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ABSTRACT: This paper presents a refined analytical potential function (APF) for the m×n fan resistor network. Firstly,
the original piecewise APFs are replaced with a single analytic function, which improves the calculation scalability.
Secondly, Chebyshev polynomials of the second class are introduced to represent the analytical function of potential. A
fast algorithm for calculating potentials is then developed using the sixth type of discrete sine transform, significantly
reducing the computation time required for potential calculations. The paper simultaneously solves the APFs for several
special cases, presenting their potentials in three-dimensional views. Finally, experiments are conducted to analyze the
time and scalability of different methods for calculating the potential. The results of these experiments demonstrate
that the improved potential function and fast algorithm enable efficient manipulation of large-scale resistor networks,
the application scale of the original APF has been expanded.
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INTRODUCTION

Since the advent of modern science, numerous com-
plex challenges have arisen across various fields, in-
cluding physics, materials science, and computer sci-
ence. To tackle these issues, researchers have explored
various methodologies. Extensive research has demon-
strated that resistor network models [1–6] can directly
or indirectly solve many of these problems. The study
of resistor networks has yielded numerous significant
findings, encompassing theories related to electromi-
gration, impedance networks, and Laplace’s method
for resistor networks [5–10]. In recent years, Tan
[11–17] has introduced the recursive transformation
(RT) method as a simpler alternative to the Laplace ma-
trix method for solving explicit functions of potential
in resistor networks. Additionally, computer-based ap-
proaches are increasingly employed to efficiently and
extensively calculate the potential of certain resistor
networks [18–22].

Tan [23] innovatively constructed the mathemat-
ical model of a fan resistor network with arbitrary
boundary resistances. Based on this model, the
unparalleled analytical potential function (APF) was
obtained theoretically. Everything would be trans-
formed if computer analysis and application of physical
functions and mathematical models were employed.
Therefore, in order to better adapt to computer anal-
ysis, optimizing the theoretically perfect APFs, is a
commendable idea aimed at improving the efficiency
in calculating potential. In order to enhance the com-
putational efficiency and scale of the analytic poten-

tial function, this study re-represents the original seg-
mented analytic potential function using the second-
kind Chebyshev polynomials (CPs) and absolute value
function, thereby improving the computational perfor-
mance of the analytic potential function. At the same
time, a fast algorithm that can efficiently calculate
the potential value of a large-scale resistor network is
created.

In 2018, Tan proposed an m× n fan network with
arbitrary boundary resistances [23]. The network is
illustrated in Fig. 1a and Fig. 1b, where m = 10 and
n = 8 denote the number of resistors on the meridian
and latitude lines, respectively. The resistors on the
left and right boundaries are represented by r1 and r2.
In contrast, the resistors on the other meridians are
denoted by r0, and the resistors on the latitude lines are
denoted by r. Moreover, d(x , y) represents each node
in the network, where O(0, 0) is defined as the origin
and U(0,0) = 0. The input and output points of the
current J are denoted as d1 and d2, respectively. The
potential at any node d(x , y) is given by Um×n(x , y).
The analytical function describing the potential at any
node in the resistor network is as follows [23]:

Um×n(x , y)
J

=
2r0

2m+1

m
∑

i=1

�

β (i)x1 ,x Sy1 ,i−β (i)x2 ,x Sy2 ,i

(1− cosθi)G
(i)
n

�

Sy,i , (1)

where

F (i)k = (λ
k
i − λ̄

k
i )/(λi − λ̄i), ∆F (i)k = F (i)k+1− F (i)k , (2)

α(i)s,x =∆F (i)x +(bs −1)∆F (i)x−1, bs = rs/r0, (3)
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(a) (b)

Fig. 1: (a) The m×n fan resistor network with arbitrary left and right boundary resistances is considered, where
point O serves as the origin. The resistance between any two nodes on each latitude line is denoted as r, with
n resistors on each latitude line. Additionally, the resistance between any two nodes on each meridian line is
denoted as r0, with resistances r1 and r2 present on the left and right boundaries, respectively. The number of
resistors on each meridian line is m. Nodes d1 and d2 can represent any arbitrary input and output points for the
current J ; (b) the part of the fan resistor network, including resistors, node potential, and current direction.

β (i)xs ,x
=

¨

α
(i)
1,xs
α
(i)
2,n−x , if x ⩾ xs,

α
(i)
1,xα

(i)
2,n−xs

, if x ⩽ xs,
(4)

G(i)n = F (i)n+1+(b1+b2−2)F (i)n +(b1−1)(b2−1)F (i)n−1, (5)

Sk,i = sin(ykθi), θi = (2i−1)π/(2m+1), (6)

and

λi = 1+ b− b cosθi +
q

(1+ b− b cosθi)
2−1,

λ̄i = 1+ b− b cosθi −
q

(1+ b− b cosθi)
2−1.

(7)

The presence of piecewise functions and expo-
nential operations in the APF (1) poses challenges
for computing the scale and efficiency of the resistor
network. It becomes difficult to achieve fast large-scale
numerical operations due to these complexities.

NEW ANALYTICAL FUNCTION OF THE POTENTIAL
REPRESENTED BY CHEBYSHEV POLYNOMIALS

In this section, we propose a new analytical function
for the potential in the fan resistor network [23], which
is represented by a single function using CPs of the
second class [24].

Let’s consider a scenario where a current J flows
in at d1(x1, y1) with 0 ⩽ x1 ⩽ n and 0 ⩽ y1 ⩽ m, and
flows out at d2(x2, y2)with 0⩽ x2 ⩽ n and 0⩽ y2 ⩽m.
The new analytical function of potential for the m× n
fan resistor network can be expressed as follows:

Um×n (x , y)
J

=
2r0

2m+1

m
∑

j=1

Υ ( j)x ,x1
Py1 , j −Υ ( j)x ,x2

Py2 , j

(1− cos (2 j−1)π
2m+1 )H

( j)
n

Py, j(T
( j)
0.5)

2

=
2r0

2m+1




Υx ,x1
, Py1

�

−



Υx ,x2
, Py2

�

〈α, Hn〉



Py , T0.5

�

, (8)

where

Υx ,x t
=
�

Υ (1)x ,x t
,Υ (2)x ,x t

, · · · ,Υ ( j)x ,x t
, · · · ,Υ (m)x ,x t

�

, x t = x1, x2,

Pk =
�

Pk,1, Pk,2, · · · , Pk, j , · · · , Pk,m

�

, k = y, y1, y2,

T0.5 =
h

(T (1)0.5 )
2
, (T (2)0.5 )

2
, · · · , (T ( j)0.5)

2
, · · · , (T (m)0.5 )

2
i

,

α=
�

(1− cos
π

2m+1
), (1− cos

3π
2m+1

), · · · ,

(1− cos
(2 j−1)π
2m+1

), · · · , 2
�

,

Hn =
�

H(1)n , H(2)n , · · · , H( j)n , · · · , H(m)n

�

,

Υ ( j)x ,x t
= ς( j)1,x ,x t

+ ς( j)2,x ,x t
, x t = x1, x2, (9)

ς
( j)
1,x ,,x t

=T ( j)n−|x t−x |+2+(h1+h2−2)(T ( j)n−|x t−x |+1−T ( j)n−|x t−x |−1)

+ (h1h2−h1−h2)T
( j)
n−|x t−x |−(h1−1)(h2−1)T ( j)n−|x t−x |−2,

ς
( j)
2,x ,x t

= (h2−h1)T
( j)
n−x t−x +(h1−1)T ( j)n−x t−x+2

−(h2−1)T
( j)
n−x t−x−2+(h1−1)(h2−1)(T

( j)
n−x t−x+1−T

( j)
n−x t−x−1),

h=
r
r0

, h1 =
r1

r0
, h2 =

r2

r0
, (10)

Pk, j = sin
k(2 j−1)π

2m+1
, k = y, y1, y2, (11)

H ( j)n = T ( j)n+1+(h1+h2−2)T ( j)n +(h1−1)(h2−1)T ( j)n−1, (12)

T ( j)k = T ( j)k (coshσ j) =
sinh(kσ j)

sinhσ j
,

coshσ j =
ϖ j

2
, σ ∈ R,

(13)
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and

ϖ j = 2+2
r
r0
−2

r
r0

cos
(2 j−1)π
2m+1

, (14)

for k = n− |x1− x |+ 2, n− |x1− x |+ 1, n− |x1− x |,
n−|x1− x |−1, n−|x1− x |−2, n−x1−x+2, n−x1−x+1,
n−x1−x , n−x1−x−1, n−x1−x−2, n−|x2− x |+2, n−
|x2− x |+1, n−|x2− x |, n−|x2− x |−1, n−|x2− x |−2,
n−x2−x+2, n−x2−x+1, n−x2−x , n−x2−x−1, n−x2−
x−2, n+1, n, n−1, 0.5, and




Υx ,x t
, Pk

�

,



Py , T0.5

�

and
〈α, Hn〉 are inner products. The APF (8) can solve the
potential of any node concerning the origin, satisfying
0⩽ x ⩽ n, 1⩽ y ⩽ m.

The APF (8) not only replaces the piecewise func-
tion of APF (1) with a single absolute value function,
but also replaces the original exponential operation
with the CPs of the second kind, and adopts expressed
in inner product form. Compared to the APF (1), the
APF (8) exhibits higher computational performance
and scalability. Additionally, the APF (8) is another
expression derived from refining Tan’s APF (1).

Assuming that the voltage at the origin, O, is zero,
i.e., V (0)0 = 0, the potential at any node concerning the
origin can be expressed using Ohm’s law:

Um×n(x , y)
J

=
V (y)x − V (0)0

J
, (15)

where V (y)x is the node voltage.

THE DETAILED PROCESS OF OBTAINING THE
ANALYTICAL POTENTIAL FUNCTION

In this section, we employ the discrete sine transform
of the sixth type (DST-VI) to perform orthogonal di-
agonalization on the tridiagonal quasi-Toeplitz matrix.
Additionally, we introduce the CPs of the second class
to represent the Horadam sequences. Furthermore, we
enhance the original piecewise functions by formulat-
ing them as a single analytical function incorporating
absolute values.

The Horadam sequence [25] is defined as follows:

Wk = pWk−1− qWk−2, W0 = a, W1 = b, (16)

where k ∈ N+0 , k ⩾ 2, a, b, p, q ∈ C, N+0 is set of
nonnegative integers andC is the all complex numbers.

The Horadam sequences [25] are represented by
the CPs of the second class, and the exact function of
Wk is given by

Wk = q
k
2

�

b
p

q
Uk−1(

p
2
p

q
)− aUk−2(

p
2
p

q
)

�

, (17)

where

Uk =Uk(cosσ) =
sin(k+1)σ

sinσ
,

cosσ =
p

2
p

q
, σ ∈ C,

(18)

is the CP of the second class [24]. According to the
physical interpretation of this study, Eq. (18) should
be expressed as follows:

Uk =Uk(coshσ) =
sinh(k+1)σ

sinhσ
,

coshσ =
p

2
p

q
, σ ∈ R,

(19)

where R is the set of real number.
First, the derivation of Eq. (2) represented by the

CPs of the second class is given.

Remark 1 Based on Eqs. (2), (7), (16), (17), and
(19), the process of obtaining the APF (8) through
the improvement of the APF (1) with the CP of the
second class can be explained. Referring to Eq. (7), we
have λ j + λ̄ j =ϖ j and λ j · λ̄ j = 1. Substituting these

equations into Eq. (16), we find that F ( j)k satisfies the
three-term recurrence relation:

F ( j)k =ϖ j F
( j)
k−1− F ( j)k−2, F ( j)0 = 0, F ( j)1 = 1, (20)

where p=ϖ j , q= 1, F ( j)k andϖ j are given by Eqs. (2)
and (7), respectively. By Eqs. (2), (16), (17), and (19),
the expression for F ( j)k can be obtained:

F ( j)k =
λk

j−λ̄
k
j

λ j−λ̄ j

= U ( j)k−1(coshσ j) = T ( j)k (coshσ j). (21)

For ease of expression, let

U ( j)k−1(coshσ j) = T ( j)k (coshσ j) =
sinh(kσ j)

sinhσ j
,

coshσ j =
ϖ j

2
, σ j ∈ R.

(22)

Following this, we convert the piecewise function (4)
into a function (9) that incorporates absolute values.

Remark 2 The piecewise function (4) is expanded as
follows:

β (i)xs ,x
=







α
(i)
1,xs
α
(i)
2,n−x , if x ⩾ xs,

α
(i)
1,xα

(i)
2,n−xs

, if x ⩽ xs,

=











































∆F (i)xs
∆F (i)n−x +(b1−1)∆F (i)xs−1∆F (i)n−x

+(b2−1)∆F (i)xs
∆F (i)n−x−1

+(b1−1)(b2−1)∆F (i)xs−1
∆F (i)n−x−1, if x ⩾ xs,

∆F (i)x ∆F (i)n−xs
+(b1−1)∆F (i)x−1∆F (i)n−xs

+(b2−1)∆F (i)x ∆F (i)n−xs−1

+(b1−1)(b2−1)∆F (i)x−1∆F (i)n−xs−1
, if x ⩽ xs,

(23)
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where α(i)s,x =∆F (i)x +(bs−1)∆F (i)x−1,∆F (i)k = F (i)k+1−F (i)k ,

F (i)k =
(λk

j−λ̄
k
j )

(λ j−λ̄ j)
, bs = rs/r0.

The piecewise function (23) is decomposed for
computation as follows. When x ⩾ xs, s = 1, 2,

∆F (i)xs
∆F (i)n−x = (F

(i)
xs+1 − F (i)xs

)(F (i)n−x+1 − F (i)n−x )

=
�

λ
n−x+xs+2
i + λ̄n−x+xs+2

i −λn−x+xs+1
i − λ̄n−x+xs+1

i

(λi − λ̄i)2

−
λ

n−x+xs+1
i + λ̄n−x+xs+1

i −λn−x+xs
i − λ̄n−x+xs

i

(λi − λ̄i)2

�

+
�

λ
n−x−xs+1
i + λ̄n−x−xs+1

i −λn−x−xs
i − λ̄n−x−xs

i

(λi − λ̄i)2

−
λ

n−x−xs
i + λ̄n−x−xs

i −λn−x−xs−1
i − λ̄n−x−xs−1

i

(λi − λ̄i)2

�

=
(λi+λ̄i−2)(λn−x+xs+1

i +λ̄n−x+xs+1
i +λn−x−xs

i +λ̄n−x−xs
i )

(λi − λ̄i)2

=
(λ0.5

i −λ̄
0.5
i )

2

(λi − λ̄i)2
�

λ
n−x+xs+1
i +λ̄n−x+xs+1

i +λn−x−xs
i +λ̄n−x−xs

i

�

=(F (i)0.5)
2
�

F (i)n−(x−xs)+2−F (i)n−(x−xs)
+F (i)n−x−xs+1−F (i)n−x−xs−1

�

. (24)

When x ⩽ xs, s = 1, 2,

∆F (i)x ∆F (i)n−xs
= (F (i)x+1 − F (i)x )(F

(i)
n−xs+1 − F (i)n−xs

)

=
�

λ
n−xs+x+2
i + λ̄n−xs+x+2

i −λn−xs+x+1
i − λ̄n−xs+x+1

i

(λi − λ̄i)2

−
λ

n−xs+x+1
i + λ̄n−xs+x+1

i −λn−xs+x
i − λ̄n−xs+x

i

(λi − λ̄i)2

�

+
�

λ
n−xs−x+1
i + λ̄n−xs−x+1

i −λn−xs−x
i − λ̄n−xs−x

i

(λi − λ̄i)2

−
λ

n−xs−x
i + λ̄n−xs−x

i −λn−xs−x−1
i − λ̄n−xs−x−1

i

(λi − λ̄i)2

�

=
(λi+λ̄i−2)(λn−xs+x+1

i +λ̄n−xs+x+1
i +λn−xs−x

i +λ̄n−xs−x
i )

(λi − λ̄i)2

=
(λ0.5

i −λ̄
0.5
i )

2

(λi − λ̄i)2
(λn−xs+x+1

i +λ̄n−xs+x+1
i +λn−xs−x

i +λ̄n−xs−x
i )

=(F (i)0.5)
2
�

F (i)n−(xs−x)+2−F (i)n−(xs−x)+F (i)n−xs−x+1−F (i)n−xs−x−1

�

. (25)

Based on Eqs. (24) and (25), a portion of the piecewise
function can be transformed into a function involving
absolute value, as presented below:

∆F (i)xs
∆F (i)n−x , if x ⩾ xs

∆F (i)x ∆F (i)n−xs
, if x ⩽ xs

)

=(F (i)0.5)
2
�

F (i)n−|xs−x |+2−F (i)n−|xs−x |

+ F (i)n−xs−x+1− F (i)n−xs−x−1

�

, s = 1,2. (26)

Based on the methodology outlined above, the
remaining segments of the piecewise function are re-

spectively represented as follows:

(b1−1)∆F (i)xs−1
∆F (i)n−x , if x ⩾ xs

(b1−1)∆F (i)x−1∆F (i)n−xs
, if x ⩽ xs

)

=(b1−1)(F
(i)
0.5)

2�
F (i)n−|xs−x |+1

− F (i)n−|xs−x |−1 + F (i)n−xs−x+2 − F (i)n−xs−x

�

, s = 1, 2, (27)

(b2−1)∆F (i)xs
∆F (i)n−x−1, if x⩾ xs

(b2−1)∆F (i)x ∆F (i)n−xs−1
, if x⩽ xs

)

=(b2−1)(F
(i)
0.5)

2
(F (i)n−|xs−x |+1

− F (i)n−|xs−x |−1 + F (i)n−xs−x − F (i)n−xs−x−2), s = 1, 2, (28)

(b1 −1)(b2 −1)∆F (i)xs−1∆F (i)n−x−1, if x ⩾ xs

(b1 −1)(b2 −1)∆F (i)x−1∆F (i)n−xs−1, if x ⩽ xs

)

=(b1 −1)(b2 −1)(F (i)0.5)
2�

F (i)n−|xs−x | − F (i)n−|xs−x |−2

+ F (i)n−xs−x+1 − F (i)n−xs−x−1

�

, s = 1, 2. (29)

We replace each part of the piecewise function
(23) by functions (26), (27), (28) and (29) containing
absolute values, respectively, and then arrange them
according to the combination of function (23), the
piecewise function (23) is completely rewritten as a
single function involving absolute values, given as
follows:

β (i)xs ,x
= (F (i)0.5)

2(ς(i)1,x ,xs
+ ς(i)2,x ,xs

), s = 1,2, (30)

where

ς
(i)
1,x ,xs

=F (i)n−|xs−x |+2+(b1+b2−2)
�

F (i)n−|xs−x |+1−F (i)n−|xs−x |−1

�

+(b1 b2−b1−b2)F
(i)
n−|xs−x |−(b1−1)(b2−1)F (i)n−|xs−x |−2,

ς
(i)
2,x ,xs

=(b2−b1)F
(i)
n−xs−x+(b1−1)F (i)n−xs−x+2−(b2−1)F (i)n−xs−x−2

+(b1−1)(b2−1)(F (i)n−xs−x+1− F (i)n−xs−x−1).

Based on Eq. (21) and function (30), the piecewise
function (4) is transformed into a single function (9)
containing absolute values.

In summary, we derive the APF (8).
To achieve efficient potential computation, it is

essential to carry out orthogonal diagonalization of the
matrix Bm. This process aims to find a set of orthogonal
eigenvectors and corresponding eigenvalues that allow
for faster calculations.

Bm=























2+2h −h 0 · · · · · · 0

−h 2+2h −h
. . .

...

0 −h
. . .

. . .
. . .

...
...

. . .
. . .

. . . −h 0
...

. . . −h 2+2h −h
0 · · · · · · 0 −h 2+h























m×m

, (31)
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where h= r/r0.
The eigenvalues of Bm are

ϖ j = 2+2h−2h cos (2 j−1)π
2m+1 , j = 1,2, . . . , m, (32)

and the corresponding eigenvector α( j) =
(α( j)1 , . . . ,α( j)m )

T where

α
( j)
k =

2p
2m+1

sin (2 j−1)kπ
2m+1 , j, k = 1, 2, . . . , m. (33)

Based on Eq. (33), the orthogonal matrix SVI
m can

be obtained as follows:

SVI
m =

2p
2m+1

�

sin (2 j−1)kπ
2m+1

�m

j,k=1
. (34)

As it is well known, the matrix SVI
m is famous for being

the discrete sine transform of the sixth kind (DST-VI)
[26–28]. The inverse and transpose matrices of SVI

m are
provided below:

(SVI
m )
−1 = (SVI

m )
T = (SVII

m ). (35)

The matrix Bm can be orthogonally diagonalized
as follows:

(SVI
m )
−1Bm(SVI

m ) = diag(ϖ1,ϖ2, . . . ,ϖm), (36)

i.e.,

(SVI
m )
−1Bm = diag(ϖ1,ϖ2, . . . ,ϖm)(SVI

m )
−1, (37)

where ϖ j , ( j = 1, 2, . . . , m) is given by Eq. (32). In
conclusion, Eqs. (32) and (33) are the eigenvalues and
eigenvectors of matrix Bm respectively.

Based on Kirchhoff’s laws, Tan [23] conducted
a study on resistor networks and derived the matrix
equation for the resistor network as follows:

Vk+1 = BmVk −Vk−1− rIyτx ,k, (38)

where

Vk = [V
(1)
k , V (2)k , ...V (m)k ]T (0⩽ k ⩽ n), (39)

I ( j)y = J(τy1, j −τy2, j), (40)

Bm is given by Eq. (31), τx ,k and τy, j are defined by
τx ,k(x = k) = 1, τx ,k(x ̸= k) = 0 and τy, j(y = j) = 1,
τy, j(y ̸= j) = 0, respectively.

Remark 3 Let
(SVI

m )
−1Vk = Lk (41)

where

Lk = [L
(1)
k , L(2)k , . . . , L(m)k ]

T (0⩽ k ⩽ n). (42)

We have
Vk = SVI

m Lk. (43)

Tan [23] proposed an analytical function for the
arbitrary nodal voltage of the m× n fan resistor net-
work, as follows:

V (y)k = J
4r

2m+1

m
∑

i=1

β (i)x ,x1
ζ1,i+β (i)x ,x2

ζ2,i

(t i −2)G(i)n

sin(yθi), (44)

where t i = 2(1+b)−2b cosθi , b= r/r0, ζ1,i = sin y1θi ,
ζ2,i =− sin y2θi , β

(i)
x ,xk

, G(i)n and θi are given by Eqs. (4),
(5) and (6), respectively.

Based on Eq. (21) and function (30), the piecewise
function (44) is reexpressed as a single function, solely
consisting of absolute values, represented by the CPs of
the second class.

V (y)x =J
4r

2m+1

m
∑

j=1

Υ ( j)x ,x1
Py1 , j−Υ ( j)x ,x2

Py2 , j

(ϖ j −2)H ( j)n

Py, j(T
( j)
0.5)

2, (45)

where Υ ( j)x ,xk
, Pk, j , ϖ j , H( j)n and T ( j)k are defined by

Eqs. (9), (11), (14), (12) and (13), respectively.
Based on Eqs. (34), (35), (41) and (45), L( j)x can

be expressed as follows:

L( j)x =
2rJ
p

2m+1

Υ ( j)x ,x1
Py1, j −Υ ( j)x ,x2

Py2, j

(ϖ j −2)H( j)n

(T ( j)0.5)
2 (46)

for 0 ⩽ x ⩽ n, where Υ ( j)x ,x t
, Pk, j , ϖ j , H( j)n and T ( j)k

are given by Eqs. (9), (11), (14), (12) and (13),
respectively.

ANALYTICAL FUNCTIONS OF POTENTIAL IN
SPECIAL CASES AND 3D POTENTIAL
DISTRIBUTION MAPS

The APF (8) represents the overall APF of the fan
resistor network, which, although meaningful, can be
rather complex to comprehend. Therefore, we provide
several specific cases of the APF (8) to comprehend its
meaning. Furthermore, based on the specific APFs,
we employ 3D views to show the potential of each
node. And we can visually illustrate the influence for
the position of current J , h, h1, and h2 on the potential
distribution.

The cases where the current J is input and output
at a specific position

Based on the APF (8), and assuming uniform resistor
values of r = r0 = r1 = r2 = 1 (i.e., h = h1 = h2 = 1),
we can obtain the APFs for the current J at the specific
input point d1(x1, y1) or output point d2(x2, y2).

Special 1. When the current J is input at any point and
output at the origin O(0, 0), the analytical function of
the potential is given by:

Um×n (x , y)
J

=
2r0

2m+1

m
∑

j=1

Py1, j Py, j

(1−cos (2 j−1)π
2m+1 )T

( j)
n+1

Υ ( j)x ,x1
(T ( j)0.5)

2, (47)
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where

Υ ( j)x ,x1
= T ( j)n−|x1−x |+2−T ( j)n−|x1−x |+T ( j)n−x1−x+1−T ( j)n−x1−x−1, (48)

Pk, j and T ( j)k are provided by Eqs. (11) and (13),
respectively.

When m= n= 80, x1 = y1 = 40, and x2 = y2 = 0,
the APF (47) is expressed as:

U80×80 (x , y)
J

=
2

161

80
∑

j=1

sin( 40(2 j−1)π
161 ) sin( y(2 j−1)π

161 )

(1− cos (2 j−1)π
161 )T

( j)
81

Υ
( j)
x ,40(T

( j)
0.5)

2, (49)

where

Υ
( j)
x ,40 = T ( j)82−|40−x | − T ( j)80−|40−x | + T ( j)41−x − T ( j)39−x , (50)

and

T ( j)k = T ( j)k

�

coshσ j

�

=
sinh(kσ j)

sinhσ j
,

coshσ j =
ϖ j

2
= 2− cos

(2 j−1)π
161

,

(51)

k = 82−|40− x |, 80−|40− x |, 41− x , 39− x , 81,0.5.
A three-dimensional view of the potential is gen-

erated using Matlab, as depicted in Fig. 2.

Fig. 2: A 3D view for generating procedure of the
U80×80(x , y)/J map in Eq. (47).

Special 2. Given that the current J flows in and
out along the same longitude, i.e., x1 = x2 for the
input point d1(x1, y1) and the output point d2(x2, y2),
the analytical function of the potential is expressed as
follows:

Um×n (x , y)
J

=
2r0

2m+1

m
∑

j=1

(Py1, j − Py2, j)Υ ( j)x ,x1

(1− cos (2 j−1)π
2m+1 )T

( j)
n+1

Py, j(T
( j)
0.5)

2, (52)

where Pk, j , T ( j)k and Υ ( j)x ,x1
are defined in Eqs. (11), (13)

and (48), respectively.

Fig. 3: A 3D view for generating procedure of the
U80×80(x , y)/J map in Eq. (52).

Consider m= n= 80, x1 = x2 = y1 = 40, and y2 =
60. The potential distribution described by Eq. (52) is
depicted in Fig. 3.
Special 3. When the current J flows from the input
point d1(x1, y1) to the output point d2(x2, y2), where
y1 = y2, the analytical function of the potential is
expressed as follows:

Um×n (x , y)
J

=
2r0

2m+1

m
∑

j=1

(Υ ( j)x ,x1
−Υ ( j)x ,x2

)Py1, j Py, j

(1− cos (2 j−1)π
2m+1 )T

( j)
n+1

(T ( j)0.5)
2, (53)

where

Υ ( j)x ,x2
= T ( j)n−|x2−x |+2−T ( j)n−|x2−x |+T ( j)n−x2−x+1−T ( j)n−x2−x−1, (54)

Pk, j , T ( j)k and Υ ( j)x ,x1
are given by Eqs. (11), (13) and

(48), respectively.
Based on the APF (53), when m = n = 80, we

consider the specific values x1 = y1 = y2 = 40 and
x2 = 60. The potential distribution in Eq. (53) is
illustrated in Fig. 4.

Fig. 4: A 3D view for generating procedure of the
U80×80(x , y)/J map in Eq. (53).

The cases where h, h1 and h2 are specific values

The current J has fixed input positions d1(x1, y1) and
output positions d2(x2, y2), where x1 = y1 = 40 and
x2 = y2 = 60. The APFs are studied for specific values
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of h, h1, and h2, respectively.

Special 1. Assuming the h1 = h2 = 1 and h = 0.1, the
analytical function of potential is:

Um×n (x , y)
J

=
4r

2m+1

m
∑

j=1

Υ ( j)x ,x1
Py1, j −Υ ( j)x ,x2

Py2, j

(ϖ j −2)T ( j)n+1

Py, j(T
( j)
0.5)

2, (55)

where

ϖ j =
11
5
−

1
5

cos
(2 j−1)π
2m+1

, (56)

Pk, j , T ( j)k , Υ ( j)x ,x1
and Υ ( j)x ,x2

are given by Eqs. (11), (13),
(48) and (54), respectively.

When m = n = 80, r0 = r1 = r2 = 10, and r = 1,
the APF (55) can be expressed as follows:

U80×80(x , y)
J

=
4

161

80
∑

j=1

sin( 40(2 j−1)π
161 )Υ ( j)x ,40− sin( 60(2 j−1)π

161 )Υ ( j)x ,60

(ϖ j −2)T ( j)81

× sin
� y(2 j−1)π

161

�

(T ( j)0.5)
2, (57)

where

ϖ j =
11
5
−

1
5

cos
(2 j−1)π

161
, (58)

T ( j)k = T ( j)k

�

coshσ j

�

=
sinh(kσ j)

sinhσ j
,

coshσ j =
11
10
−

1
10

cos
(2 j−1)π

161
, k = 81, 0.5,

(59)

Υ
( j)
x ,60 = T ( j)82−|60−x |− T ( j)80−|60−x |+ T ( j)21−x − T ( j)19−x , (60)

and Υ ( j)x ,40 is given by Eq. (50). The potential distribu-
tion in Eq. (57) is shown in Fig. 5.

Fig. 5: A 3D view for generating procedure of the
U80×80(x , y)/J map in Eq. (57).

Special 2. In the case where h1 = h2 = 1 and h= 0.01,
the analytical function for the potential is expressed as

follows:

Um×n (x , y)
J

=
4r

2m+1

m
∑

j=1

Υ ( j)x ,x1
Py1, j −Υ ( j)x ,x2

Py2, j

(ϖ j −2)T ( j)n+1

Py, j(T
( j)
0.5)

2, (61)

where

ϖ j =
101
50
−

1
50

cos
(2 j−1)π
2m+1

, (62)

and Pk, j , T ( j)k and Υ ( j)x ,x1
and Υ ( j)x ,x2

are defined by
Eqs. (11), (13), (48) and (54), respectively.

In the APF (61), we set m = n = 80, r0 = r1 =
r2 = 100, and r = 1. The potential distribution plot,
generated using Matlab, is illustrated in Fig. 6.

Fig. 6: A 3D view for generating procedure of the
U80×80(x , y)/J map in Eq. (61).

Special 3. In the m× n fan resistor network, where
h= 1, h1 = 0.1, and h2 = 0.01, the analytic expression
for the potential is given by

Um×n (x , y)
J

=
4r

2m+1

m
∑

j=1

Υ ( j)x ,x1
Py1, j −Υ ( j)x ,x2

Py2, j

(ϖ j −2)H( j)n

Py, j(T
( j)
0.5)

2, (63)

where

Υ ( j)x ,x t
= ς( j)1,x ,,x t

+ ς( j)2,x ,,x t
, x t = x1, x2, (64)

ς
( j)
1,x ,,x t

= T ( j)n−|x t−x |+2+0.89(T ( j)n−|x t−x |+1− T ( j)n−|x t−x |−1)

−0.109T ( j)n−|x t−x |−0.891T ( j)n−|x t−x |−2,

ς
( j)
2,x ,x t

= −0.09T ( j)n−x t−x −0.9T ( j)n−x t−x+2+0.99T ( j)n−x t−x−2

+0.891(T ( j)n−x t−x+1− T ( j)n−x t−x−1),

ϖ j = 4−2cos(
(2 j−1)π
2m+1

), (65)

H( j)n = T ( j)n+1−1.89T ( j)n +0.891T ( j)n−1, (66)
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Pk, j and T ( j)k can be given by Eqs. (11) and (13),
respectively.

When m = n = 80, r = r0 = 1, r1 = 10, and r2 =
100. The potential distribution described by Eq. (63)
is illustrated in Fig. 7.

Fig. 7: A 3D view for generating procedure of the
U80×80(x , y)/J map in Eq. 63).

A FAST ALGORITHM FOR COMPUTING POTENTIAL

In this section, we implement a fast algorithm for
calculating the potential. The algorithm is based on
DST-VI and Eqs. (14), (13), (15), (38), (43), and (46).

The fast algorithm follows the following overall
idea: Firstly, we obtain the initial values L0 and L1
using Eq. (46). Secondly, we solve for V0 and V1
respectively, as described in Eq. (43). Finally, we
design a fast matrix-vector multiplication algorithm,
i.e., Algorithm 1. By applying V0, V1, Algorithm 1, and
Eq. (38), we recursively obtain V2, V3, . . . , and Vn. In
summary, we achieve the fast algorithm for calculating
the potential, denoted as Algorithm 2.

Algorithm 1: Fast matrix-vector multiplica-
tion Bmv= z.

Step 1: Compute z1 by using
z1 = (2+2h)v1−hv2;

Step 2: Cycle computing z j by using
z j = (−h)v j−1+(2+2h)v j −hv j+1,
j = 2, . . . , m−1;

Step 3: Compute zm by using
zm = (−h)vm−1+(2+h)vm.

As is well-known, the computational complexity of
vector multiplication for the tridiagonal quasi-Toeplitz
matrix is O(m), which corresponds to the computa-
tional complexity of Algorithm 1. Furthermore, the
computational complexity of DST-VI is O(m log2 m)
[28, 29]. Furthermore, during the recursive compu-
tation, Algorithm 1 is nested, resulting in a compu-
tational complexity of O(mn) at this stage. Consid-
ering the above analysis, the computational complex-
ity of the computational potential for Algorithm 2 is
O(m log2 m)+O(mn).

Algorithm 2: Fast algorithm for computing
Um×n(x , y)/J .

Step 1: Computeϖ j by using Eq. (14),
j = 1,2, . . . , m;

Step 2: Compute cosh(σ j) =
ϖ j

2 ,
j = 1,2, . . . , m;

Step 3: Compute T ( j)k and k by using Eq. (13);

Step 4: Compute L( j)0 and L( j)1 by using
Eq. (46), j = 2, . . . , m;

Step 5: Compute Vk by L0, L1, Eq. (43) and
DST-VI, k = 0,1;

Step 6: Compute BmVk by using Algorithm 1,
k = 1,2, . . . ;

Step 7: Cycle computing Vk by using Eq. (38),
k = 2,3, . . . ;

Step 8: Compute Um×n(x , y)/J by using
Eq. (15).

Below, we provide two examples of calculating
potential using the fast Algorithm 2.

Example 1 In the fan resistor network, we consider
the following parameters: m = 800, n = 10, x1 = 2,
y1 = 300, x2 = 8, y2 = 500, r = r1 = r2 = 1, and r0 =
100. Our objective is to solve for U800×10(x , y)/J each
node, as illustrated in Fig. 8.

Fig. 8: A scatterplot of U800×10(x , y)/J calculated by
the Algorithm 2.

Example 2 Consider m = 1200, n = 10, x1 = 3, y1 =
500, x2 = 9, y2 = 800, r = r1 = r2 = 1, and r0 =
100. The potential at each node is calculated using
the fast Algorithm 2, and U1200×10(x , y)/J is displayed
in Fig. 9.

CALCULATING EFFICIENCY AND SCALE OF
POTENTIALS

In this section, we utilize the APFs (1) and (8), along
with the fast Algorithm 2, to calculate the potential of
the fan resistor network. The objective is to compare
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Fig. 9: A scatterplot of U1200×10(x , y)/J calculated by
the Algorithm 2.

Table 1: The time taken to calculate the potential using
APFs (1) and (8), respectively, where r = r0 = 1.

m× n (x1, y1) (x2, y2) r/r0 t1 t2

50×50 (20, 20) (40, 40) 1 0.0609 0.0388
100×100 (20, 20) (100, 100) 1 0.3268 0.1355
220×220 (20, 20) (100, 100) 1 – 0.7861
300×300 (20, 20) (100, 100) 1 – 1.7325
400×400 (20, 20) (100, 100) 1 – 9.8072
500×500 (20, 20) (100, 100) 1 – –

each method’s computational scale and time required.
The calculation scale in this experiment is denoted by
m×n, representing the potential between d(x , y) (0⩽
x ⩽ m, 1⩽ y ⩽ n) and the origin O. The time taken to
compute the potential using the APFs (1) and (8), as
well as the fast Algorithm 2, are denoted by t1, t2, and
t3 respectively. The time is measured in seconds, and
“–” signifies that the calculation scale or time exceeds
4000 seconds.

The experiment is conducted on an AMD Ryzen 9
5900HX CPU (3.30 GHz, 8 cores, 16 threads) and an
NVIDIA GeForce RTX 3080 Laptop GPU (16 GB VRAM).
Matlab R2018b completes the experiment within a
Windows 11 operating system. When r1 = r2 = 1,
different values of r and r0 (i.e., r/r0) are employed
to conduct the experiment.

Remark 4 In Tables 1, 2, and 3, it is evident that
under the same conditions, the size and efficiency of
calculating the potential using the APF (8) is signif-
icantly enhanced compared with the APF (1). Fur-

Table 2: The time taken to calculate the potential using
the APFs (1) and (8), respectively, where r = 1 and
r0 = 10.

m× n (x1, y1) (x2, y2) r/r0 t1 t2

400×400 (20, 20) (100, 100) 0.1 18.6334 8.8603
580×580 (20, 20) (100, 100) 0.1 53.9739 25.1305
700×700 (20, 20) (100, 100) 0.1 – 41.5562
900×900 (20, 20) (100, 100) 0.1 – 93.2445
1100×1100 (20, 20) (100, 100) 0.1 – 185.4651
1200×1200 (20, 20) (100, 100) 0.1 – –

Table 3: The time taken to calculate the potential using
APFs (1) and (8), respectively, where r = 1, r0 = 100.

m× n (x1, y1) (x2, y2) r/r0 t1 t2

1100×1100 (20, 20) (100, 100) 0.01 361.5467 194.1443
1500×1500 (20, 20) (100, 100) 0.01 913.5753 510.1261
1800×1800 (20, 20) (100, 100) 0.01 – 869.5738
2100×2100 (20, 20) (100, 100) 0.01 – 1401.8866
2400×2400 (20, 20) (100, 100) 0.01 – 2098.0369
2400×2500 (20, 20) (100, 100) 0.01 – 2324.4338

Table 4: The time taken to calculate the potential using
APFs (1), (8) and fast Algorithm 2, respectively, where
r = r0 = 1.

m× n d1(x1, y1) d2(x2, y2) t1 t2 t3

500×10 (3, 200) (8, 400) 0.7855 0.4346 0.0391
1000×10 (3, 200) (8, 400) 2.6618 1.2789 0.0671
5000×10 (3, 200) (8, 400) 55.4897 19.7573 0.6831
10000×10 (3, 200) (8, 400) 215.6189 71.6058 2.2514
50000×10 (3, 200) (8, 400) – 3618.1504 49.2791

thermore, the value of r/r0 significantly affects the
scale of the calculated potential. When the value of
r/r0 decreases, the scale of the potential that can be
calculated increases. Conversely, when the value of
r/r0 increases, the scale of the potential that can be
calculated decreases.

Remark 5 The significantly improved efficiency of the
fast Algorithm 2 in calculating the potential is evident
from the data presented in Table 4. Compared to the
APFs (1) and (8), the fast Algorithm 2 demonstrates
significantly higher efficiency. Furthermore, both the
fast Algorithm 2 and the APF (8) can handle larger
calculation scales compared to the APF (1).

Conclusion

This paper enhances the APF of the m × n fan re-
sistor network [23] by utilizing CPs of the second
class. Moreover, it presents APFs for specific cases and
showcases the potential through a three-dimensional
visualization. A fast algorithm based on the DST-VI
is developed to compute the potential efficiently. We
conducted experiments to analyze and compare the
efficiency and scalability of computing the potential
using the APFs (1), (8), and the fast algorithm, respec-
tively. The experiments demonstrate that the improved
APF (8) expands the computational scale, while the
fast algorithm enhances computation efficiency. Fi-
nally, this work enhances the efficiency and scale of
calculating the potential energy of resistor network.
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