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ABSTRACT: In this paper, we prove an extension of Hadamard’s classical theorem for determining the radius of m-
meromorphy of an analytic function in terms of its Taylor coefficients. Our extension is expressed in terms of Fourier
coefficients with respect to an orthonormal polynomial system on the unit circle. Our main result confirms a conjecture
posed in [Dolomit Res Notes Approx 17 (2024):12–21].
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INTRODUCTION

Suppose that

F(z) =
∞∑
k=0

fkzk (1)

is the power series expansion of a function holomor-
phic in a neighborhood of zero. One of the classical
problems in complex analysis is to describe analytic
properties of F in terms of the sequence { fk}k∈N0

(here
and in the rest of this paper, we set N := {1,2, 3, . . .}
and N0 := {0,1,2, 3, . . .}). Hadamard’s theorem for
determining the radius of m-meromorphy of F is a
central result in this problem (see [1]).

For F as in (1), we denote by Rm(F) the radius
of the largest disk centered at the origin to which
F can be extended meromorphically with at most m
poles counting their multiplicity. The constant Rm(F)
is commonly known as the radius of m-meromorphy of
F. We write Rm when it is clear to which function the
notation refers.

Theorem 1 (Hadamard’s theorem [1]) Let F be de-
fined as in (1). Then, for each m ∈ N0, we have

Rm =
l̂m

l̂m+1

, (2)

where l̂0 := 1 and l̂m := limsupn→∞ |Hn,m|1/n,

Hn,m := det
��

fn−m+i+ j−1

�
1¶i, j¶m

�
, (3)

for m ∈ N and n ¾ m− 1. The equality (2) comes with
the convention that 0/0=∞.

In (3) and the rest of this paper,
�
ai, j

�
1¶i, j¶m denotes

an m × m matrix such that its entry on the i-th row

and the j-th column is ai, j . The reader can also see the
proof of Theorem 1 in [2].

In 2003, Rolanía et al [3] generalized Theorem 1
using orthogonal polynomials on the unit circle defined
as follows. Let µ be a finite positive Borel measure with
infinite support supp (µ) contained in the unit circle
T := {z ∈ C : |z|= 1}. We write µ ∈M and define the
associated inner product,

〈g, h〉 :=
∫

g(ζ)h(ζ)dµ(ζ), g, h ∈ L2(µ).

Let

φn(z) := κnzn+ · · · , κn > 0, n ∈ N0

be the orthonormal polynomial of degree n with re-
spect to µ having positive leading coefficient; that is,
〈φn,φm〉= δn,m. Let

BR := {z ∈ C : |z|< R}
and

B := B1 = {z ∈ C : |z|< 1}
be the disk centered at 0 of radius R and the disk
centered at 0 of radius 1, respectively. Denote byH (B)
the space of all functions holomorphic on some neigh-
borhood of B. From now on, we will only consider
F ∈H (B).

Now, let us define subclasses of M . We say that
µ ∈ S if and only if µ satisfies the Szegő condition,
namely ∫

T
logµ′(ζ)|dζ|> −∞,

where µ′ denotes the Radon-Nikodym derivative of µ
with respect to the arc length on T. We denote by Ŝ the
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class of all µ ∈M such that

ρ(µ) :=
�

lim sup
n→∞

|φn(0)|1/n
�−1

> 1. (4)

It is well-known that Ŝ is the class of all measures
meeting the Szegő condition such that the radius of
0-meromorphy (holomorphy) of the reciprocal of the
corresponding interior Szegő function is ρ(µ)> 1 (see
(2.1), (2.5), and Theorems 6.2 and 7.4 in [4] for more
details).

The main result in [3] is the following theorem.

Theorem 2 Let µ ∈ Ŝ and F ∈H (B). Then, for all m ∈
N0, we have

Rm =
l̃m

l̃m+1

, (5)

where l̃0 := 1 and l̃m := limsupn→∞ |∆̃n,m|1/n,

∆̃n,m := det
��〈zm− j F,φn+i−1〉�1¶i, j¶m

�
,

for m ∈ N (the equation (5) comes with the same con-
vention as in (3)).

In [3], the authors proved Theorem 2 using a result
(see [5]) concerning the convergence of row sequences
of standard orthogonal Padé approximants (sometimes
called Fourier-Padé approximants or Frobenius-Padé
approximants). Moreover, they employed Theorem 2
to find the location of poles of the reciprocal of interior
Szegő functions. Note that there is a result in [6]
similar to (5) when m = 1 but the measure µ is
supported on the interval [−1, 1].

In [7], the author proposed a new way to compute
Rm using a different determinant defined as follows.
For a given function F ∈H (B), we define the following
determinant:

∆n,m := det
��〈zm+i− j−1F,φn〉�1¶i, j¶m

�
. (6)

Set

l0 := 1 and lm := limsup
n→∞

|∆n,m|1/n,

for all m ∈ N.
Our main result in this paper is

Theorem 3 Let µ ∈ Ŝ and F ∈H (B). Then, for all m ∈
N0, we have

Rm =
lm

lm+1
, (7)

where by the same convention 0/0=∞.

Theorem 3 is an affirmative answer to Conjecture
1.2 in [7]. The determinant ∆n,m used in the calcula-
tion (7) was motivated by modified orthogonal Padé
approximation (see, for example, Definition 1.2 in [8]

for its definition). Indeed, the formula (7) when m= 1
was proved in Theorem 1.1 in [7] using a convergence
of the first row sequence of modified orthogonal Padé
approximants (see Theorem 1.2 in [9]). However, we
find that using our main lemma (Lemma 4 below), we
can relate the determinants ∆̃n,m and ∆n,m. Therefore,
the formula (7) can be deduced from the formula (5).

LEMMAS AND AUXILIARY RESULTS

In order to state some auxiliary results, we need an-
other class of measures which is a subclass ofM . We
say that µ ∈ Reg if and only if supp (µ) = T and

lim
n→∞ |φn(z)|1/n = |z|, (8)

uniformly on compact subsets of C\B. When
supp (µ) = T, it was shown in Theorem 3.1.1 in
[10] that the condition (8) is equivalent to the
condition

lim
n→∞κ

1/n
n = 1. (9)

The following lemma (see Theorems 6.2 and 7.4
in [4] or Theorem 6.6.1 in [10]) is equivalent to
Theorem 2 or Theorem 3 when m = 0. Furthermore,
it also serves as an analogue of the Cauchy-Hadamard
formula.

Lemma 1 Let F ∈H (B) and µ ∈ Reg. Then,

l1 = limsup
n→∞

|〈F,φn〉|1/n = 1
R0

. (10)

Moroever, the series
∑∞

n=0〈F,φn〉φn converges to F uni-
formly on compact subsets of BR0

and diverges pointwise
for all z ∈ C\BR0

.

It can also be proved that the partial sum of the
series in Lemma 1 converges to F in the L2(µ) space
with the following rate of convergence (see Theorem
6.6.1 in [10]).

Lemma 2 Let F ∈H (B) and µ ∈ Reg. Then,

limsup
n→∞

‖F − Sn‖1/n2 ¶
1
R0

, (11)

where ‖ · ‖2 denotes the L2(µ)-norm and

Sn(z) :=
n∑

k=0

〈F,φk〉φk(z) (12)

is the n-th partial sum of the Fourier expansion of F.

The following lemma (see Lemma 2.3 in [7])
provides an estimate of lm.

Lemma 3 Let F ∈H (B) and µ ∈ Reg. Then,

lm ¶
1

R0 · · ·Rm−1
< 1, m ∈ N.
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Define the monic orthogonal polynomial of degree n,

Φn(z) :=
φn(z)
κn

.

It is well-known (see e.g., formulas (1.2) and (1.5) in
[4]) that the polynomials Φn satisfy the following three
term recurrence formula:

Φn+1(z) = zΦn(z)+Φn+1(0)Φ
∗
n(z), (13)

where Φ∗n(z) = znΦn(1/z) is the so-called n-th reversed
polynomial, and the following relation

1−
�
κn

κn+1

�2
= |Φn+1(0)|2. (14)

Using (9) and (14), it is not difficult to check that if
µ ∈ Ŝ, then

lim
n→∞

κn+1

κn
= 1. (15)

The following relations play an important role in
the proof of the main theorem.

Lemma 4 Let µ ∈ Ŝ and F ∈ H (B). For each j ∈ N0,
we denote by j0 the number of poles of F in BR j

counting
their order. Let Q j be the monic polynomial of degree j
which has a zero at each pole of F in BR j

and zeros at 0
of order j− j0. Then, we have for all k, j ∈ N0,

〈zk+1Q j F,φn+1〉= 〈zkQ j F,φn〉+δn, j ,

where
limsup

n→∞
|δn, j |1/n < 1

R j
.

Proof of Lemma 4: It follows from the recurrence
formula (13) that

1
κn+1
〈zk+1Q j F,φn+1〉
= 〈zk+1Q j F, zΦn+Φn+1(0)Φ

∗
n〉

= 〈zk+1Q j F, zΦn〉+ 〈zk+1Q j F,Φn+1(0)Φ
∗
n〉

=
1
κn
〈zkQ j F,φn〉+ 〈zk+1Q j F,Φn+1(0)Φ

∗
n〉.

Then, from the above equality,

|〈zk+1Q j F,φn+1〉− 〈zkQ j F,φn〉|
¶
����〈zk+1Q j F,φn+1〉− κn

κn+1
〈zk+1Q j F,φn+1〉

����
+

���� κn

κn+1
〈zk+1Q j F,φn+1〉− 〈zkQ j F,φn〉

����
¶
����1− κn

κn+1

���� |〈zk+1Q j F,φn+1〉|
+ |κn〈zk+1Q j F,Φn+1(0)Φ

∗
n〉|. (16)

By (4), (9), (10), (14), and (15), we have

limsup
n→∞

�����1− κn

κn+1

���� |〈zk+1Q j F,φn+1〉|
�1/n

¶ limsup
n→∞

� |Φn+1(0)|2
1+κnκ

−1
n+1

�1/n
limsup

n→∞
|〈zk+1Q j F,φn+1〉|1/n

<
1

R0(zk+1Q j F)
=

1
R j(F)

. (17)

The expression in (16) can be rewritten as

|κnΦn+1(0)〈zk+1Q j F,Φ∗n〉|
= |κnΦn+1(0)〈zk+1(Q j F − Sn−k−1),Φ

∗
n〉|, (18)

where Sn−k−1 denotes the (n− k− 1)-th partial sum of
the Fourier expansion of Q j F . Notice that

〈zk+1Sn−k−1,Φ∗n〉= 0

because zk+1Sn−k−1 is a polynomial of degree at most
n¾ 1 with a zero of multiplicity ¾ 1 at z = 0 and Φ∗n is
orthogonal to all such polynomials. Therefore, using
(4), (9), (11), and the Holder inequality, it follows
from (18) that

limsup
n→∞

|κnΦn+1(0)〈zQ j F,Φ∗n〉|1/n

< limsup
n→∞

‖Q j F − Sn−k−1‖1/n2 ‖κnΦ
∗
n‖1/n2

= limsup
n→∞

‖Q j F − Sn−k−1‖1/n2 ‖κnΦn‖1/n2

= limsup
n→∞

‖Q j F − Sn−k−1‖1/n2 ‖φn‖1/n2

= limsup
n→∞

‖Q j F − Sn−k−1‖1/n2

¶ 1
R0(Q j F)

=
1

R j(F)
. (19)

By (17) and (19), it follows from (16) that

lim sup
n→∞

|〈zk+1Q j F,φn+1〉− 〈zkQ j F,φn〉|1/n < 1
R j(F)

,

which proves the lemma. 2
We will need the following simple linear algebra

result in the proof of the main result.

Lemma 5 Let

A= [ai, j]1¶i, j¶m and B = [bi, j]1¶i, j¶m

be matrices. If all rows except the kth row of B are zero
rows, then

det(A+ B) = det(A)+det(C),

where C is a matrix obtained from the matrix A by
replacing its k-th row by the vector�

bk,1 bk,2 . . . bk,m

�
.
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PROOF OF Theorem 3

Proof of Theorem 3: The proof of this theorem is
carried out by induction on m ∈ N0. By definition and
Lemma 1, we recall that

l0 = 1, l1 = (R0)
−1. (20)

Fix m¾ 1 and suppose that (7) holds for all indices up
to m−1. Let us prove that it is also true for m.

From Lemma 3, we have that l j ¶ 1 for all j ∈
N. If Rm =∞, according to Lemma 3, we have that
lm+1 = 0. Hence, Rm = lm/lm+1 as needed (recall
that by convention 0/0 =∞). Therefore, we can
assume that Rm < ∞. Consequently, R j < ∞ for
j = 0,1, . . . , m. By the hypothesis of induction, we
have that R j = l j/l j+1, j = 0, 1, . . . , m − 1; therefore,
l j > 0, j = 0,1, . . . , m. Multiplying these equalities, we
obtain that

R0 · · ·Rm−1 =
1
lm
<∞. (21)

Our main goal is to show that if Rm <∞, then

lm+1 =
1

R0R1 · · ·Rm
. (22)

Suppose (22) has been proved. Combining (21) and
(22), we have

Rm =
lm

lm+1
,

which means that (7) holds for m.
Now, let us prove (22). By Lemma 3, to show (22),

we only show that

lm+1 ¾
1

R0R1 . . . Rm
.

Now, we will use the polynomials Q j defined in
Lemma 4. From Lemma 4 and Lemma 5, the fact that
Q j ∈ span{1, z, . . . , z j} and z j ∈ span{Q0,Q1, . . . ,Q j},
for all 0¶ j ¶m, the column operation property for de-
terminants, and the distributive law for determinants,
we obtain

∆n,m+1 = det
��〈zm+i− j F,φn〉�1¶i, j¶m+1

�
= det
��〈z i−1Qm− j+1F,φn〉�1¶i, j¶m+1

�
(23)

= det
��〈Qm− j+1F,φn−i+1〉�1¶i, j¶m+1

�
+βn (24)

= βn +
�
(−1)m(m+1)/2×

det
��〈Qm− j+1F,φn−m+i−1〉�1¶i, j¶m+1

��
= βn +
�
(−1)m(m+1)/2×

det
��〈zm− j+1F,φn−m+i−1〉�1¶i, j¶m+1

��
= βn +(−1)m(m+1)/2∆̃n−m,m+1, (25)

where βn denotes the sum of the remaining 2m − 1
determinants and

b := limsup
n→∞

|βn|1/n < 1
R0R1 · · ·Rm

. (26)

Note that in order to get (24) from (23), we have to
firstly use Lemma 4 and then expand the resulting de-
terminant using Lemma 5 inductively from the second
row to the last row. Using (5) and arguing as in (21),
we can show that under the condition Rm <∞,

l̃m+1 =
1

R0R1 · · ·Rm
. (27)

By (25), we have

l̃m+1 = limsup
n→∞

|∆̃n−m,m+1|1/n
¶max{limsup

n→∞
|∆n,m+1|1/n, lim sup

n→∞
|βn|1/n}

=max{lm+1, b}. (28)

If max{lm+1, b}= b, then by (26), (27), and (28),

1
R0R1 · · ·Rm

= l̃m+1 ¶ b <
1

R0R1 · · ·Rm
,

which is impossible. Therefore, max{lm+1, b} = lm+1
and again, by (27) and (28),

1
R0R1 · · ·Rm

= l̃m+1 ¶ lm+1.

This completes the proof. 2
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