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ABSTRACT: We obtain some refined Young’s type inequalities in this paper. And the results are given as follows. Let
a, b > 0, 0¶ ν¶ τ¶ 1, then for any positive integer N : if m

2N < ν ¶ τ¶ m+1
2N for m ∈ {0,1,2, · · · , 2N −1}, we have

a∇νb ¾ K2N ν−m
�

2N
Ç

b
a , 2
�

a♯νb+
N−1∑
l=0

rl(ν)
2l∑

k=1

�q
a1− k−1

2l b
k−1
2l −
q

a1− k
2l b

k
2l

�2
X� k−1

2l , k
2l

�(ν)
+

2Nν−m
2Nτ−m

��
m+1−2Nτ
�

a1− b2N τc
2N b

b2N τc
2N +
�
2Nτ−m
�

a1− b2N τc+1
2N b

b2N τc+1
2N − K2Nτ−m
�

2N
Ç

b
a , 2
�

a♯τb
�

,

where r0(ν) = min{ν, 1− ν}, rl(ν) = min{2rl−1(ν), 1− 2rl−1(ν)}, and K(h, 2) = (h+1)2

4h with h = b
a . We also get some

applications of Young’s type inequalities.
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INTRODUCTION

The classical Young inequality states that

(1−ν)a+νb ¾ a1−νbν, (1)

where a, b > 0 and 0 ¶ ν ¶ 1. This inequality, though
very simple, has attracted researchers working in oper-
ator theory due to its applications in this field. Refining
this inequality and its reverse by finding intermediate
terms by adding some positive quantities has taken the
attention of numerous researches.

The constant K(h, 2) = (h+1)2/4h, (h > 0) is
called the Kantorovich constant and satisfies the fol-
lowing properties:
(i) K(1,2) = 1
(ii) K(h, 2) = K(1/h, 2) for h> 0
(iii) K(h, 2) is monotone increasing and monotone

decreasing on the intervals [1,∞] and (0, 1],
respectively.
Zuo et al [1] refined the inequality with the Kan-

torovich constant in the following form:

(1−ν)a+νb ¾ K(h, 2)r0(ν)a1−νbν (2)

for positive real numbers a, b, ν and 0¶ ν¶ 1, where
r0(ν) =min{ν, 1−ν} and h= b/a.

Liao et al [2] shown the reverse inequality (2),

(1−ν)a+νb ¶ K(h, 2)R(ν)a1−νbν, (3)

where R(ν) =max{ν, 1−ν}.
In 2016, Choi [3] showed a multi-term refinement

of Young’s inequality as follows.

Theorem 1 Let a and b be two positive numbers and
0¶ ν¶ 1. Then we have

(1−ν)a+νb ¾ K rN (ν)
�

2N−1
Ç

b
a , 2
�

a1−νbν

+
N−1∑
l=0

rl(ν)
2l∑

k=1

�q
a1− k−1

2l b
k−1
2l −
q

a1− k
2l b

k
2l

�2
X�k−1

2l , k
2l

�(ν), (4)

where rl(ν) =min{2rl−1(ν), 1−2rl−1(ν)} andXI is the
characteristic function defined by

XI (x) =

�
1, if x ∈ I ,
0, if x /∈ I .

Alzer et al [4] obtained the interesting refinement of
Young’s inequality.

Theorem 2 Let a, b > 0 and let λ, ν and τ be real
numbers with λ ¾ 1 and 0¶ ν¶ τ¶ 1. Then

(
ν

τ
)λ ¶ (a∇νb)λ − (a♯νb)λ

(a∇τb)λ − (a♯τb)λ
¶ (1−ν

1−τ )
λ,

where a∇νb = (1− ν)a + νb, a∇τb = (1− τ)a + τb,
a♯νb = a1−νbν and a♯τb = a1−τbτ.

The Young’s inequality and its reverse are impor-
tant in functional analysis, matrix theory, operator
theory, electrical networks, etc. Many scholars had
done much research in this topic. We refer the readers
to the recent papers [5–8].

In recent work, Yang and Wang [9] gave the
following Young type inequality.
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Theorem 3 Let 1/2 ¶ ν ¶ τ ¶ 1 and a, b are real
positive numbers. Then

Kν(h, 2)a♯νb− a∇νb
Kτ(h, 2)a♯τb− a∇τb

¶ ν
τ

, (5)

where h = b/a, a∇νb = (1 − ν)a + νb, a∇τb =
(1−τ)a+τb, a♯νb = a1−νbν and a♯τb = a1−τbτ.

Similar to Theorem 3, we also have the following
results.

Theorem 4 Let 0 ¶ ν ¶ τ ¶ 1/2 and a, b are real
positive numbers. Then

a∇νb− Kν(h, 2)a♯νb
a∇τb− Kτ(h, 2)a♯τb

¾ ν
τ

, (6)

where h = b/a, a∇νb = (1 − ν)a + νb, a∇τb =
(1−τ)a+τb, a♯νb = a1−νbν and a♯τb = a1−τbτ.

Proof : Let

f (t) =
1− t + tc− K t(c, 2)c t

t
=

1− t + tc− ( 1+c
2 )

2t

t

where c ∈ (0,∞), t ∈ (0,1/2]. Then we can get

f ′(t) = h(c)
t2

where

h(c) =
�
c−1−2
�

1+c
2

�2t
ln 1+c

2

�
t

− �1− t + tc− � 1+c
2

�2t�
and

h′(c) =
�
1−2t
�

1+c
2

�2t−1
ln 1+c

2 −
�

1+c
2

�2t−1�
t

− �t − t
�

1+c
2

�2t−1�
= −2t2
�

1+c
2

�2t−1
ln 1+c

2 .

It means that c ∈ (0,1], h′(c)¾ 0, so h(c) is increasing
on (0,1]; c ∈ [1,∞), h′(c)¶ 0, so h(c) is decreasing on
[1,∞). Therefore, h(c) ¶ h(1) = 0, f ′(t) ¶ 0 (c > 0).
When c > 0, f (t) is decreasing on (0,1/2], f (t) ¾
f (1/2) = 0. Taking c = b/a, we can get inequality
(6). 2

We use inequality (2) to get that the denominator
and numerator of inequality (6) are greater than zero.
Similarly, we use inequality (3) to get that the denom-
inator and numerator of inequality (5) are also greater
than zero.

So the two inequalities (5) and (6) can be sorted
out into one inequality as follows:

a∇νb ¾ Kν(h, 2)a♯νb+
ν

τ

�
a∇τb−Kτ(h, 2)a♯τb

�
, (7)

where 0¶ ν¶ τ¶ 1.

A MULTI-TERM REFINEMENT OF YOUNG’S TYPE
INEQUALITY

In this section, we mainly present the direct refine-
ments of the Young’s inequality (7).

Theorem 5 Let a, b ¾ 0 and 0¶ ν¶ τ¶ 1.
(i) If 0< ν ¶ τ¶ 1

2 , then

a∇νb ¾ K2ν
�Ç

b
a , 2
�

a♯νb+ν
�p

a−pb�2
+
ν

τ

�
(1−2τ)a+2τ
p

ab−K2τ(
Ç

b
a , 2)a♯τb
�
. (8)

(ii) If 1
2 < ν ¶ τ¶ 1, then

a∇νb ¾ K2ν−1
�Ç

b
a , 2
�
a♯νb+(1−ν)�pa−pb�2

+
2ν−1
2τ−1

�
(2−2τ)
p

ab+(2τ−1)b

− K2τ−1
�Ç

b
a , 2
�
a♯τb
�
. (9)

Proof : (i) When 0<ν¶ τ¶ 1/2, by simple calculation
and inequality (7), then we have

(1−ν)a+νb−ν(pa−pb)2 = a∇2ν

p
ab

¾ K2ν(
p

ab
a , 2)a1−2ν(
p

ab)2ν

+
2ν
2τ

�
a∇2τ

p
ab− K2τ(

p
ab
a , 2)a1−2τ(
p

ab)2τ
�

= K2ν(
Ç

b
a , 2)a♯νb

+
ν

τ

�
(1−2τ)a+(2τ)

p
ab− K2τ(
Ç

b
a , 2)a♯τb
�
.

So inequality (8) holds.
(ii) When 1/2 < ν ¶ τ ¶ 1, by simple calculation

and inequality (7), then we have

(1−ν)a+νb− (1−ν)(pa−pb)2 =pab∇2ν−1 b

¾ K2ν−1( bp
ab

, 2)b2ν−1(
p

ab)2−2ν+ 2ν−1
2τ−1

�p
ab∇2τ−1 b

− K2τ−1( bp
ab

, 2)b2τ−1(
p

ab)2−2τ
�

= K2ν−1(
Ç

b
a , 2)a♯νb+ 2ν−1

2τ−1

�
(2−2τ)
p

ab

+(2τ−1)b− K2τ−1(
Ç

b
a , 2)a♯τb
�
.

So inequality (9) holds. 2
By analogy with this approach, we get a more

general generalization.

Theorem 6 Let a, b > 0, 0 ¶ ν ¶ τ ¶ 1, then for any
positive integer N: if m/2N < ν ¶ τ ¶ (m+1)/2N for
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m ∈ {0,1, 2, . . . , 2N −1}, we have

a∇νb ¾ K2Nν−m
�

2N
Ç

b
a , 2
�
a♯νb

+
N−1∑
l=0

rl(ν)
2l∑

k=1

�q
a1− k−1

2l b
k−1
2l −
q

a1− k
2l b

k
2l
�2X� k−1

2l , k
2l

�(ν)
+

2Nν−m
2Nτ−m

�
(m+1−2Nτ)a1− b2

Nτc
2N b

b2Nτc
2N

+(2Nτ−m)a1− b2N τc+1
2N b

b2N τc+1
2N

− K2Nτ−m
�

2N
Ç

b
a , 2
�
a♯τb
�
. (10)

where r0(ν) = min{ν, 1 − ν}, rl(ν) = min{2rl−1(ν),
1−2rl−1(ν)}, bxc is the greatest integer less than or
equal to x.

Proof : To complete the proof, we need the following
three steps.

Step 1: When N = 1, inequality (10) can be written
as inequality (8) or inequality (9).

Step 2: Let inequality (10) hold for some N > 1.
If m/2N+1 < ν ¶ τ ¶ (m+1)/2N+1 for some

m ∈ {0,1,2, . . . , 2N − 1}, then m/2N < 2ν ¶ 2τ ¶
(m+1)/2N , we have

(1−ν)a+νb−ν(pa−pb)2
= a∇2ν

p
ab

¾ K2N (2ν)−m(
2N
rp

ab
a , 2)a1−2ν(
p

ab)2ν

+
N−1∑
l=0

rl(2ν)
2l∑

k=1

�Ç
a1− k−1

2l (
p

ab)
k−1
2l

−
Ç

a1− k
2l (
p

ab)
k
2l

�2X� k−1
2l , k

2l

�(2ν)
+ 2N (2ν)−m

2N (2τ)−m

�
(m+1−2N (2τ))a1− b2N (2τ)c

2N (
p

ab)
b2N (2τ)c

2N

+(2N (2τ)−m)a1− b2N (2τ)c+1
2N (
p

ab)
b2N (2τ)c+1

2N

− K2N (2τ)−m
� 2N
rp

ab
a , 2
�
a1−2τ(
p

ab)2τ
�

= K2N+1ν−m
�

2N+1
Ç

b
a , 2
�
a♯νb+

N−1∑
l=0

rl+1(ν)

×
2l+1∑
k=1

�q
a1− k−1

2l+1 b
k−1
2l+1−
q

a1− k
2l+1 b

k
2l+1

�2X� k−1
2l+1 , k

2l+1

�(ν)
+ 2N+1ν−m

2N+1τ−m

�
(m+1−2N+1τ)a1− b2N+1τc

2N+1 b
b2N+1τc

2N+1

+(2N+1τ−m)a1− b2N+1τc+1
2N+1 b

b2N+1τc+1
2N+1

− K2N+1τ−m
�

2N+1
Ç

b
a , 2
�
a♯τb
�

= K2N+1ν−m
�

2N+1
Ç

b
a , 2
�
a♯νb+

N∑
l=1

rl(ν)

×
2l∑

k=1

�q
a1− k−1

2l b
k−1
2l −
q

a1− k
2l b

k
2l
�2X� k−1

2l , k
2l

�(ν)
+ 2N+1ν−m

2N+1τ−m

�
(m+1−2N+1τ)a1− b2N+1τc

2N+1 b
b2N+1τc

2N+1

+(2N+1τ−m)a1− b2N+1τc+1
2N+1 b

b2N+1τc+1
2N+1

− K2N+1τ−m
�

2N+1
Ç

b
a , 2
�
a♯τb
�
.

Step 3: If m/2N+1 < ν ¶ τ ¶ (m+1)/2N+1 for some
m∈ {2N , 2N+1, . . . , 2N+1−1}, then

�
m−2N
�
/2N <

2ν−1¶ 2τ−1¶
�
m+1−2N
�
/2N .

Let m1 = m − 2N , then m1 ∈ {0,1,2, . . . , 2N − 1}
and m1/2

N < 2ν− 1 ¶ 2τ− 1 ¶ (m1+1)/2N , at
the same time k1 = k−2l by inequality (10):

(1−ν)a+νb− (1−ν)(pa−pb)2 =pab∇2ν−1 b

¾ K2N (2ν−1)−m1( 2N
Ç

bp
ab

, 2)(
p

ab)2−2νb2ν−1

+
N−1∑
l=0

rl(2ν−1)
2l∑

k1=1

�r
(
p

ab)1−
k1−1

2l b
k1−1

2l

−
r
(
p

ab)1−
k1
2l b

k1
2l
�2X� k1−1

2l ,
k1
2l

�(2ν−1)

+ 2N (2ν−1)−m1
2N (2τ−1)−m1

�
(2N (2τ−1)−m1)

× (pab)1−
b2N (2τ−1)c+1

2N b
b2N (2τ−1)c+1

2N

+(m1+1−2N (2τ−1))(
p

ab)1−
b2N (2τ−1)c

2N b
b2N (2τ−1)c

2N

− K2N (2τ−1)−m1( 2N
Ç

bp
ab

, 2)(
p

ab)2−2τb2τ−1
�

= K2N+1ν−2N−m1
�

2N+1
Ç

b
a , 2
�
a♯νb

+
N−1∑
l=0

rl+1(ν)
2l+1∑
k=1

�r
a1− 2l+k1−1

2l+1 b
2l+k1−1

2l+1

−
r

a1− 2l+k1
2l+1 b

2l+k1
2l+1
�2X� k1+2l−1

2l+1 ,
2l+k1
2l+1

�(ν)
+ 2N+1ν−2N−m1

2N+1τ−2N−m1

�
(2N+1τ−2N−m1)a

1− b2N+1τc
2N+1 b

b2N+1τc
2N+1

+(2N +m1 +1−2N+1τ)a1− b2N+1τc+1
2N+1 b

b2N+1τc+1
2N+1

− K2N+1τ−2N−m1
�

2N+1
Ç

b
a , 2
�
a♯τb
�

= K2N+1ν−m
�

2N+1
Ç

b
a , 2
�
a♯νb+

N∑
l=1

rl(ν)

×
2l∑

k=1

�q
a1− k−1

2l b
k−1
2l −
q

a1− k
2l b

k
2l
�2X� k−1

2l , k
2l

�(ν)
+ 2N+1ν−m

2N+1τ−m

�
(m+1−2N+1τ)a1− b2N+1τc

2N+1 b
b2N+1τc

2N+1

+(2N+1τ−m)a1−b2N+1τc+1
2N+1 b

b2N+1τc+1
2N+1 −K2N+1τ−m( 2N+1

Ç
b
a , 2)a♯τb
�
.
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So we have

a∇νb ¾ K2N+1ν−m
�

2N+1
Ç

b
a , 2
�
a♯νb

+
N∑

l=0

rl(ν)
2l∑

k=1

�q
a1− k−1

2l b
k−1
2l

−
q

a1− k
2l b

k
2l
�2X� k−1

2l , k
2l

�(ν)
+ 2N+1ν−m

2N+1τ−m

�
(m+1−2N+1τ)a1− b2N+1τc

2N+1 b
b2N+1τc

2N+1

+(2N+1τ−m)a1− b2N+1τc+1
2N+1 b

b2N+1τc+1
2N+1

− K2N+1τ−m
�

2N+1
Ç

b
a , 2
�
a♯τb
�
,

where b2N+1τ − 2N c = −b2N − 2N+1τc − 1 =
b2N+1τc−2N , i.e. N+1, the inequality (10) holds.
So, combining the above steps, we use the induc-

tive hypothesis method to complete the results. 2
Remark 1 Replacing a and b by their square in in-
equality (10), we get some results as follows.
If m/2N < ν ¶ τ ¶ (m+1)/2N for m ∈ {0,1, 2, . . . ,
2N −1}, we have

a2∇νb2 ¾ K2Nν−m
�

2N−1
Ç

b
a , 2
�
(a♯νb)2

+
N−1∑
l=0

rl(ν)
2l∑

k=1

(a1− k−1
2l b

k−1
2l −a1− k

2l b
k
2l )2X( k−1

2l , k
2l )
(ν)

+ 2Nν−m
2Nτ−m

�
(m+1−2Nτ)(a1− b2N τc

2N b
b2N τc

2N )2

+(2Nτ−m)(a1− b2N τc+1
2N b

b2N τc+1
2N )2

− K2Nτ−m
�

2N−1
Ç

b
a , 2
�
(a♯τb)2
�
.

On the other hand, we get

a2∇νb2− r0(ν)(a− b)2 = (a∇νb)2− r2
0 (ν)(a− b)2.

Therefore, by the above two relations, we obtain the
following corollary.

Corollary 1 Let a, b > 0, 0¶ ν¶ τ¶ 1. Then, for any
positive integer N: if m/2N < ν ¶ τ ¶ (m+1)/2N , for
m ∈ {0,1, 2, . . . , 2N −1}, we have

(a∇νb)2 ¾ K2Nν−m
�

2N−1
Ç

b
a , 2
�
(a♯νb)2+ r2

0 (ν)(a− b)2

+
N−1∑
l=1

rl(ν)
2l∑

k=1

(a1− k−1
2l b

k−1
2l −a1− k

2l b
k
2l )2X( k−1

2l , k
2l )
(ν)

+ 2Nν−m
2Nτ−m

�
(m+1−2Nτ)(a1− b2N τc

2N b
b2N τc

2N )2

+(2Nτ−m)(a1− b2N τc+1
2N b

b2N τc+1
2N )2

− K2Nτ−m
�

2N−1
Ç

b
a , 2
�
(a♯τb)2
�
, (11)

where r0(ν) = min{ν, 1 − ν}, rl(ν) = min{2rl−1(ν),
1−2rl−1(ν)}, bxc is the greatest integer less than or
equal to x.

APPLICATIONS

In this section, we mainly give an operator inequality
and Hilbert-Schmidt norm for the improved Young
inequality.

Before giving the main result of this part, we need
to recall certain useful knowledge.

Let B(H ) be the C∗-algebra of all bounded lin-
ear operators acting on a complex (separable) Hilbert
space (H , 〈·, ·〉) and I be its identity. An operator
A ∈ B(H ) is said to be positive semi-definite (denote
by A ¾ 0) if 〈Ax , x〉 ¾ 0 for all vectors x ∈ H . The
set of all positive operators is denoted by B(H )+. If
〈Ax , x〉 > 0 for all nonzero vectors x ∈H , A is said to
be positive (denotes A > 0). The set of all invertible
operators in B(H )+ is denoted by B(H )++. For self-
adjoint operators A, B ∈ B(H ).

For positive invertible operators A, B ∈ B(H ), the
weighted operator arithmetic mean and geometric
mean of A and B defined, respectively, by

A∇νB = (1−ν)A+νB,

A♯νB = A
1
2 (A− 1

2 BA− 1
2 )νA

1
2 ,

where ν ∈ [0,1]. When ν = 1/2, A∇1/2B and A♯1/2B
are called, respectively, operator arithmetic mean and
operator geometric mean, which are denoted by A∇B
and A♯B.

LetMn(C) denotes the space of all n× n complex
matrices and M+

n (C) denotes the space of all n × n
positive semi-definite matrices inMn(C). A norm |||·|||
is called unitarily invariant norm if |||UAV ||| = |||A|||
for all A ∈Mn(C) and for all unitary matrices U , V ∈
Mn(C). For A = [ai j] ∈ Mn(C), the Hilbert-Schmidt
norm of A is defined by

‖A‖2 =
√√√ n∑

i=1

s2
i (A) =

√√√√ n∑
i, j=1

|ai j |2,

where s1(A) ¾ s2(A) ¾ · · · ¾ sn(A) are the singular
values of A, that is, the eigenvalues of the positive
matrix |A| = (A∗A)1/2, arranged in decreasing order
and repeated according to multiplicity. The Hilbert-
Schmidt norm is unitarily invariant.

Lemma 1 ([10]) Let A∈B(H ) be self-adjoint. If f and
g are both continuous functions with f (t) ¾ g(t) for
t ∈ Sp(A) (where the sign Sp(A) denotes the spectrum
of operator A), then f (A)¾ g(A).

The following theorem presents the operator ver-
sion of Theorem 6.

Theorem 7 Let A, B ∈ B(H )++ and 0 ¶ ν ¶ τ ¶ 1. If
all positive numbers q, q′ and Q, Q′ satisfy either of the
following conditions: 0 < q′ I ¶ A¶ qI < QI ¶ B ¶ Q′ I ,
0 < q′ I ¶ B ¶ qI < QI ¶ A¶ Q′ I . Then for all positive
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integer N, we have: if m/2N < ν¶ τ¶ (m+1)/2N , for
m ∈ {0,1, 2, . . . , 2N −1}

A∇νB ¾ K2Nν−m( 2Np
h, 2)A♯νB

+
N−1∑
l=0

rl(ν)
2l∑

k=1

(A♯ k−1
2l

B+A♯ k
2l

B−2A♯ 2k−1
2l+1

B)X( k−1
2l , k

2l )
(ν)

+ 2Nν−m
2Nτ−m

�
(m+1−2Nτ)A♯ b2N τc

2N
B+(2Nτ−m)A♯ b2N τc+1

2N
B

− K2Nτ−m(
2Np

h′ , 2)A♯τB
�
, (12)

where h=Q/q, h′ =Q′/q′.

Proof : Taking a = 1, b = t in inequality (10),

(1−ν)+νb ¾ K2Nν−m( 2Np
t, 2)tν

+
N−1∑
l=0

rl(ν)
2l∑

k=1

�q
t

k−1
2l −
q

t
k
2l
�2X( k−1

2l , k
2l )
(ν)

+
2Nν−m
2Nτ−m

�
(m+1−2Nτ)t

b2N τc
2N

+(2Nτ−m)t
b2N τc+1

2N − K2Nτ−m( 2Np
t, 2)tτ
�
.

For X = A− 1
2 BA− 1

2 , we get

(1−ν)I +νX ¾ K2Nν−m
min ( 2Np

t, 2)X ν

+
N−1∑
l=0

rl(ν)
2l∑

k=1

�q
X

k−1
2l −
q

X
k
2l

�2X( k−1
2l , k

2l )
(ν)

+
2Nν−m
2Nτ−m

�
(m+1−2Nτ)X

b2N τc
2N

+(2Nτ−m)X
b2N τc+1

2N − K2Nτ−m
max ( 2Np

t, 2)X τ
�
.

(i) I ¶ hI = (Q/q) I ¶ X ¶ Q′/q′ = h′ I and the
Sp(X ) ⊆ [h, h′] ⊆ [1,∞). Then by Lemma 1 and
Kantorovich constant K(h, 2) = (h+1)2/4h is an
increasing function for h> 1, so we have

K2Nν−m
min ( 2Np

t, 2) = K2Nν−m( 2Np
h, 2),

K2Nτ−m
max ( 2Np

t, 2) = K2Nτ−m( 2Np
h′, 2).

(ii) 0 < (1/h′) I ¶ X ¶ (1/h) I ¶ I . Since the Kan-
torovich constant K(h, 2) = (h+1)2/4h is an de-
creasing function for 0< h< 1, so we have

K2Nν−m
min ( 2Np

t, 2) = K2Nν−m( 2N
Ç

1
h , 2),

K2Nτ−m
max ( 2Np

t, 2) = K2Nτ−m( 2N
Ç

1
h′ , 2).

Using K(1/h, 2) = K(h, 2) for h> 0, we get

(1−ν)I +νX ¾ K2Nν−m( 2Np
h, 2)X ν

+
N−1∑
l=0

rl(ν)
2l∑

k=1

�q
X

k−1
2l −
q

X
k
2l

�2X( k−1
2l , k

2l )
(ν)

+
2Nν−m
2Nτ−m

�
(m+1−2Nτ)X

b2N τc
2N

+(2Nτ−m)X
b2N τc+1

2N − K2Nτ−m(
2Np

h′ , 2)X τ
�
.

Multiplying both sides by A1/2 to the above inequality,
we can deduce

A∇νB ¾ K2Nν−m( 2Np
h, 2)A♯νB

+
N−1∑
l=0

rl(ν)
2l∑

k=1

(A♯ k−1
2l

B+A♯ k
2l

B−2A♯ 2k−1
2l+1

B)X( k−1
2l , k

2l )
(ν)

+
2Nν−m
2Nτ−m

�
(m+1−2Nτ)A♯ b2N τc

2N
B

+(2Nτ−m)A♯ b2N τc+1
2N

B− K2Nτ−m(
2Np

h′ , 2)A♯τB
�
.

The proof is completed. 2
The following theorem presents the Hilbert-

Schmidt norm version of Corollary 1.

Theorem 8 Suppose A, B, X ∈Mn(C) such that A and
B are two positive definite matrices and satisfy 0< qI ¶
A, B ¶ QI, where I represents the identity matrix and
q, Q ∈ R. For any positive integer N and 0 ¶ ν ¶
τ ¶ 1, we have: if m/2N < ν ¶ τ ¶ (m+1)/2N for
m ∈ {0,1,2, . . . , 2N −1},
‖(1−ν)AX +νX B‖22
¾ K2Nν−m

min ( 2N−1
Æ

t i j , 2)‖A1−νX Bν‖22+r2
0 (ν)‖AX−X B‖22

+
N−1∑
l=1

rl(ν)
2l∑

k=1

�‖A1− k−1
2l X B

k−1
2l ‖22+ ‖A1− k

2l X B
k
2l ‖22

−2‖A1− 2k−1
2l+1 X B

2k−1
2l+1 ‖22
�X( k−1

2l , k
2l )
(ν)

+ 2Nν−m
2Nτ−m

�
(m+1−2Nτ)‖A1− b2N τc

2N X B
b2N τc

2N ‖22
+(2Nτ−m)‖A1− b2N τc+1

2N X B
b2N τc+1

2N ‖22
− K2Nτ−m

max ( 2N−1
Æ

t i j , 2)‖A1−τX Bτ‖22
�
, (13)

where q/Q = 1/h¶ t i j = λi/µ j ¶ h=Q/q.

Proof : Since A and B are positive definite, it follows by
the spectral theorem that there exist unitary matrices
U , V ∈Mn(C) such that

A= UΛ1U∗, B = VΛ2V ∗,

where Λ1 = diag(λ1,λ2, . . . ,λn), Λ2 = diag(µ1, µ2, . . . ,
µn), λi , µi ¾ 0, i = 1,2, . . . , n.
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Let Y = U∗X V = [yi j], i, j = 1,2, . . . , n, then

(1−ν)AX +νX B = U((1−ν)Λ1Y +νYΛ2)V
∗

= U[((1−ν)λi +νµ j)yi j]V
∗.

AX − X B = U[(λi −µ j)yi j]V
∗,

A1−νX Bν = U[λ1−ν
i µνj yi j]V

∗.

Next, we use the inequality (11) in Corollary 1, we
can get

‖(1−ν)AX +νX B‖22 =
n∑

i, j=1

((1−ν)λi +νµ j)
2|yi j |2

¾
n∑

i, j=1

�
K2Nν−m
�

2N−1
r
µ j

λi
, 2
�
(λ1−ν

i µνj )
2+ r2

0 (ν)(λi−µ j)
2

+
N−1∑
l=1

rl(ν)
2l∑

k=1

(λ
1− k−1

2l

i µ
k−1
2l

j −λ1− k
2l

i µ
k
2l

j )
2X( k−1

2l , k
2l )
(ν)

+
2Nν−m
2Nτ−m

�
(m+1−2Nτ)(λ

1− b2N τc
2N

i µ
b2N τc

2N

j )2

+(2Nτ−m)(λ
1− b2N τc+1

2N

i µ
b2N τc+1

2N

j )2

− K2Nτ−m( 2N−1
r
µ j

λi
, 2)(λ1−τ

i µτj )
2
��|yi j |2

¾ K2Nν−m
min ( 2N−1
Æ

t i j , 2)
n∑

i, j=1

(λ1−ν
i µνj )

2|yi j |2

+ r2
0 (ν)

n∑
i, j=1

(λi −µ j)
2|yi j |2

+
N−1∑
l=1

rl(ν)
2l∑

k=1

n∑
i, j=1

(λ
1− k−1

2l

i µ
k−1
2l

j −λ1− k
2l

i µ
k
2l

j )
2X( k−1

2l , k
2l )
(ν)|yi j |2

+ 2Nν−m
2Nτ−m

�
(m+1−2Nτ)

n∑
i, j=1

(λ
1− b2N τc

2N

i µ
b2N τc

2N

j )2|yi j |2

+(2Nτ−m)
n∑

i, j=1

(λ
1− b2N τc+1

2N

i µ
b2N τc+1

2N

j )2|yi j |2

− K2Nτ−m
max ( 2N−1
Æ

t i j , 2)(λ1−τ
i µτj )

2|yi j |2
�
.

So we have

‖(1−ν)AX +νX B‖22 ¾ K2Nν−m
min ( 2N−1
Æ

t i j , 2)‖A1−νX Bν‖22
+ r2

0 (ν)‖AX − X B‖22+
N−1∑
l=1

rl(ν)
2l∑

k=1

�‖A1− k−1
2l X B

k−1
2l ‖22

+ ‖A1− k
2l X B

k
2l ‖22−2‖A1− 2k−1

2l+1 X B
2k−1
2l+1 ‖22
�X( k−1

2l , k
2l )
(ν)

+ 2Nν−m
2Nτ−m

�
(m+1−2Nτ)‖A1− b2N τc

2N X B
b2N τc

2N ‖22
+(2Nτ−m)‖A1− b2N τc+1

2N X B
b2N τc+1

2N ‖22
− K2Nτ−m

max ( 2N−1
Æ

t i j , 2)‖A1−τX Bτ‖22
�
.

The proof is established. 2
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10. Pečarić J, Furuta T, Hot J, Seo Y (2005) Mond-Pečaríc
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