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ABSTRACT: Eurycoma harmandiana Pierre (Simaroubaceae) (EH) is a well-known herbal plant with aphrodisiac and
antifever properties. This study investigated the effect of a pre-treatment strategy to enhance aglycone metabolites
in the adventitious root culture of EH and evaluated its anti-inflammatory activity. The content of pre-treatment
samples was determined using HPLC analysis. Nitric oxide (NO) production was evaluated using LPS-stimulated RAW
264.7 macrophage cells. The anti-inflammatory activity of the pre-treatment (Tx) and non-treatment (non-Tx) samples
was compared using quantitative polymerase chain reaction of inflammatory genes, including inducible NO synthase
(iNOS), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), and interleukin-6 (IL-
6). Deglycosylation of canthin-6-one-9-O-β -glucopyranoside (C6OG) to 9-hydroxy-canthin-6-one (HCO) occurred in
the Tx group by pre-treatment method. The enrichment of the aglycone sample exhibited a level of HCO (aglycone
form) that was significantly higher (9.3-fold) than that of the non-Tx. Moreover, HCO had superior anti-inflammatory
activity than the glycoside form. The enriched aglycone sample had higher potency than the non-Tx and suppressed
inflammatory gene expression. Our findings provide novel insights into the benefits of using the pre-treatment method
in health supplement products.

KEYWORDS: Eurycoma harmandiana, sample pre-treatment, canthin-6-one alkaloids, adventitious root culture, anti-
inflammatory activity

INTRODUCTION

Eurycoma harmandiana (EH), a herbal plant belong-
ing to the Simaroubaceae family, was discovered in
northeast Thailand. The root is in high demand as
an aphrodisiac herbal supplement [1]. In Thai tradi-
tional medicine, EH root is used as an ingredient in
the Chantaleela remedy, indicated for treating fevers
and common cold symptoms. EH root and its chem-
ical components are active against inflammation [2],
malaria [3], SARS-CoV-2 infection [4], and erectile
dysfunction [5, 6]. Owing to high consumption rates,
EH plants are endangered because they need a long
time to re-grow. Plant tissue culture is a method to pre-
serve endangered plants and used in the research field,
especially in herbal plants [7]. Methods for improving
plant growth and producing secondary metabolites are
focused on important medicinal plants or endangered
plants [8]. In a previous study, callus and adventitious
root cultures of EH were established, and their phyto-
chemical content and anti-inflammatory activity were
evaluated in RAW 264.7 macrophage cells [9].

The inflammatory process is an immune re-
sponse mechanism that protects the human body
from invaders and maintains homeostasis. When hu-

mans encounter pathogens or inflammatory stimuli,
macrophage cells are activated and regulate a defen-
sive signaling pathway to initiate the inflammatory
response [10]. On the surface of macrophages, Toll-
like receptor 4 (TLR4) is present and binds to the
invader such as lipopolysaccharide (LPS). This binding
triggers signaling cascades, leading to the activation
of the nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) pathway [11]. Subsequently,
NF-κB moves into the nucleus, where it enhances the
transcription of genes responsible for producing pro-
inflammatory cytokines such as TNF-α, IL-1β, and IL-
6 [12], chemokines, and enzymes that play a crucial
role in the inflammatory process, including iNOS and
COX-2 [13].

Sample pre-treatment, performed before the plant
dries, involves grinding the plant to a paste and adding
cellulase to the fresh sample to enhance the degly-
cosylation of active compounds in targeted plants.
This method can be applied to fresh plants and in
vitro plant cultures containing highly endogenous en-
zymes to produce enriched aglycone samples [14, 15].
Generally, the aglycone compound is an active form
that exhibits pharmacological activity; the sugar-linked
structure can be removed from the aglycone part by
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glucopyranosyl-β-O

Canthin-6-one-9-O-β-glucopyranoside
(C6OG)

9-Hydroxy-canthin-6-one
(HCO)

Fig. 1 Chemical structures of canthin-6-one-9-O-β -glucopyranoside (C6OG) and 9-hydroxy-canthin-6-one (HCO).

enzymatic hydrolysis [16]. For example, quercetin,
an aglycone deglycosylated from rutin (quercetin-3-
rutinoside), has improved antioxidant activity [17].
The hydrolysis of aucubin, a major iridoid glucoside
in Plantago species, by plant-derived β -glucosidase
enzyme showed interaction related to plant defensive
system [18].

Canthin-6-one (canthinone) and derivative alka-
loids, which are categorized to β -carboline alka-
loids, are commonly found in the bark and root of
Simaroubaceae, Rutaceae, Malvaceae, and Amaran-
thaceae plants [19]. The intact root of EH showed
highly accumulated canthin-6-one alkaloids, mainly
9-hydroxy-canthin-6-one (HCO), the aglycone, with
canthin-6-one-9-O-β -glucopyranoside (C6OG) as the
glycoside (Fig. 1). Previous studies reported the major
accumulation of canthin-6-one alkaloids in the roots
of Eurycoma plants (approximately 0.1–0.4% w/w of
crude residue) such as 9-methoxycanthin-6-one (0.2%
w/w), 9-hydroxycanthin-6-one (0.2–0.4% w/w), and
canthin-6-one 9-O-β -D-glucopyranoside (0.04% w/w)
[20, 21]. The canthin-6-one alkaloids, including HCO
and C6OG, exhibit anti-inflammatory activity and in-
hibit phosphodiesterase-5 for alleviating erectile dys-
function [5, 22, 23]. Previous studies demonstrated
that plant tissue culture techniques such as callus
and adventitious root culture from EH resulted in
the accumulation of canthin-6-one alkaloids, especially
C6OG [5, 9]. Pre-treatment methods involving the
deglycosylation reaction of bioactive compounds may
help increase the aglycone component which values
the raw materials and can be applied to agricultural
fields.

Therefore, this study observed the effect of a pre-
treatment strategy to enhance aglycone metabolites in
the adventitious root culture of EH. In addition, the
anti-inflammatory activity of the pre-treatment sample
was compared with that of the untreated sample. The
findings from this study may provide insights into the
development of alternative raw materials for plant and
health-supplement products.

MATERIALS AND METHODS

Adventitious root culture of EH and plant source

The adventitious roots of EH have been established in
a previous study [24]. The authentic plants and seeds

were collected from Ubon Ratchathani, Thailand, and
identified by Dr. Thaweesak Juengwatanatrakul, Fac-
ulty of Pharmaceutical Sciences, Ubon Ratchathani
University. An authentic specimen was submitted to
the botanical herbarium of Pharmaceutical Sciences,
Khon Kaen University (List number: NI-PSKKU 118).
The adventitious roots were cultured in a half-strength
Murashige and Skoog (MS) liquid medium contain-
ing 5 mg/l 1-naphthaleneacetic acid (NAA, Fluka
Chemika, Buchs, Switzerland). The subculturing of
adventitious roots was carried out by renewing the
medium every 8 weeks. The 12th subculture of fresh
adventitious roots was harvested for a pre-treatment
study and evaluated for anti-inflammatory activity.

Plant sample preparation and extraction

The adventitious roots of EH were harvested and di-
vided into 2 groups: control (non-Tx) and sample pre-
treatment (Tx). The non-Tx was processed by drying
the fresh sample at 50 °C overnight. Subsequently, the
dried sample was ground into powder and accurately
weighed to 50 mg. Ultrasonic extraction was carried
out for 20 min while absolute ethanol AR (0.5 ml) was
added. By centrifuging the supernatant at 4,300×g
for 10 min, the supernatant was separated. Four
repetitions of extraction were done, and the extract
solution was dried at 25 °C. Absolute ethanol AR (1 ml)
was added to the crude extract to achieve the final
concentration (mg dry weight/ml). Tx was performed
by grinding fresh adventitious roots in a mortar into a
paste. Then, the paste was dried at 50 °C overnight.
The dried paste was ground into a powder, and the
extraction process was performed in the same manner
as for the non-Tx group.

Chromatographic conditions

HPLC analysis and reference compounds were isolated
and performed as previously described [24]. Briefly,
a gradient flow was set at 0.02% trifluoroacetic acid
in water (A) and acetonitrile (B): 8% to 80% in B (0–
30 min) at a rate of 1.0 ml/min, and the detector was
selected at 244 nm. A SHIMADZU i-series (Japan) and
reversed-phase column (Merck LiChrospher 100, C18,
Germany) were used in the experiment.
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Evaluation of anti-inflammatory activity using
RAW 264.7 macrophage cells

The RAW 264.7 macrophage cells (Cell Line Ser-
vice, Eppelheim, Germany) were cultured in Dul-
becco’s Modified Eagle Medium (DMEM, Gibco, CA,
USA) supplement with 10% (v/v) fetal bovine serum
(FBS, Gibco) and 100 units/ml penicillin/streptomycin
(Gibco) under 5% CO2 at 37 °C. Cultured cells with
density 2×105 cells/ml (2×104 cells/well) were seeded
in 96-well plates for the experiment. After 24 h, the
selected extract was applied to the cells in a variety of
concentrations, and they were stimulated for 24 h ei-
ther with or without 0.03 µg/ml bacterial lipopolysac-
charide (LPS, Sigma-Aldrich, MO, USA). The extracts
were dissolved in DMSO and then diluted in culture
medium with keeping the final DMSO concentration
below 0.1%. Following the test, the medium was
taken for the NO assay, and the cells were taken for
cell viability evaluations. NO was measured using the
Griess reagent and detected at 550 nm, compared to a
standard curve of sodium nitrite (working range: 0.78–
2.5 µg/ml) [25]. The inhibition of NO production was
calculated using the following equation:

% NO inhibition

=
Nitritecell control−Nitritesample treatment

Nitritecell control
×100

LPS-treated cells (cell control) were set to fully NO
production, and the positive control was N(γ)-nitro-L-
arginine methyl ester (L-NAME, Sigma-Aldrich), which
was used as a NO inhibitor via the inflammatory pro-
cess in this experiment.

Cell viability assay

The harvested cells were examined using a 0.5 mg/ml
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT, Sigma-Aldrich) solution in DMEM
media. The reagent was incubated for 2 h, and the
precipitate was dissolved in isopropanol AR. The
optical density (OD) was determined at 570 nm
using a microplate reader (Biochrom, USA) [26]. The
percentage of cell viability was calculated using the
following equation:

% Cell viability=
ODsample treatment

ODcell control
×100

LPS-treated cells (cell control) were set to 100% cell
viability, and L-NAME-treated cells were set as positive
control.

Real-time PCR measurement of inflammatory gene
expression

TRIzol reagent (Invitrogen™, CA, USA) was used to
extract the harvested cells in accordance with the
manufacturer’s instructions. BioDrop DUO (USA) was

used to measure the amount of RNA, and the yield of
RNA was calculated as µg/ml. Following the manu-
facturer’s instructions, first-strand cDNA was created
using ReverTra Ace™ qPCR RT Kit (Toyobo, Japan).
The expression levels of inflammatory genes were de-
termined by real-time PCR using SYBR Green PCR Mas-
ter Mix (Bio-Rad, CA, USA). The PCR conditions were
optimized, the relative gene expression was calculated
as previously described [24], and β -actin was chosen
as the reference gene. The results are shown as fold
expressions after analysis with Biorad-iQ5 software
and calculated using the 2−∆∆Ct method [27]. The
primer sequences were given in Table S1.

Statistical analysis

Data (n = 3) were analyzed and reported as
mean± standard deviation (SD) by using Microsoft
Excel 365. The comparison of phytochemical content
between the Tx and non-Tx groups was performed
using an independent t-test (p < 0.05). The level of
NO and relative quantification of inflammatory genes
were determined using one-way analysis of variance
(ANOVA) with Dunnett’s test (SPSS version 26, IBM
Corp.).

RESULTS AND DISCUSSION

Effect of sample pre-treatment on secondary
metabolites in adventitious roots of EH

The phytochemical content determination of pre-
treatment (Tx) and control (non-Tx) EH adventitious
roots were performed using HPLC. Quassinoids, β -
carboline, and canthin-6-one alkaloids were used as
the standard compounds in this study. The HPLC
results are shown in Table 1, and the chromatograms
of authentic compounds and samples are shown
in Fig. 2. 13β ,21-dihydroeurycomanone, chaparri-
none, 7-hydroxy-β -carboline-1-propionic acid, and 7-
methoxy-β -carboline-1-propionic acid were not de-
tected in the adventitious root of EH. A comparison of
secondary metabolite levels between the Tx (Fig. 2c)
and non-Tx groups (Fig. 2b) showed that the level of
HCO (aglycone form) in the Tx group was significantly
higher (9.3-fold) than that in the non-Tx group (p <
0.05). The levels of eurycomalactone, β -carboline-
1-propionic acid, and canthin-6-one were not sig-
nificantly different between the 2 groups; however,
the levels of 13-α(21)-epoxy-eurycomanone, euryco-
manone, and 9-methoxy-canthin-6-one were lower in
the Tx group than those in the non-Tx group. The level
of C6OG (glycoside form) in the Tx group was lower
than that in the non-Tx group, demonstrating the effect
of endogenous enzymatic hydrolysis on the cleavage of
the sugar linkage form C6OG from the aglycone form
HCO.

The pre-treatment strategy for fresh plants is re-
lated to enzyme activity in plant cells, especially β -
glucosidases, which play an important role in the
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Fig. 2 HPLC chromatogram of (a) reference compounds,
(b) adventitious root of EH (non-Tx), and (c) sample
pre-treatment of the adventitious root of EH (Tx): 13-
α(21)-epoxyeurycomanone (1), eurycomanone (2), 13β ,
21-dihydroeurycomanone (3), 7-hydroxy-β -carboline 1-
propionic acid (4), canthin-6-one-9-O-β -glucopyranoside
(5), chaparrinone (6), β -carboline-1-propionic acid (7),
7-methoxy-β -carboline 1-propionic acid (8), 9-hydroxy-
canthin-6-one (9), eurycomalactone (10), canthin-6-one
(11), and 9-methoxy-canthin-6-one (12).

hydrolysis of the β -glucosidic bond between sugar and
aglycone moieties. When the cell wall of a plant is
destroyed, stress conditions would trigger defensive
mechanisms and enzymatic activity. The β -glucosidase
was found in the plant cell or expressed in microbial
strains by using recombinant technique [28, 29]. The
goal of biotransformation with β -glucosidases was to
improve the yield of the aglycone compound, which
related to increase pharmacological activity. Many
studies have proven the effect of enzymatic hydrolysis
from both endogenous and exogenous sources. For
example, the enhancement of oxyresveratrol content in

Morus alba callus by endogenous enzymatic hydrolysis
on fresh callus [14], the biotransformation of ononin
to formononetin in licorice callus with simple ground-
ing to fresh callus enhancing their anti-inflammatory
properties [15], the β -glucosidase effect to produce
the cucurbitacin B content in Cucumis melo pedicel by
biotransformation from its glycoside [30]. Besides,
the β -glucosidase enzymes could be related to the
activation of the defensive system by benzoxazinoid
deglycosylation in Lamium galeobdolon leaves [31].

Effect of sample pre-treatment of adventitious root
of EH on cell viability of RAW 264.7 macrophage
cells

The various concentrations of C6OG (50–12.5µM),
HCO (50–12.5 µM), and sample pre-treatment of ad-
ventitious root of EH (200–50 µg dry wt./ml) were
used to screen cell viability on LPS-stimulated RAW
macrophage cells. The percentage of cell viability with
treated samples that reach 80% were implied to non-
toxicity in treated cells. The data in Fig. 3 exhibited the
percentage of cell viability on selected samples while
the LPS (+) treated group was set as 100% cell viabil-
ity. The positive group with L-NAME (250 µM) showed
cell viability by 118.50±4.90%. The concentrations
of C6OG and HCO at 50–12.5 µM and the ethanolic
extract of adventitious root of EH at 100–50 µg dry
wt/ml showed non-toxicity on treated cells. Thus,
the selected concentration with non-toxicity would be
evaluated for anti-inflammatory activity and inflamma-
tion gene expression.

Effect of sample pre-treatment of adventitious root
of EH on anti-inflammatory activity and
inflammatory gene expression

NO inhibitory activity was assessed using LPS-
stimulated RAW macrophages to evaluate the effect
of sample pre-treatment on the anti-inflammatory po-
tential of adventitious roots of EH. Various concen-
trations of marker compounds (C6OG and HCO) and
extracts (Tx and non-Tx) were used to determine cell
viability. The concentrations that showed cell viability
greater than 80% (compared to the (+) LPS group)
were selected and used for NO assay (Table 2). The
positive control, L-NAME (250 µM), inhibited NO by
81.99±1.85%. Comparing the NO inhibitory activity
of canthin-6-one alkaloids, we found that C6OG and
HCO showed a dose-dependent reduction in NO pro-
duction, and the highest dose of HCO (50 µM) signifi-
cantly inhibited NO compared with the glycoside form
at the same concentration. In addition, Tx showed
dose-dependent NO inhibition at non-toxic doses (100,
75, and 50 µg dry wt/ml). At concentration of 100 and
75 µg dry wt/ml, the Tx group showed significant NO
inhibition compared to the non-Tx group at the same
concentration.

In RAW macrophage cells treated with C6OG,
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Table 1 Content of quassinoids, β -carboline alkaloids, and canthin-6-one alkaloids in the adventitious root culture of EH.

Class Compound
Content (mg/g dry weight)

Non-Tx Tx

Quassinoid 13-α(21)-epoxy-eurycomanone (1) 0.41±0.01 0.12±0.01*

eurycomanone (2) 0.35±0.00 0.12±0.01*

13β ,21-dihydroeurycomanone (3) ND ND
chaparrinone (6) ND ND
eurycomalactone (10) 0.25±0.00 0.25±0.00

β -carboline alkaloid 7-hydroxy-β -carboline-1-propionic acid (4) ND ND
β -carboline-1-propionic acid (7) 0.05±0.00 0.06±0.00
7-methoxy-β -carboline-1-propionic acid (8) ND ND

Canthin-6-one alkaloid canthin-6-one-9-O-β -glucopyranoside (5) 3.77±0.18 1.39±0.06*

9-hydroxy-canthin-6-one (9) 0.19±0.00 1.77±0.00*

canthin-6-one (11) 0.05±0.00 0.02±0.00
9-methoxy-canthin-6-one (12) 2.03±0.02 1.74±0.02*

ND = not determined. ∗ Significant level of comparison between sample pre-treatment (Tx) to control (non-Tx) with p
value < 0.05 using independent t-test.

Table 2 Anti-inflammatory activity in RAW 264.7 macrophage cells treated with C6OG, HCO, and adventitious root of EH.

Sample Concentration Nitrile (µM) NO inhibition (%) Cell viability (%)

(-) LPS – 2.56±0.43 – –

(+) LPS 0.03 µg/ml 26.34±1.14# – 100.00±0.00

L-NAME 250 µM 04.65±0.61* 81.99±1.85* 118.50±4.90

C6OG 50 µM 16.47±0.47* 37.47±1.78* 99.56±3.43
25 µM 20.15±0.75* 23.50±1.42* 111.79±5.81
12.5 µM 24.38±0.73 07.44±2.84 108.46±5.51

HCO 50 µM 12.70±0.31*,$ 51.78±2.31*,$ 81.95±0.56
25 µM 19.97±0.65* 24.18±1.86* 90.29±3.90
12.5 µM 23.29±0.57 11.58±2.11 97.76±4.35

Non-Tx 100 µg dry wt./ml 13.06±0.82* 50.42±3.54* 80.90±1.35
75 µg dry wt./ml 16.75±0.52* 36.40±2.21* 94.19±6.89
50 µg dry wt./ml 19.88±0.83* 24.53±4.16* 95.42±4.40

Tx 100 µg dry wt./ml 11.75±0.39*,π 55.39±5.21*,π 80.13±1.34
75 µg dry wt./ml 13.79±0.37*,π 48.03±2.25*,π 84.52±3.71
50 µg dry wt./ml 16.65±0.39* 36.79±4.47* 95.42±7.26

C6OG: canthin-6-one-9-O-β -glucopyranoside; HCO: 9-hydroxy-canthin-6-one; Non-Tx: non-treatment; and Tx: pre-
treatment. Data represented as mean± standard deviation (SD). # Significant level (p < 0.05) compared with (-) LPS
group, ∗ significant level (p < 0.05) compared with (+) LPS group, $ significant level (p < 0.05) comparison between
C6OG to HCO at the same concentration, and π significant level (p < 0.05) comparison between Tx to non-Tx at the same
concentration.

HCO, Tx, and non-Tx adventitious root extracts of EH,
the expression levels of genes related to inflammation
were assessed using real-time PCR. The changes in
the levels of inflammation signalling molecules such as
iNOS, COX-2, IL-1β , IL-6, and TNF-α were evaluated.
Inflammatory mediator gene expression was reduced
by Tx and non-Tx extracts in response to LPS stimulant.
The effectiveness of HCO (aglycone form) versus C6OG
(glycoside form) in modifying inflammatory gene ex-
pression is shown in Fig. 4. The levels of inflammatory
genes, including iNOS (Fig. 4a), COX-2 (Fig. 4b), IL-
1β (Fig. 4c), IL-6 (Fig. 4d), and TNF-α (Fig. 4e), were

significantly decreased by both compounds in a dose-
dependent manner. When compared with C6OG at
the same concentration, HCO showed a greater de-
crease in the expression of all inflammatory genes at
a concentration of 50 µM. This suggests that the anti-
inflammatory activity of the aglycone form is stronger
than that of the glycoside form. The evaluation of the
Tx and non-Tx extracts revealed that all chosen doses
were able to inhibit all inflammatory genes in a dose-
dependent manner. The highest concentration of Tx
extract (100 µg dry wt/ml) significantly reduced the
expression of all inflammatory genes when compared
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to non-Tx extract at the same concentration.For each
inflammatory gene, the IL-6 gene expression (Fig. 4d)
was more effectively suppressed by the Tx extract
than by the non-Tx extract. This suppression could
be attributed to HCO, which leads to stronger anti-
inflammatory activity among all the derivatives of
canthin-6-one [9].

Our findings indicated that pre-treatment of the
adventitious root culture of EH produced enriched
aglycone canthin-6-one in the Tx group. It can be
explained by endogenous enzyme activity in plant
cells that activated hydrolysis reactions to produce an
aglycone compound from glycoside residue. Further,
anti-inflammatory activity was assessed to evaluate the
effect of the high content of HCO on Tx compared
with the non-Tx group. It seems to correlate with
aglycone content and show anti-inflammatory activity
in the same manner as Tx group.

The bacterial cell wall contains LPS that can bind
to toll-like receptor 4 (TLR4) and induce inflamma-
tory mediators such as TNF-α, COX-2, IL-1β , and IL-
6. LPS was used to induce inflammation in RAW
264.7 macrophage cells. In this study, the in vitro anti-
inflammatory model by determination of NO inhibition
in RAW 264.7 macrophage cells were assessed. A
lower level of NO production indicates a higher anti-
inflammatory activity [32, 33].

The pre-treatment strategy produced enriched
aglycone fraction by the deglycosylation of glycosides
to aglycones; this aglycone demonstrated enhanced
systemic absorption in vivo and better pharmacological
activities such as anti-inflammatory and anti-cancer
activities [34, 35]. In an in vitro anti-inflammatory
model, the aglycone form exhibited greater activity
than its glycosides. For example, formononetin ex-
hibits higher activity than the glycoside form [34],
and flavonol aglycones in green tea had superior anti-
inflammatory activity than flavonol glycosides via sup-
pression of iNOS, IL-1β , and IL-6 gene expression [37].

Intact roots and callus cultures of EH were pre-
viously reported to have anti-inflammatory effects on
RAW macrophages via suppression of iNOS, COX-2,
and IL-6 mRNAs as well as chemical constituents such
as eurycomanoe, chaparrinone, and canthin-6-one al-
kaloids [9]. C6OG and HCO, found in the roots of
EH and Eurycoma longifolia, exhibited NO inhibition
in RAW macrophages. Additionally, HCO, produced
from the hairy root culture of E. longifolia, exhibited
IL-6 and TNF-α suppression [22], Our findings on
the anti-inflammatory activity of the adventitious root
culture of EH were correlated with its native plant, as
previously reported [9], and their inflammatory gene
mRNA expression (iNOS, COX-2, IL-1β , IL-6, and TNF-
α) was suppressed by a high content of canthin-6-one
alkaloids, especially the enriched aglycone sample, by
the pre-treatment method.

CONCLUSION

This study presented the effect of pre-treatment on
fresh in vitro adventitious roots of EH that produced
enriched aglycone samples by endogenous enzymatic
hydrolysis. The deglycosylation of glycosides into agly-
cones in the sample treatment can enhance the anti-
inflammatory activity via the RAW 264.7 macrophage
model and suppress inflammatory genes. Our findings
indicate a strategy that could be applied to increase
beneficial bioactive metabolites and produce high-
value raw materials for health supplement products.

Appendix A. Supplementary data

Supplementary data associated with this article can be found
at https://dx.doi.org/10.2306/scienceasia1513-1874.2024.
084.
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Appendix A. Supplementary data

Table S1 The primer used in this study.

Gene Primer

β -actin_F: 5′-GACAGCAGTTGGTTGGAGCA-3′
β -actin_R: 5′-GCGACCATCCTCCTCTTAGG-3′
iNOS_F: 5′-GCTATGGCCGCTTTGATGTG-3′
iNOS_R: 5′-ACCTCCAGTAGCATGTTGGC-3′
IL-6_F: 5′-TGGAGTCACAGAAGGAGTGGCTAAG-3′
IL-6_R: 5′-TCTGACCACAGTGAGGAATGTCCAC-3′
COX-2_F: 5′-CCTGCTGCCCGACACCTTCA-3′
COX-2_R: 5′-AGCAACCCGGCCAGCAATCT-3′
IL-1β_F: 5′-GCCTTGGGCCTCAAAGGAAAGAATC-3′
IL-1β_R: 5′-GGAAGACACCGATTCCATGGTGAAG-3′
TNF-α_F: 5′-ATAGCTCCCAGAAAAGCAAGC-3′
TNF-α_R: 5′-CACCCCGAAGTTCAGTAGACA-3′
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