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ABSTRACT: In this work, we introduce a projective bi-inertial forward-backward splitting algorithm for solving the sum
of two monotone operators in a real Hilbert space, one is maximally monotone and the other is Lipschitz continuous.
Under standard assumptions, we prove weak convergence theorems of the proposed algorithm. Furthermore, we
provide an application for data classification using an extreme learning machine. To gauge the effectiveness of the
algorithm, a reliable dataset for bone mineral density prediction was taken from the Harvard Dataverse. Among the
algorithms that have been compared, the best performance was obtained with our algorithm in terms of accuracy,
precision, recall, and F1-score. The data classification results show that our algorithm is more efficient in handling
classification problems.
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INTRODUCTION

Let H be real Hilbert spaces with inner product 〈·, ·〉
and induced norm ∥ · ∥ In this paper, we focus on
the following variational inclusion problem (VIP). Let
F :H →H and G :H → 2H be, respectively, single-
valued monotone mapping and set-valued monotone
mapping, the VIP is to:

find x ∈H such that 0 ∈ (F x +Gx), (1)

The VIP (1) has significant practical implications across
various real-world domains, including engineering,
transportation, economics, signal recovery, image pro-
cessing, and machine learning [1–3]. This broad appli-
cability is substantiated by the research contributions
of notable scholars, see in [4–7]. Notably, there is a
growing scholarly endeavour dedicated to exploring
innovative methodologies for effectively tackling the
complexities inherent in the VIP. This research aims to
develop robust solutions for this multifaceted problem.
The forward-backward splitting method is a famous
one of algorithms solving the VIP (refer to [8–10]),
which is defined as follows:

x k+1 = JG
λ (I −λF)x k, k ⩾ 1,

where JG
λ
= (I + λG)−1 with λ > 0. Furthermore,

researchers have enhanced these methods not only to
increase their versatility through the use of relaxation
techniques (see [11, 12]) but also to enhance their
acceleration using inertial techniques (see [13–16]).
Later, Alvarez and Attouch [15] further developed
the inertial concept to speed up the convergence of

an algorithm. The inertial forward-backward method
(IFBM) was introduced which defined as follows:

�

yk = x k +θ k(x k − x k−1)
x k+1 = JG

λk (I −λk F)yk, k ⩾ 1.

The technique for accelerating this method in-
volves the term θ k(x k − x k−1). The forward-backward
method with the inertial term θ k for the VIP is a well-
established practice, and more comprehensive infor-
mation can be found in [17–19]. Additionally, in the
realm of monotone inclusions and non-smooth convex
minimization problems, a convergence theorem has
been formally established.

In 2022, Iyiola and Shehu [20] introduced and
studied the following two-point inertial proximal point
algorithm (TPIPA) for monotone operators in Hilbert
spaces:

�

yk = x k +θ k(x k − x k−1)+δk(x k−1− x k−2),
x k+1 = (1−αk)yk +αkJG

λk (yk),

where λk > 0. With the suitable conditions of the
parameters θ k and δk, weak convergence theorem was
established. The advantage gained with the introduc-
tion of δk ∈ (−∞, 0] was shown in the numerical
experiments.

Inspired and driven by the research above, we
introduce a projective bi-inertial forward-backward
splitting algorithm to solve the sum of two monotone
operators in a real Hilbert space. We establish a
weak convergence theorem for the sequence generated
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by our algorithm, subject to appropriate conditions.
Additionally, we apply our main result to address a data
classification problem related to predicting bone min-
eral density. To ascertain which classification model
offers a more precise dataset prediction, we compute
and compare several performance metrics, including
accuracy, precision, recall, and F1-score. The results
conclusively demonstrate that the proposed algorithm
exhibits superior efficiency in handling classification
problems.

PRELIMINARIES

In this section, letH be a real Hilbert space. The weak
convergence and strong convergence of {x k}∞k=1 to x
are represented by x k * x and x k → x , respectively.
We will discuss several crucial fundamental concepts
and lemmas in the main results section.

Definition 1 A mapping F :H →H is said to be
(i) monotone mapping if the following holds:

〈F x − F y, x − y〉⩾ 0;

(ii) L-Lipschitz continuous if there is a constant L > 0
such that:

∥F x − F y∥⩽ L∥x − y∥;

if L = 1, then F is called nonexpansive;
(iii) firmly nonexpansive if

∥F x − F y∥2 ⩽ ∥x − y∥2−∥(I − F)x − (I − F)y∥2,

or equivalently

〈F x − F y, x − y〉⩾ ∥F x − F y∥2;

(iv) τ-cocoercive or τ-inverse strongly monotone if
τF is firmly nonexpansive when τ > 0.

Lemma 1 ([21]) Let F : H → H be a nonexpansive
mapping such that F ix(F) ̸=φ. If there exists a sequence
{x k} inH such that x k * x ∈H and ∥x k− F x k∥→ 0,
then x ∈ F ix(F). Here, F ix(F) = {x ∈H : x = F(x)}.

Lemma 2 ([22]) Let F :H →H be τ-cocoercive map-
ping and G :H → 2H be a maximal monotone mapping.
Then, we have
(i) for λ > 0, F i x(JG

λ
(I −λF)) = (F +G)−1(0);

(ii) for 0< λ < λ and x ∈H ,

∥x − JG
λ (I −λF)x∥⩽ 2∥x − JG

λ
(I −λF)x∥.

Lemma 3 ([23]) Let Ω be a nonempty subset ofH and
{x k} be a sequence in H . Assume that the following
conditions hold.
(i) For every x ∈ Ω, the sequence {∥x k − x∥} converges.
(ii) Every weak sequential cluster point of {x k} belongs

to Ω.

Then {x k} weakly converges to a point in Ω.

Lemma 4 ([24]) Suppose that {µk}, {δk} and {αk} are
sequences in [0,∞) such that µk+1 ⩽ µk + αk(µk −
µk−1) +δk, ∀k ⩾ 1,

∑∞
k=1 δ

k <∞, and there is α ∈ R
with 0 ⩽ αk < α < 1, ∀k ⩾ 1. Then the following
conditions are satisfied:
(i)
∑

[µk −µk−1]+ <∞, where [s]+ =max{s, 0};
(ii) there exists µ∗ ∈ [0,∞) such that lim

k→∞
µk = µ∗.

MAIN RESULTS

Throughout the paper, we suppose that that E is a
nonempty closed and convex subset of H . Let F :
H →H be a τ - inverse strongly monotone mapping
and G :H → 2H be a set-valued maximal monotone
mapping such that (F +G)−1(0)∩ E ̸=∅.

Algorithm 1 The projective bi-inertial forward-
backward splitting algorithm for the VIP

Initialization: Set {αk} ⊂ (0,1), {λk} ⊂ (0, 2τ),
{θ k}, {δk} ⊂ (−∞,∞) and let x−1, x0, x1 ∈H .

Iterative Steps: Construct {x k} by using the following
steps:
Step 1. Compute

yk = (1−αk)x k +αkJ k x k

Step 2. Compute

x k+1 = PE(y
k +θ k(x k − x k−1)+δk(x k−1− x k−2)),

where J k = JG
λk (I −λk F). Set k = k+ 1 and return to

Step 1.

Assumption 1 (i)
∑∞

k=1 |θ
k|∥x k − x k−1∥ < ∞ and

∑∞
k=1 |δ

k|∥x k−1− x k−2∥<∞;
(ii) lim infk→∞α

k > 0;
(iii) 0< lim infk→∞λ

k ⩽ lim supk→∞λ
k < 2τ.

Theorem 1 Let {x k} be generated by Algorithm 1 when
Assumption 1 hold. Then {x k} converges weakly to an
element of (F +G)−1(0)∩ E.

Proof : Let x∗ ∈ (F +G)−1(0)∩ E. For each k ∈ N , since
J k is nonexpansive when {x k} ⊂ (0, 2τ), we have

∥x k+1 − x∗∥

= ∥PE(y
k +θ k(x k − x k−1)+δk(x k−1 − x k−2))− x∗∥

⩽ ∥yk − x∗∥+θ k∥x k − x k−1∥+δk∥x k−1 − x k−2∥

⩽ (1−αk)∥x k − x∗∥+αk∥J k x k − x∗∥

+θ k∥x k − x k−1∥+δk∥x k−1 − x k−2∥

⩽ (1−αk)∥x k − x∗∥+αk∥x k − x∗∥

+θ k∥x k − x k−1∥+δk∥x k−1 − x k−2∥

= ∥x k − x∗∥+θ k∥x k − x k−1∥+δk∥x k−1 − x k−2∥.
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By the conditions of (i), it follows from Lemma 4 that
limk→∞ ∥x k − x∗∥ exists. This implies that {x k} is
bounded. Since JG

λk is a firmly nonexpansive mapping,
let M k = θ k(x k − x k−1)+δk(x k−1− x k−2) we have

∥xk+1 − x∗∥2 = ∥PE(y
k +M k)− x∗∥2

⩽ ∥yk − x∗ +M k∥2

⩽ ∥yk − x∗∥2 +2〈M k , yk +M k − x∗〉

⩽ (1−αk)∥xk − x∗∥2 +αk∥J k xk − x∗∥2 +2〈M k , yk +M k − x∗〉

⩽ (1−αk)∥xk − x∗∥2 +αk
�

∥xk −λk F xk − x∗ +λk F xk∥2

−∥xk −λk F xk − J k xk − x∗ +λk F x∗ + J k x∗∥2
�

+2〈M k , yk +M k − x∗〉

⩽ ∥xk − x∗∥2 +αk(λk)2∥F xk − F x∗∥2 −2ταkλk∥F xk − F x∗∥2

−αk∥xk −λk(F xk − F x∗ − J k xk∥2 +2〈M k , yk +M k − x∗〉

= ∥xk − x∗∥2 −αkλk(2τ−λk)∥F xk − F x∗∥2

−αk∥xk−λk(F xk−F x∗−J k xk∥2+2〈M k , yk+M k−x∗〉. (2)

Again by the conditions (i)–(iii) and (2), we have

lim
k→∞
∥F x k−F x∗∥= lim

k→∞
∥x k−J k x k−λk(F x k−F x∗)∥=0.

This implies that

lim
k→∞
∥x k − J k x k∥= 0. (3)

Since lim infk→∞λ
k > 0, there is λ > 0 such that

λk > λ. By Lemma 2(ii), we obtain

lim
k→∞
∥x k−JG

λ (I−λF)x k∥⩽ lim
k→∞
∥x k−J k x k∥= 0. (4)

Since {x k} is bounded, we have a weak sequential
cluster point x̄ of {x k}. Using Lemma 1, we get that
x̄ ∈ F ix(JG

λ
(I−λF)) = (F+G)−1(0). Since E is closed,

x̄ ∈ E. This implies that x̄ ∈ (F + G)−1(0) ∩ E. By
Lemma 3, we can obtain that {x k} converges weakly
to an element (F +G)−1(0)∩ E. 2

APPLICATION

Osteoporosis is a global public health problem char-
acterized by a metabolic bone-related disorder in-
volving low bone quantity and altered bone micro-
architecture, leading to increased bone fragility and a
higher risk of fractures. The prevention and screening
of the disease are important. Recent research reported
that osteoporosis could be prevented by eliminating
accumulation of reactive oxygen species which damage
osteoblast formation [25]. Early screening in patients
is essential as it enables timely medical treatment to
prevent undesirable outcomes. The gold standard
for diagnosing osteoporosis is detecting bone mineral
density (BMD) using dual X-ray absorptiometry; BMD
measurement is exact and can predict osteoporotic
fractures. However, this approach faces challenges due
to a scarcity of doctors with specialized expertise in

Table 1 Overview of osteoporosis dataset.

Attribute name Max Min Mean Median SD

Gender 2 1 1.3876 1 0.4874
Age 99.8 28.6 59.8723 57 12.9451
Height 186 141 165.7707 167 8.0737
Weight 113 23 67.1015 67 12.0150
BMI 37.26 9.21 24.3087 24.22 3.3249
L1.4T 6 −3.4 −0.5467 −0.7 1.5185
FNT 2.7 −5.05 −1.2957 −1.35 1.1172
TLT 3.1 −4.8 −0.9214 −1 1.1548
ALT 181 4 23.3849 19 16.5490
AST 128 9 22.6097 21 9.3731
BUN 69.8 1.74 5.5982 21 9.3731
CREA 381.2 5.86 73.9036 70.6 25.6525
URIC 745.3 5.46 348.3645 340.1 96.7824
FBG 24.65 3.13 5.3327 4.96 1.5545
HDL-C 5.46 0.45 1.2520 1.19 0.3806
LDL-C 6.65 0.14 2.5936 2.55 0.8995
Ca 5.84 1.78 2.2371 2.23 0.1618
P 4.41 0.56 1.0347 1.02 0.2035
Mg 1.73 0.097 0.8686 0.87 0.0956
Calsium 1 0 0.1476 0 0.3549
Calcitriol 1 0 0.1723 0 0.3777
Bisphosph 1 0 0.0608 0 0.2391
Calcitonin 1 0 0.0589 0 0.2353
HTN 1 0 0.5530 1 0.4974
COPD 1 0 0.2502 0 0.4333
DM 1 0 0.3322 0 0.4712
Hyperlipid 1 0 0.3917 0 0.4883
Hyperuricemia 1 0 0.1736 0 0.3789
AS 1 0 0.7533 1 0.4313
VT 1 0 0.0191 0 0.1371
VD 1 0 0.0752 0 0.2638
OP 1 0 0.3691 0 0.4827
CAD 1 0 0.2057 0 0.4044
CKD 1 0 0.0383 0 0.1919
Smoking 1 0 0.2556 0 0.0436
Drinking 1 0 0.2269 0 0.4190
Fracture 1 0 0.0185 0 0.1346

analyzing such disease conditions, coupled with the
complex interaction of risk factors, making diagnosis
difficult. Therefore, we demonstrate the effectiveness
of our algorithm in detecting BMD. We use the bone
mineral density from the publicly Harvard Dataverse,
available on the online website [26], to evaluate
the proposed algorithm. This dataset contains 38
attributes that indicate characteristics across various
age groups over 1,463 records, from young patients
to the elderly. According to the World Health Or-
ganization (WHO) guidelines, osteoporosis severity is
commonly classified into stages based on bone density
and fracture risk, typically using a measurement called
T-scores. The four levels of osteoporosis severity are:
(i) Normal: T-score is above −1.0, indicating normal
bone density; (ii) Osteopenia: T-score is between −1.0
and −2.5, indicating lower bone density than normal
but not yet classified as osteoporosis; (iii) Osteoporo-
sis: T-score is −2.5 or lower, signifying significantly re-
duced bone density and an increased risk of fractures;
(iv) Severe Osteoporosis: in some classifications, there
may be a further stage called “severe osteoporosis”,
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Table 2 Setting operators of the algorithms to solve all of the convex minimization problems (5)–(8).

Problem Setting operators of the algorithms
RLSPL1 F(β)≡∇( 1

2∥Hβ − T∥22), G(β)≡ ∂ (λ∥β∥1), E =H
RLSPL2 F(β)≡∇( 1

2∥Hβ − T∥22), G(β)≡ ∂ (λ∥β∥22), E =H
RLSPCL1 F(β)≡∇( 1

2∥Hβ − T∥22), G(β)≡ ∂ (λ∥β∥1), E = {β ∈ RM : ∥β∥1 ⩽ ρ}
RLSPCL2 F(β)≡∇( 1

2∥Hβ − T∥22), G(β)≡ ∂ (λ∥β∥22), E = {β ∈ RM : ∥β∥22 ⩽ ρ}

which typically indicates a T-score below −2.5 with
a history of one or more fractures. Please note that
the specific criteria for these stages may vary slightly
depending on the guidelines and assessment methods
used by healthcare professionals and organizations.
It is essential to consult with a healthcare provider
for a proper diagnosis and assessment of osteoporosis
severity. The osteoporosis data used for each feature
are detailed in Table 1.

We next explain the concept of an extreme learn-
ing machine (ELM) for applying our algorithms in
machine learning data classification process. For N
distinct samples, given a training set u := {(x k, tk) :
x k ∈ Rn, tk ∈ Rm, k = 1,2, . . . , N}, where x k denotes
input training data and tk represents the target. We
focus on using single-hidden layer feed forward neural
networks (SLFNs), the output function of ELM with M
hidden nodes and sigmoid activation function can be
represented by

Ok =
M
∑

j=1

β i 1
1+ e−(w j xk+b j)

where w j and b j are parameters of the beginning
of random weight and bias, respectively. The finally
optimal output weight β i at the j-th hidden node by
the hidden layer output matrix H is defined as follows:

H =











1
1+ e−(w1 x1+b1)

· · ·
1

1+ e−(wM x1+bM )
...

. . .
...

1
1+ e−(w1 xN+b1)

. . .
1

1+ e−(wM xN+bM )











.

The goal of EML is to find optimal output weight
β = [β1T

, . . . ,βM T
]T such that T = Hβ , where T =

[t1T
, . . . , tM T

]T is the training target data matrix. To
avoid over-fitting in the model. The least square
regularization was considered in closed convex subsets
as follows:
(i) Regularization of least square problem by L1

(RLSPL1) or the least absolute shrinkage and se-
lection operator (LASSO): for λ > 0,

min
β∈RM

1
2∥Hβ − T∥22+λ∥β∥1. (5)

(ii) Regularization of least square problem by L2
(RLSPL2): for λ > 0,

min
β∈RM

1
2∥Hβ − T∥22+λ∥β∥

2
2. (6)

(iii) Regularization of least square problem by L1 with
constrained by convex set L1 (RLSPCL1): for λ,
ρ > 0,

min
β∈E

1
2∥Hβ − T∥22+λ∥β∥1, (7)

where E = {β ∈ RM : ∥β∥1 ⩽ ρ}.
(iv) Regularization of least square problem by L2 with

constrained by convex set L2 (RLSPCL2): for λ,
ρ > 0,

min
β∈E

1
2∥Hβ − T∥22+λ∥β∥

2
2, (8)

where E = {β ∈ RM : ∥β∥22 ⩽ ρ}.
For applying our algorithms to solve all of the

convex minimization problems as above, we set our
operator as in Table 2.

We considered four evaluation metrics, such as
Accuracy, Precision, Recall, and F1-score, to evaluate
the performance of the classification algorithms are
defined as follows:

Accuracy=
TP + TN

TP + FP + TN + FN
×100%,

Precision=
TP

TP + FP
×100%,

Recall=
TP

TN + FN
×100%,

F1-score=
2× (Precision×Recall)

Precision + Recall
,

where these given matrices TP, TN, FP, and FN are the
True Positive, True Negative, False Positives, and False
Negatives, respectively.

The multi-class cross-entropy loss is a metric em-
ployed in classification tasks to assess how effectively
a model distinguishes between multiple classes. This
measurement is determined by computing the follow-
ing average:

Loss= −
N
∑

i=1

µi log µ̄i ,

where µ̄i represents the i-th scalar value in the model’s
output, µi stands for the corresponding target value
for that specific scalar, and the variable N indicates
the total number of scalar values in the entire model’s
output.

Next, we partition the dataset into 80% for train-
ing and 20% for testing. Our parameter settings
include λk = 1.99/∥H∥2, λ = 10−5, and M = 150.
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Table 3 Chosen parameters for algorithms.

Algorithm αk σk ϵk ρ

IFBM –
2

∥x k − x k−1∥2 + k2
– –

TPIPA
0.7k
k+1

1
∥x k − x k−1∥3 + k3 +23

1
∥x k − x k−1∥5 + k5 +25

–

Algorithm 1 (RLSPL1)
0.9k
k+1

215

∥x k − x k−1∥3 + k3 +215

1
100k+1

–

Algorithm 1 (RLSPL2)
0.5k
k+1

212

∥x k − x k−1∥2 + k2 +212

1
10k+1

–

Algorithm 1 (RLSPCL1)
k

5k+1
215

∥x k − x k−1∥2 + k2 +215

1
10k+1

4

Algorithm 1 (RLSPCL2)
0.9k
k+1

210

∥x k − x k−1∥2 + k2 +210

1
∥x k − x k−1∥3 + k3 +23

9

Table 4 The performance using Precision, Recall, F1-score, and Accuracy.

Algorithm Iteration no. Training time Precision Recall F1-score Accuracy

IFBM 480 0.0074 81.44 76.94 79.13 80.37
TPIPA 468 0.0094 82.76 75.82 79.14 80.25
Algorithm 1 (RLSPL1) 280 0.0101 83.33 77.21 80.15 80.82
Algorithm 1 (RLSPL2) 382 0.0113 82.86 77.13 79.89 80.71
Algorithm 1 (RLSPCL1) 300 0.0084 81.99 76.96 79.40 80.48
Algorithm 1 (RLSPCL2) 409 0.0078 82.65 77.19 79.82 80.71

We evaluate and compare the performance of IFBM,
TPIPA, and our algorithms with a complete list of
parameters given in Table 3 when

θ k =

� 1
∥xk−xk−1∥k3 , if x k ̸= x k−1 and k > N ,

σk, otherwise,

and

δk =

� 1
∥xk−1−xk−2∥k3 , if x k−1 ̸= x k−2 and k > N ,

ϵk, otherwise,

where N is the iteration number that we want to stop.
Table 4 shows that our algorithm exhibits the high-

est efficiency in terms of precision, recall, F1-score, and
accuracy efficiency. It demonstrates the highest likeli-
hood of correctly classifying osteoporosis compared to
the above mentioned algorithms.

Next, we compare our method with machine learn-
ing methods in terms of accuracy using the same set of

information. The results are presented in Table 5.
In Table 5, we see that the method studied is the

highest efficient in accuracy, precision, recall, and F1-
score, establishing it as the most accurate predictor
of osteoporosis. Next, we present accuracy and loss
graphs for both the training and testing data to assess
the potential over-fitting of our algorithm.

From Figs. 1–4, we can see that training loss and
validation loss values tend to decrease until a certain
point, after which they stabilize. In contrast, when we
assess the accuracy graph, it becomes apparent that
both training accuracy and validation accuracy exhibit
an upward trend, with validation accuracy consistently
surpassing training accuracy.

CONCLUSION

In this study, we introduce a projective bi-inertial
forward-backward splitting algorithm for solving the
sum of two monotone operators in a real Hilbert space;

Table 5 The highest accuracy of different machine learning methods using bone mineral density dataset.

Algorithm Validation Accuracy

SVM kernel 10-fold cross validation 77.60
Boosted Trees 5-fold cross validation 60.40
Logistic Regression kernel 5-fold cross validation 68.60
Medium kNN 5-fold cross validation 79.80
Algorithm 1 (RLSPL1) Training data(80%), Validation (20%) 80.82
Algorithm 1 (RLSPL2) Training data (80%), Validation (20%) 80.71
Algorithm 1 (RLSPCL1) Training data (80%), Validation (20%) 80.48
Algorithm 1 (RLSPCL2) Training data (80%), Validation (20%) 80.71

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


6 ScienceAsia 50S (1): 2024: ID 2024s001

0 50 100 150 200 250 300

Number of iterations

65

70

75

80

85

A
c
c
u

ra
c
y

Training and Validation Accuracy

Training Accuracy

Validation Accuracy

0 50 100 150 200 250 300

Number of iterations

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

L
o

s
s

Training and Validation Loss

Training Loss

Validation Loss

Fig. 1 Accuracy and Loss plots of training and validation for
the iterations of Algorithm 1 (RSLPL1).
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Fig. 2 Accuracy and Loss plots of training and validation for
the iterations of Algorithm 1 (RSLPL2).
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Fig. 3 Accuracy and Loss plots of training and validation for
the iterations of Algorithm 1 (RSLPCL1).
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Fig. 4 Accuracy and Loss plots of training and validation for
the iterations of Algorithm 1 (RSLPCL2).

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


ScienceAsia 50S (1): 2024: ID 2024s001 7

one is maximally monotone, and the other is Lipschitz
continuous. We establish a weak convergence theorem
for the sequence generated by our algorithm, subject
to appropriate conditions. Furthermore, we utilize
our algorithm as a machine learning tool within the
context of the extreme learning machine model for a
classification problem. We employ a reliable dataset
for predicting bone mineral density to assess the al-
gorithm’s effectiveness. The study results indicate
that our algorithm is more efficient than the machine
learning methods in Table 5.

Data Availability

The dataset used in this research is publicly available
at: https://dataverse.harvard.edu/file.xhtml?fileId=
6563909&version=1.0.
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