (1)-(2) under different
conditions.

In addition to the existence of solutions, the au-
thors even obtained the existence theorem of the global
attractor under certain conditions [19]. However, it is
regret that they cannot obtain the same results in the
general case. In order to solve this problem, Fang et al.
want to modified the Ginzburg-Landau equations (3)-
(4) by given some external force terms as following.

1 . .

dwt—(a—a) iw—lﬁg Lp—41—cmAw+ib|w|2w = f(x), (5)
ig ig2 . i

%—UW+790+1(2V—2H)90—4—mA90 =h(x). (6)
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Furthermore, Fang and Jin found that if they want
to get the attractors results, they should continue to
modify the equations (5)-(6) by increasing a dump
term with the dumpling parameter y > 0:

dwt—(a—%) iw—%gp—;—cmAwHMlew = f(x), (7)

ig ig? . i
@ty o wh——p+(2v—2u)p———Ap = h(x). (8)
U U 4m
Together with giving some restrictions of the cou-
pling coefficients, they obtained the existence of global
attractor [ 14]. And then, Jiang, Wu, and Guo extended
the results in [14] and found that the global attrac-
tors of the equations (7)—(8) can be obtained under
the more larger region of the coupling coefficients
[16]. For more information on the theory of attractors,
please refer to [20-23] and their respective citations.
Inspired by the above results, we naturally have
the question: Does the general TDGL equations on
BCS-BEC crossover with the following form have the
similar results? This is the main problem we would
consider in this paper.
§¢—I—;AW+ibIW|PW+Yg<p=f (x, ), (9

1
dw —ila——
w—ila—=)w—

ig ig? . i
ety o——wt——p+i(2v2u)p——Ap=h(x, t), (10)
U U 4m

w(x,0) = uo(x) + g @o(x) = wo(x),

o(x,0)= po(x),  xe, an

Wwlaa=(u+g¥)ln=0, ¢lan=0. (12)

In fact, compared to the above results, the problem
we considered in this paper has the following features.
(i) There are no results regarding the existence of

global attractors for weak solutions to the equa-

tions (9)-(12) with the index p > 0 before.

(ii) The external force terms f(x,t) and h(x,t) here
are not only dependent on the space variable x but
also dependent on the time variable t.

(iii) The higher-order nonlinear term implies the more
difficulties to obtain the prior estimation.

In order to overcome these difficulties, first, we
combine Gagliardo-Nirenberg inequality, Agmon’s in-
equality and Gronwall inequality, with the monotonic-
ity properties of P-Laplace operator to deal with the
difficult comes from the index p > 0. Then, combining
with the space where the external force terms f (x,t)
and h(x,t) belonged and the properties of the norm,
the difficulties caused by the external force terms are
overcome. Finally, through the properties of P-Laplace
operator and the techniques such as interpolation in-
equality, and so on, the difficulties caused by higher-
order nonlinear terms are resolved. Meanwhile, we
obtain the existence of global attractor for the problem
(9)-(12).
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Theorem 1 Supposes that the conditions (a)-(c) as

followings are satisfied.

(@ f(x,t), h(x,t) € H3(Qr) and uy(x), po(x) €
H3(Q) with Qr = (0,T) x Q;

b) U>0,b>0,c>0,m>0,aU<1, y>0;

(o) d =d, +1id;, where d,, d; € R and d; > 0, |d| =

d2+d2.

Then, the global weak solutions to the problem (9)-(12)

define a strongly continuous nonlinear semigroup S(t)

on Hé X Hé. Moreover, the semigroup operator S(t) has

a compact connected global attractor

2 1 2 1
AC(H*NH,)x(H*NH,).

PRELIMINARIES

This section includes some lemmas and definitions
which would be used in the proof of the main results.
Throughout this paper, the constant C > 0 often refers
to the different constants in different places.

Definition 1 ([17]) Assume that A C H satisfies the

following conditions.

(1) Ais an invariant set, that is, S(t)A=A, Vt = 0;

(2) There exists an open set U C A, Yx, € U such that
tETO dist(S(t)xy,A) — 0 holds.

Then A is called an attractor. Where the Hausdorff

semi-distance is defined as

dist(S(t)U,A) = sup inf d(S(t)xq, y).
xo€U YEA

And the maximum open set U that satisfies the condi-
tion (2) is called the attraction area of A.

Lemma 1 ([18]) For bounded sets B, € E, if there exists
a ty € [0, t] such that ty(By) > 0, and for any bounded
set B C E, there is

S(t)BCB,, Vt=t,.

Then, By is called the bounded absorption set in E.

Lemma 2 (The existence theorem of global attractor

[18]) Let E be a Banach space, {S(t),t = 0} be a

semigroup operator; S(t): E — E, S(t)-S(t) =S(t+7),

S(0) = I, where I is an identity operator, and let the

semigroup operator S(t) satisfy the following conditions:

(1) The semigroup operator S(t) is uniformly bounded
in E, that is, for all R = 0, there exists a con-
stant C(R), such that when ||7||E < R, there have
IS() ]|z < CR), Yt € [0, 00).

(2) There exists a bounded absorption set B, in E, that
is, for any bounded set B C E, there exists a T, such
that S(t)B C Bywhen t > T.

(3) When t >0, S(t) is a full continuous operator.

Then, the semigroup S(t) has a tight global attractor.
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PRIORI ESTIMATES

Theorem 2 (The existence theorem of weak solu-
tions) Under the conditions (a)—-(c), for any (w,, @) €
Hy(Q) x Hy(R) and T > 0, the initial boundary value
problem (9)-(12) exist a pair of global weak solutions
(w, ) in Qp = Q2 x [0, T] such that

w, ¢ € C([0, TT,HA (),
w, € L*((0,T),L*(Q)), ¢, € L*((0,T),H(Q)).

And for any complex-valued functions ) € Hé(ﬂ) and
& € CcY(0,T] with £(T) = 0, the following equalities
hold.

T[—d( )—'( —1)( )~ (g, £)
[ e —i(a= ) omen - e e
+;—Cm(vW,ivw)+rg(so,iw)+ib(|w|2w,w)]dr

T
_ J (F. ) de + (wo, EO)),
0

and

T . 9
L [—(%&w)—%(w,&/))ﬂ(% +2v—2u)
+ (0, EV) 410, E0) |de
m

T
=f (h, €)Y dt + (1o, E(0)Y).
0

This theorem can be proved by the standard Faedo-
Galerkin approximation method. The detailed proof
would be given later.

Theorem 3 (The uniqueness theorem of weak solu-
tions) Assume that any (wy, ¢1), (wq, @5) € Hé(QT) X
Hé(QT) are the weak solutions to the problem (9)-
(12) with the initial values (Wo, ©o1) and (Wog, ©o2),
respectively. Then, for any T > 0, it holds Yt € [0, T],

lIws (x, £ =waCe, OlF + [l (x, ) = 020x, Ol
t
+ f lws-(x, T) —wa (x, DI do
0
< Lye" ([woy (x) = woa (Ol +llpo1 () = 902 (OIIE)

with ||F||*> = f |F|?dx and where L,, L,, are positive
constants depending on |[woyllg, [lwoilla, lwoally,
[l 002115, |2] and the coefficients of the system (9)-(10).

The proof of the theorem is given by substituting the
two pairs of weak solutions into the equations in the
existence theorem of weak solutions (Theorem 2),
respectively and then estimated. The details would be
seen in the later of the paper.

Theorem 4 Under the conditions (a)—(c), for any initial
data (wy, @) € Hé(ﬂ) X Hé(ﬂ), there exist positive
constants Cs, Cg, C;, Cg, Cy depending only on the
coefficients of (9)-(12), such that Yt = 0,

2
+ e (x, t)”él Iz:ﬂ

Cg — 2
< 2 e (w7 +Collwo GOl 2 +llpo (I ) + e -

lIwCx, Ol7: +lw(x, Ol

Proof: Making the inner product of the equation (9)
with w, and then taking the imaginary parts, we find
that

_ d; d 2 1 5
drlm[f w, wdx}+ 5 dt”W” +(U a)||w||
—gRe[fw-de]+L|IVW||2+bf|w|p+2dx
U 4m
+yglm|:f@-de]zlm[ff(x,t)-v'vdx} (13)

i.e.,

1
wl®+ | =— ||W||2+L||VW||2+b [w|P*2 dx
U 4
m Q

= gRe[f cp-ﬁ/dx}—drlm[f wt‘wdx]
U Q Q
+Im|:f f(x,t)‘vT/dx]—ygIm[f w'de}. 14
Q Q

By Young inequality, (14) can be translated to

d; d
2 dt

d; 1
S+ (G- )||w||2+—||vW||2+bf|w|P+2dx

gl Idl Igle Yge
<[5+ B+ e+ ol
2eU 26 2U
£|d | €
+——lw ?+ ZlIf (x, DI, (15)
2 2
Choosing suitable € > 0 such that
d
el e,
2¢eU  2¢ €
and let
2.2 d
C, = max| 8¢, 187€ €ldl el
2U 2 2 2

The equation (15) can be simplified as

d; d 1
S wIP+( = =)W+ —VwlP+b | [w]P*2 dx
2 dt U 4m Q

1.1
< 5(5—a)||W||2+C1(|I<P||2+||Wf||2+f(x, t)). (16)
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Furthermore, making the inner product of the equation
(9) with w,, we have

(dr+idi)fwt~v|7tdx—i(a—%)Jw~wtdx
——J x——JAw w,dx

+ibf IWIPW‘WthH-ng-w-wtdxsz(x,t)vﬁ[dx.

Similarly, taking the imaginary parts,

171 d _
a4 5 (5 -a) dtIIWI|2—§ReU<p-Wde]

+— S wlPr —— = P24
8m dt” I +2dtJ|W| X

+yglm [J @ -w, dx] =Im |:Jf(x, t)-w, dx:|. a7

Then, rearranging the equation (17), we obtain
S15 (F-a) i+ w2 | wir2ax
dt | 2\U 8m P+2 Jg
+dilw, 1> = %ReU 0, dx]
+Im|:ff(x, t)-w, dx]—}fg[m[f @ -W, dx]. (18)

By Young inequality, we have

af1/1 b
£ —(——a)llwl|2+—c ||vW||2+— |w|P+2dx
de | 2\ U 8m

g Yg

+dilw, P < | ==+
2eU

+
2U

+§||f(x,r)||2.

1
Choosing suitable € > 0 such that —— & +==—,and
2eU € 2

€
,5},we can get

llell®

(19

let C, = max g€ + ﬂ
2U 2

d

b
- 2+_ vw 2+_ P+2d

+dllw,II* < EIIIIW[II2 +G(lell* +1If (e, 1) (20)

Now, we proceed to take the inner product of the
equation (10) with ¢, and get

fcp[-¢dx+yj<p-¢dx—%fw~¢dx

i 02
+%J<p'¢dx+i(2v—2y.)fap~¢dx

—;fAcpwﬁdx:fh(x,t)'«[)dx.
4m
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Taking the real parts,

d 2 2 g _
- + =—=1 -¢d
a1 rllelP =—fim| | wepdx

+Re [J h(x,t)- ¢ dx} . (2D
Q

By Young inequality;,

1d 5 > _ | & (1 €
S gl +rliol < | E[( S wie + Sl
5 qpllelP+rllel < | 7| oo Iwi+ S el

1 €
+ —lh(x, OI* + = el
2€|| (x, O 2||<P||

Choosing € > 0 small enough such that

1
&—FE = Z, and let Cs =max{ﬁ,—},
20 2 2 2eU " 2e
we have

1d 2 2
-— +
S llelP +rlel

< gllsoll2 +Ca(Iwll* + [IhCe, OI). - (22)

Further, making the inner product of the equation
(10) with —A @,

f%'(—A@dXJrYJ w-(—A@dX—%JW-(—A@)dx
ig? _ . B}
+ o f - (—A@)dx +1(2v—2u)f p-(—A@)dx
_ L J Ap-(—A@)dx = f h(x,t)-(—A@)dx.
4m

And then taking the real parts,

1d g B}
——[IVol?+7lIVe|? =—=1 Vw-Vgd
2dt” el +rlvell UmU w-V¢g X]

+Re [f Vh(x,t)-V¢ dx} . (23)

By Young inequality, we can obtain

1d lg]
SIvel+ 1Vl < U( Vw2 + ||V<,o||2)
+—||Vh(x,r)||2+5||wu2
|g| 2 2 |g| 2
+ v Vh(x, )2 + =2 [ Vw2
= (£ + DIVl + 5 IVRCe, DI + S5 ow

Similarly, choosing € > 0 small enough such that

1
S+@ = Z, and let C4—max{ 8| }
2 20 2 2¢’ 2eU
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we have

EEIIV<{JII2+YIIV¢II2

< DIV eI+ Co1vhGe, O + 9wlP). - @4)

Then, we let (16) multiply k;, (22) multiply k,,
and (24) multiply ks,

kldid 2 (1 ) 2 klc 2
LW+ k= — +-2|v
L Sl ks (=) P+ S ow
+2 kl 1 2
+kib | WPHdx < —| =—a|w|
. 2 \U
+ Crk (el + Iw P+ 11f G, OIP),  (25)
k
ks d ||<10||2+k2)’||%0||2
< B o1p 4 oty + I, 0P, (26)
ks 490l + vk Vol
2 dt
<YV2kCVh2V227
< IVl + ks C4(IIVR(x, NI + [[VW]?),  (27)

Combining (25)-(27) with (20),

d

Slatkdr g —a)||w||2+8i||vW||2

o2 [ e B+ Riwor]

kic
#[ 3G~ Gl |+ (35 — ik Il

vk, k
e N e [ e A

4
H(F =k ) IwlP < (@ + CIF GO

+Cskyllh(x, OII” + Ciks | VR(x, Ol (28)

. 4Gy, cd;
Choosing k; = 4c , ky = - , kg = TImeCL then
there exists a constant C5 > 0, such that the following

inequality holds,

d d;
aEl(t)_’_CSEl(t)"'Z”Wt”Z < G, (29)

where
1
Ei(t) = E(kldi +

1 c
——a)llwl* + —IIVw|?
U m

b k k
+ - P2 dx + 2lpl? + 2| Vel
4LIWI x+llel”+ Zlvel

5
Gronwall inequality yields that
—Cst Ce
E (t) <e “'E{(0)+ o Yt = 0. (30)
5
For
1 1 b ky k
C7=min{—(k1di+——a ,L,—,—z,i},
2 U 8m 4 2 2
1 b ky k
G =max {2 kd + 5 -a) =, 2,2, 2],
U 8m 4" 2 2
we get, Yt =0
llwCae, OIZ: + o G, Ol + lwlx, DI
Cg _
< e (IwoloOlls + Iwo GOl
7
C
2 6
+lgoClfn) + 58 G
The proof of Theorem 4 is completed. a

Theorem 5 Under the conditions of Theorem 2, the
following uniform estimate holds.

<c(i+,

t=fp>0,
B

Iw(Olg20) <
||<P||H2(n) Cio»
where C and Cy, are positive constants depending on

[lwollg, 1@ollgt, € f(x,t), h(x,t) and independent of
t.

Proof: For any t = 0 and 8 > 0, we integrate the
inequality (29) from t to t + 7, then from (31), we
can infer that

f(uw(r)n + WO, + (D)2 +Ilw ()12 dt

<C. (32)

Noting that the inner product of the equation (9) and
—Aw is,

(d, +idl-)f w, - (—Aw)dx —i (a — %) j w-(—Aw)dx

_ig

U p-(— Aw)dx——JAw (—Aw)dx

+ibf V(lepw)‘VvT/dxwL}/gJ - (—Aw)dx

= ff(x, t)-(—Aw)dx.

www.scienceasia.org
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Taking the imaginary parts, we have

—d,Im[Jwt Awdx]—i—d— w2 + (%—a)IIVWIIZ
+§ReU<p~AwC1x]+L||AW||2
U 4m

+bpRe [J |wlP|Vwl|? dx:|+p?bRe[J |wP~2-w?- (V)2 dx ]

+yg1m|:f cp-(—Av’v)dx] :—Im[Jf(x, t)~Ade].

By Young’s inequality, we can get that

d. d 1
—l—||vW||2+(——a) Vw2 + [ Aw]P?
2 dt U 4m

+ bpRe [J |W|P|VW|2dX] = —%Re [J @- Ade]

—p?bRe[ |W|P2W2(VV_V)2dX:|+drIm|:J wt-Av‘vdx]
Q

+ygIm |:J <p~Av_vdxi|—Irn|:f f(x,t)-Av_vdx:|
Q

b
< awlP+ 2 | wipvw]? dx
8m 2 Q
+ Co(lw 1> + llll* + 11f Cx, OII).

Integrating the above inequality from t to t + 7, and
combining with (32), we can deduce

t+7
J Iw()lZ.dr <C
t

Similarly, we can find that the inner product of the
equation (9) and —Aw, is,

(33)

, +id,-)J W, - (—Aw,) dx —i(a— %) J w-(—Aw,)dx

_ g

Ul “(—Aw,)dx — —wa( Aw,)dx

+ ibf [wlPw - (—Aw,)dx + )/gf ¢ (—Aw,)dx
= Jf(x, t)-(—Aw,)dx.

Taking the imaginary parts,

(3-9)d

QI Tw, |+~

Vv 1>~

o[ o

+ id—nAwnZ +bRe U(|W|Pw) : (—Awt)dx]
8m dt

+yglm [J V- (th)dx] = Im[f fx,t)- (—Awt)dx} .

www.scienceasia.org
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Using Young’s inequality,

df1r1 c
— |z =—alllVvw|?+—|A 2]+d- vw,|?
dt[Z(U a)ll w| 8m|I wl IVw,|]

- %Re -JVLp : (th)dx]—bRe UV(|w|Pw) : (Vvﬁt)dx]
L Q

+vgIm _J @ - (—Awt)dx] +Im [J flx,t)- (—Awt)dx:|

=$Re JV(,;%VWtdx]
U LJQ

—bRe[f (§+1)|W|PVWVWt+I§)|W|p 2WVwVw dx]
Q

+yg1m|:f V- (Vvﬁt)dx]+lrn [J f(x,t) (—AWt)dx]
d.
< El|IVWt||2+C(||V<P||2+I|Vf(x, t)||2+J|W|2"|VW|2 dx)

d
<5 IMwdP+CAVel*+I9f (x, ENP+ w2

CllwlZ). (34

Further, using the following Agmon’s inequality:
Iwlife < C@)IIVWIllAwl,
we have,

wll2 CEIvwIPlAw]PlwllZ,

< C@lwllz P lawlP.

Slwll, <

Thus, for the inequality (34), we can find that

dfJi/1
d—[—(E—a)nwn%i||Aw||2]+di||th||2

< Q19w + GOV IP +195 G, O+ Il [ AwlP).
Let

—1 l_ 2, ¢ 2
y(0) =2 (5 —lIVwlx, DI + [l Aw(x, O,
hy(6) = [lw(x, O,

ho(t) =l (e, O +11f G, Ol
Then

(0 < Chy (D (0 + Chy(0)

Applying Gronwall inequality, we can infer from (31)
and (33) that, for any 8 > 0,

ca+ly,

VYt =0.
B

ye+p)< (35)

Similarly, making the inner product of the equation
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(10) with V*@,
J ' v4¢7 dx

4 = ig 4 = igz 2
=—v | ¢ V'gdx+—= | w-Vgdx——[|Ag]

U U
—i(zv—zu)nA@||2+4LJA¢-V4¢ dx+Jh(x,t)-V4¢ dx.
m

Taking the real parts, we can get
1d ig
——||A 2:— A 2+R - A A-d
syl rllAell e[UJ w-AQ X}
+Re[fh(x,t)-v4¢dx}.

Using Young’s inequality, we have

1d lg! 1 )
~—|a 2=(— +—=—+ —)|lag]|?
2dtll oll Y 2elU] T 2¢ lAgl|
lgle 2 € 2
+ —=——||Aw||* + =||AhR(x, t)]||*.
2|U|” I 2I| (x, )l

Combining the inequality (35) with Gronwall’s in-
equality, we can get

llell?, < Cio.

The proof of Theorem 5 is completed. O
Now, we can use the above results to prove the

existence and uniqueness of weak solutions.

Proof: In order to prove Theorem 2, we should inte-

grate (28) fromtto t+1, YVt = 0,

t+1

(IwCOIZ: + lw (DI +lle(DIF) dT < €, (36)

where C depends on ||wg|5 and ||@llg-
Further, by the elliptic estimate, we easily get,
VYt =0,

t+1
f (WD + lle (DIl -)dT < C. @7
t

According to the uniform bounded, prior estimates
obtained in Theorem 2 and the above estimate, the ex-
istence of weak solutions to (9)-(12) can be obtained
by the limit in the Faedo-Galerkin procedure. m]

Besides, we proceed to introduce the proof of weak
solutions uniqueness.

Proof: Now we proceed to prove Theorem 3. Let w =
Wi —W,y, @ = p;— Py, then from the equations (9) and
(10), we have

+ib(|lwq[Pwy — [w,Pwy) +7g9 =0, (38)

. . .
18 g . 1
otre — EW+7¢—1(ZV—2u)w—4—mAw =0. (39

Making the inner product of the equation (38) with w,,

(dr+idi)jwt~m7tdx+i(%—a)Jw-wtdx

—% (p-W[dx—;—;wawﬁtdx

+ibf(|w1|Pw1—|w2|Pw2)'w7t dx+ygf @ -w.dx =0.

Taking the imaginary parts,

(3—a)d g
a2 S~ Ere [ o]

n i%uwuz +bRe Uuwp’wl — Wy Pw,) - v, dx]

8m
+7ygIm [J YW, dx] =0.

By Young’s inequality, we can get
d[1[/1 a, C 2] 2
—|zl=- +—IV +d;
5 (G o) i+ il [+ diw
2 252
g & 2 2
<l —4Le
(2U26+ > )Ilst?ll +ellw
—bRe[f(|W1|PW1—|W2|pW2)-M7tdxj|. (40)

2 2,2

. _ g r’g _
We further define C = 555 + 52, € =
that

di—1
==, and note

[lwy[Pw—|wy|Pwy| < (p+1)sup(lwy [P, [wa|P)lw; —w,|.

Combining Holders inequality and Agmon’s inequality,
we have

df1.1 s C 2] 5
S [5G~ M+ S howle ]+l

di—1
<C||<P||2+'T||Wt||2

+b(p+ 1)J sup(|w, |7, [w,|P)lwy —w,| - [w,|dx

d—l|

< Clpll+ == lhw, |

+Cb(p + 1)(llwill25 ”WZ”HZ)J lwy —w,| - |w,|dx

d—1
<Cllel?+ ‘Tllwtllz

Cbh%(p+1)?
+ (p+1)

1
5 (Iwallzz2, lIwallg2)? i + Ellwrll2
d.
=Clloll*+ E'Ilwtll2

Cb%(p+1)?
N (p+1)

5 (41)

(w2, 1w ll2)? w2,
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Similarly, making the inner product of the equa-
tion (39) and ¢, we have

i} _ ig B ig? _
porodx+y <p~<pdx—U w-cpdx+7 p-pdx
—i(2v—2,u)fcpwﬁdx—;J.Acp‘cﬁdx:O.
4m

Taking the real parts, we can get that

1 -
——|I<p|I2 +rllel?+ EImU W'tpdx} =0. (42)

Further taking the inner product of the equation (39)
and —AQ,

fsox(—A«ﬁ)derrj¢~(—A¢)dx—i§fw'(—A¢)dx

+ %J w'(—A¢)dx—i(2v—2u)f ¢-(=Ap)dx

Ap-(—Ag)dx =
4m

Taking the real parts

1d
Eallvtpll +rlIVell +—ImUW~(—A¢)dX] =0. (43)
Combining (42) with (43),

1d

2+ IVel®) + 24|V
5 g el 1l el +rUlel? +Ivel)

=—§ImU (W-¢+VW'V@)dX]
U Q
< §(||<P||2 +IVell?) + ciwll® + IVwl[*).

According to (41), we have

d

3G — M+ S IvwlE gl + 1961
4

+d vl + (1P 1961 < Gl + w2

Y
+5I|V<P||2+C(|IWI|2+IIVW||2)+C(||W1 Iz, 1wl Y lwlf.

From the results of Theorems 4 and 5 and standard
Gronwall inequality, the uniqueness of weak solutions
is proved. O

Moreover, we estimate ||w||lL’;r+22 and ||w||i§;:§, and
obtain the following theorem.

Theorem 6 Under the conditions (a)-(c), the following
uniform estimate hold.

+2
p c,

2 +2
Iwll;s <, Iwllys

L2p+2 <

here C is a positive constant and independent on t.
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Proof: The equation (9) can be rewritten as

w —i(a—l)w+i—g +i—cAw
‘=4 U av? " amd
—%lepw—ydgw SF(xt). (44)

Then, we making the inner product of this equation
and |w|Pw,

Jw[ - lwlPwdx
= (%—ﬁ)jw' [w[Pwdx + ;%J. @ - lwlPwdx

ib
+— | Aw: |w|pﬁ/dx—gf [w|Pw - |lw|Pwdx

4d

1
- ii_g j - wlPwdx + Ejf(x, t) - lwlPwdx.

Taking the real parts,

LA e
p+2dt Lp?

ic d;
= Re[4 7 J Aw- |W|deX] + W(a— —)Ilwlli;fZ

ig _
+R3[EJ @ |W|PWdX]—W|| e

- Yd—gRe Uw : |W|Pde] +Re [E ff(x, £)- |W|Pde] .

By Young inequality, we can get

2
LA
p+2dt L
<—C2 lawl? + w2 + ¢ ——)|| |p+2
= 32em2d? 2 Wl |d|2 a4 P2
2 < 2p+2 2p+2 2
+oar d|2U2||so|| lwl*? T d|2|| [Rets > dzncpn
2p+2 2p+2
SIWIEE + = I e, O + S Iwil)

2e d2
d' 1 2 b 2p+2
< (a——) Il + (26 - | d|2)” [Fa%
+Clawll® +llel*+If (x, OII%),
r’g 1
+ %> m}
Choosing € > 0 small enough such that 2e = %

and then by Gronwall inequality and the results of
Theorems 4 and 5, we have

_ c? g’
where C = max{SZemzdz’ 2 dPTE

Iwll?2 < c.
By Gagliardo-Nirenberg inequality

I llr < Coll I lfIR°
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with 1 1 1
—=0(=—k 1-6)=
5 =0G—R+1-0)g,

we obtain the inequality

(p+2)>
[Wllpzpe2 < CGIIWII("”)W) [[wll 52"
for P=2p+2, k=1, 0= yirgy, and Q =p +2.
Thus,
2+l 2p+2 = 2(‘;3)2
” ||L2p+2 = ||W| ||W| Lp+2
2p+2 2p+2
<c T lwlig, + ¢ IIWIILW .

Combining the results of Theorem 4 with the above
inequality, we have

2p+2
|| ||L2p+2 =

Now, we finish the proof of Theorem 6. ]

Theorem 7 Under the conditions of Theorem 4, the
following uniform estimates hold

Iwll><cC, gl <c,
where C is a positive constant and independent on t.

Proof: Making the inner product of the equation (44)
and w,, and taking the real parts,

||wt||2=Re[ (a——) w-w dxi|+Re|i(ﬁJJ2p w,dx

+Re| = [Aw- 15, dx |-Re| 2 [wlPw -, d

e_4md & °ld (X

- ) -

—Re Yd—gﬁpwﬁtdx]+Re[—ff(x t)-w,dx
1 lg|

< a——U|w| |wt|dx+|d|Uf|so||wt|dx

+—— 1 1A dx+ 2 P, d
4liJIWI lw,[dx ] lwlP* |w, | dx

: 1 .
+|§|f |so||wt|dx+mf £ Ce, Ol e,

By Young’s inequality, we have

—_

2 _1)2
2 2 ¢ 2
w, || —3e||lw.||* € ———||1Aw||* + —————
Il = 3ellw, P < oo llawl + =

2

2|d|2U2

l[wl®

b?
ol + 2|d|2 ———Iwli5i5

||st>||2 I Ge, 1%

2 a 2|d|2

Choosing 0 < € < %,
4-6, yields

and using the results of Theorems

wll<C

where constant C > 0 independent on t.
Similarly, taking the inner product of the equation
(10) and ||, ||?, we have

- _ ig _
fwf'<pfdx=—rfw'wde—waptdx

i
f] v %dx—l(Zv—Zu)f ¢ dx
+—fAcp~¢tdx+Jh(x,t)~g5tdx.
4m
Taking the real parts and using Young’s inequality

2
gl < \y+%+2v—zu\f|<p||¢t|dx+\§\f|wu@|dx

1 _ _
+ —J IAsollcptIdx+f |h(x, )] - 1@, dx

g 2
< Sl Sl (1 S 2v—2u)
2 2 2
2P+ o Al + 2l

1
+ —[lhCx, OI2 + <l 12
5o IhCe, I+ 2l

By arranging the above equation, we get

gZ
2U2%

1
(1=26)llp I < 5= IwliP+ - (y+2v 2 &Y lgle

1
+ Al + =|lh(x, t)|I*.
o 18IP + 5 lIhGe, O
Choosing € = 41'17 and using the estimates of Theorems
4 and 5, then

leell® <,

where constant C > 0 is independent on t. The proof
of Theorem 7 is completed. O

THE EXISTENCE OF GLOBAL ATTRACTOR

This section we would use the existence theorem of
global attractor (Lemma 2) to prove the main result of
this paper. Thus, we should verify the three conditions
of Lemma 2 in turn.
Proof: Now we would prove the results of Theo-
rem 1. For the convenience of readers, we state the
abstract results on the existence of global attractors as
Lemma 2. And then verify the conditions of it one by
one. First, with the help of Theorems 3-5, we can
find that the global weak solution (w, @) to problem
(9)-(12) is unique, and the weak solutions can gen-
erate a strongly continuous nonlinear semigroup S(t)
acting on H}(Q) x Hy(Q), such that S(t)(wy, @) =
(w(t), ¢(t)). Moreover, for these theorems, we find
that the operator S(t) is a uniformly bounded operator.
This is just the first condition in Lemma 2.

Second, for the results of Theorems 4 and 5, there
exists a positive constant R, such that the ball B, =

{w,0) € Hy(Q) x Hy(Q) = WliZ, +llglly <Ro} is a

www.scienceasia.org
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bounded absorbing set for the dynamical system S(t)
which comes from the problem (9)-(12). Thus, for any
bounded set B C H(l) (Q) x Hé (Q), there exists a t, such
that S(t)B C B, for every t > t,. The ball By in Hj x

Hé of radius (RO)% will contains any bounded set of B,
uniformly in time, where R, = % Noting that
By = JS(t)B c B,.

t=0

B, is an absorbing set of S(t), for t = 0. Then, we verify
the second condition of Lemma 2.

Third, the results of Theorems 6 and 7 mean that
S(t) is a full continuous operator when t > 0. And
noting that the continuous embedding H? < H! is
compact. The third condition of Lemma 2 is verified.
Thus, by Lemma 2, there exists a global attractor of
the equations (9)-(12). The proof of Theorem 1 is
completed. m]
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