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ABSTRACT: Krylov subspace method is an effective method for large-scale eigenproblems. The shift-and-invert Arnoldi
method is employed to compute a few eigenpairs of a large Hankel matrix pencil. However, a crucial step in the process
is computing products between the inversion of a Hankel matrix and vectors. The inversion of the Hankel matrix can be
obtained by solving two Hankel systems. By establishing a relationship between the errors of systems and the residuals
of the Hankel eigenproblem, we provide a practical stopping criterion for solving Hankel systems and propose an inexact
shift-and-invert Arnoldi method for the generalized Hankel eigenproblem. Numerical experiments are presented to
demonstrate the efficiency of the new algorithm and our theoretical results.
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INTRODUCTION

An n× n matrix H is referred to as a Hankel matrix if
it satisfies

H = (hi+k)
n−1
i,k=0 =















h0 h1 · · · hn−2 hn−1
h1 h2 · · · hn−1 hn
... . .

.

. .
.

hn
...

hn−2 . .
.

. .
. ... h2n−3

hn−1 hn . . . h2n−3 h2n−2















,

meaning that H is constant along its anti-diagonals.
Therefore, it only needs to store the first column and
last row elements to represent a Hankel matrix. Han-
kel matrices and operators occur in a number of ap-
plications in mathematics and engineering, including
approximation theory, linear system theory, prediction
theory, and control theory [1]. Fast algorithms for
Hankel matrices have been under in-depth study over
the last decades.

The Hankel eigenproblem and generalized Hankel
eigenproblem arise in many applications, such as the
reconstruction of the shape of a polygon from its
moments, the determination of the abscissas of quadra-
ture formulas, and the poles of Padé approximants [2].
However, there have been relatively few works focus-
ing on the Hankel eigenproblem. A fast eigenvalue
algorithm for Hankel matrices was proposed [3] based
on the Lanczos-type tridiagonalization and QR-type
diagonalization methods. Some studies [4–7] have
focused specifically on the smallest eigenvalue of large
scale Hankel matrices. The sensitivity of the nonlinear
application [2]mapping the vector of Hankel entries to
its generalized eigenvalues was studied. The parallel
algorithm and asymptotic behavior of the smallest
eigenvalue of a Hankel matrix were studied [4–6].

The Krylov subspace method is an efficient ap-
proach for computing the smallest eigenpair or a few
extreme eigenpairs of large-scale matrices [8]. This
projection-based method can be achieved using the
Lanczos process for symmetric matrices or the Arnoldi
process for nonsymmetric matrices, with both proce-
dures requiring matrix-vector multiplications [8]. The
shift-and-invert technique, with either the Arnoldi or
Lanczos method, has been popularly used for comput-
ing a number of eigenvalues close to a given shift and
the associated eigenvectors of a large matrix or matrix
pair [8]. By using the shift-and-invert technique, the
multiplication of a inverse of a matrix and vector is
impotant.

Recently, the shift-and-invert Arnoldi or Lanczos
method has been used in designing fast algorithms
for the generalized Toeplitz eigenproblem [9], and
Toeplitz matrix exponential [10, 11]. Toeplitz matrices
have various applications [12–15], due to the special
structure of Toeplitz matrices, there are many fast al-
gorithms for solving Toeplitz matrix problems [16–19]
and various formula for the inversion of Toeplitz matrix
[20–22], the products of the inverse of a Toeplitz
matrix and a vector can be implemented using several
FFTs [10, 11, 21]. For a Hankel matrix, the inverse can
be obtained by solving two large Hankel linear systems,
and the matrix-vector products in the shift-and-invert
Arnoldi method can also be realized efficiently by using
FFTs. This motivates us to consider how to solve large
Hankel generalized eigenproblems efficiently.

In this paper, we focus on computing a few eigen-
pairs of the following large Hankel generalized eigen-
problem:

Ax= λBx, (1)

where A and B are large-scale Hankel matrices and the
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matrix pencil (A, B) is regular [8, 23]. The shift-and-
invert Arnoldi method is used, in which multiplications
of the inverse of a Hankel matrix and vectors are
essential. For the inversion of a Hankel matrix, we
have to solve two large Hankel systems in advance.
However, if the accuracy is too high, the cost of solving
such systems becomes prohibitive and wasteful. Thus,
it is necessary to explore an “inexact” shift-and-invert
Arnoldi method for solving large Hankel generalized
eigenproblems.

The remainder of this paper is organized as fol-
lows. Firstly, we briefly introduce the shift-and-invert
Arnoldi method. Secondly, we analyze the relationship
between the errors of solving Hankel systems and the
residual of the generalized Hankel eigenproblem, and
propose an inexact shift-and-invert Arnoldi method for
solving the generalized Hankel eigenproblem. Finally,
numerical examples are given to verify the efficiency
of our theoretical results.

SHIFT-AND-INVERT ARNOLDI METHOD FOR
GENERALIZED HANKEL EIGENPROBLEMS

One of the most effective methods for solving large
scale eigenproblems is the shift-and-invert Arnoldi
method [8]. Given a shift σ ∈ C, we can derive from
(1) that

(A−σB)x= (λ−σ)Bx.

If A − σB is invertible, then the generalized eigen-
problem can be reformulated as the following standard
eigenproblem:

(A−σB)−1Bx= µx,

where µ = 1/ (λ−σ). The shift-and-invert technique
is to iterate with the matrix (A− σB)−1B, and one
should only deal with the matrix A− σB once for a
given shift, or a few times when σ is changed. The
number of iterations required with (A− σB)−1B can
be significantly smaller than that needed to solve the
original problem (1) directly [8].

The shift-and-invert Arnoldi method is commonly
used for computing several eigenvalues closest to a
given shift σ and the associated eigenvectors. Given a
unit vector v1, the m-step shift-and-invert Arnoldi pro-
cess, formulated in exact arithmetic, can be expressed
as [8]

(A−σB)−1BVm = VmHm+hm+1,mvm+1e⊤m, (2)

where Vm = [v1,v2, . . . ,vm] is an orthonormal basis for
the Krylov subspace Km

�

(A− σB)−1B,v1

�

, em is the
m-th column of identity matrix of order m, and Hm
is an upper Hessenberg matrix of order m. Let (eµ, ew)
with ∥ew∥2 = 1 be an eigenpair of Hm. The shift-and-
invert Arnoldi method uses (eλ= 1/eµ+σ, ex= Vm ew) as
an approximation to (λ,x). If we denote the residual

corresponding to the Ritz pair (eλ,ex) by br = Aex− eλBex,
then we have that [24]

∥br∥2
∥A−σB∥2

⩽ hm+1,m|eλ−σ| · |e⊤m ew|, (3)

which can be used as a cheap stopping criterion for the
shift-and-invert Arnoldi method.

We notice that, for Hankel matrices A and B,
the matrix A − σB is also a Hankel and Hermitian
matrix. However, the matrix (A − σB)−1B may be
non-Hermitian. Therefore, the shift-and-invert Arnoldi
method is utilized in the following sections.

AN INEXACT SHIFT-AND-INVERT ARNOLDI
METHOD FOR GENERALIZED HANKEL
EIGENPROBLEMS

The computation of m matrix-vector products (A −
σB)−1Bv j , where j = 1, 2, . . . , m, are required for the
shift-and-invert Arnoldi process. One option is to com-
pute the inverse (A−σB)−1 using LU decomposition
[23], but this can be costly, especially for large dense
matrices. As σ is a given shift, we are interested in
computing (A−σB)−1 once for all.

Fortunately, for Hankel matrices A and B, A−σB is
also a Hankel matrix. Noticing that H = J T , where T
is a real Toeplitz matrix, H is a real Hankel matrix, and
J is a square matrix of order n with ones on the skew
diagonal and zeros elsewhere, which is given by

J =









0 0 . . . 1
...

... . .
. ...

0 1 . . . 0
1 0 . . . 0









.

The inverse of a nonsingular Toeplitz matrix can be rep-
resented as the sum of products of circulant and skew-
circulant matrices [20]. Therefore, for a nonsingular
Hankel matrix H = (hi+k)(i, k = 0, . . . , n− 1), there is
a formula for computing its inverse. Specifically, the
inverse of a Hankel matrix H can be represented by
the solutions of two Hankel systems, which allows us
to avoid explicitly storing the (A− σB)−1. Let x =
[x0, x1, . . . , xn−1]⊤ and y = [y0, y1, . . . , yn−1]⊤ be the
solutions of the following two Hankel systems:

Hx= en and Hy= e1, (4)

where e1 and en are the first and the last column of
the identity matrix of order n, respectively. The inverse
of a Hankel matrix can be accordingly represented as
follows [20, 21]:

H−1 =
1

2x0
(S1C1− S2C2)J , (5)
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where

S1 =

















x0 −xn−1 . . . −x2 −x1

x1 x0 −xn−1
. . . −x2

... x1
. . .

. . .
...

xn−2
. . .

. . . x0 −xn−1
xn−1 xn−2 . . . x1 x0

















C1 =

















yn−1 yn−2 · · · y1 y0

y0 yn−1 yn−2
. . . y1

... y0
. . .

. . .
...

yn−3
. . .

. . . yn−1 yn−2
yn−2 yn−3 · · · y0 yn−1

















S2 =

















−yn−1 −yn−2 . . . −y1 −y0

y0 −yn−1 −yn−2
. . . −y1

... y0
. . .

. . .
...

yn−3
. . .

. . . −yn−1 −yn−2
yn−2 yn−3 . . . y0 −yn−1

















C2 =

















x0 xn−1 · · · x2 x1

x1 x0 xn−1
. . . x2

... x1
. . .

. . .
...

xn−2
. . .

. . . x0 xn−1
xn−1 xn−2 · · · x1 x0

















.

S1, S2 are skew-circulant matrices with x= [x0, x1, . . .,
xn−1]⊤ and ŷ = [−yn−1, y0, y1, . . . , yn−2]⊤ as their first
column, respectively; C1, C2 are circulant matrices with
y̌= [yn−1, y0, y1, . . . , yn−2]⊤ and x as their first column,
respectively.

The computational of circulant matrix-vector
products can be alleviated through using Fast Fourier
Transforms (FFTs). Circulant matrices can be diago-
nalized by the Fourier matrix Fn, so the formula (5)
can be rewritten as [21]

H−1 =
1

2x0
(S1F∗nΛC1

− S2F∗nΛC2
)FnJ , (6)

where the ( j, k)-entry of Fourier matrix Fn is F j,k =
1p
n e

2πi( j−1)(k−1)
n , 1 ⩽ j, k ⩽ n and ΛC1

,ΛC2
are diago-

nal matries comprised of the eigenvalues of C1 and
C2, respectively. As for the multiplication of real
skew-circulant matrix and vector, there is an order-
reduction algorithm. The n-dimensional real skew-
circulant matrix is splitted into n/2-dimensional sub-
matrices, constructed an imaginary circulant matrix
and used the diagonalization scheme to obtain the
skew-circulant matrix-vector products. Based on the
above, the multiplication of the inverse of a Hankel
matrix and a vector requires three FFTs and two IFFTs

of length n, as well as four FFTs and two IFFTs of
length n/2. For further information, see [21, 25] and
references therein.

In the shift-and-invert Arnoldi method, one has to
compute the products of the inverse of a Hankel matrix
and vectors. The inverse of a Hankel matrix can be
obtained by solving two large Hankel systems. If the
shift-and-invert Arnoldi algorithm requires the exact
solution of two large-scale Hankel linear systems in
(4), solving the Hankel systems as accurate as possible
is preferred. The cost of solving the linear systems,
particularly for some ill-conditioned situations, will
be prohibitive if the needed precision is too high.
Therefore, it is interesting to consider how to solve
the Hankel systems in low accuracy to reduce the cost
[10, 26]. This approach can be viewed as an “inexact”
inverse technique since the Hankel linear systems are
solved once and for all.

Let ex = [ex0, ex1, . . . , exn−1]⊤ and ey = [ey0, ey1, . . . ,
eyn−1]⊤ be the numerical solutions of the two Hankel
systems Hx = e1 and Hy = en, respectively. Corre-
spondingly,

eH−1 =
1

2ex0
(eS1
eC1− eS2
eC2)J , (7)

where

eS1 =

















ex0 −exn−1 . . . −ex2 −ex1

ex1 ex0 −exn−1
. . . −ex2

... ex1
. . .

. . .
...

exn−2
. . .

. . .
ex0 −exn−1

exn−1 exn−2 . . . ex1 ex0

















eC1 =

















eyn−1 eyn−2 · · · ey1 ey0

ey0 eyn−1 eyn−2
. . .
ey1

... ey0
. . .

. . .
...

eyn−3
. . .

. . .
eyn−1 eyn−2

eyn−2 eyn−3 · · · ey0 eyn−1

















eS2 =

















−eyn−1 −eyn−2 . . . −ey1 −ey0

ey0 −eyn−1 −eyn−2
. . . −ey1

... ey0
. . .

. . .
...

eyn−3
. . .

. . . −eyn−1 −eyn−2
eyn−2 eyn−3 . . . ey0 −eyn−1

















eC2 =

















ex0 exn−1 · · · ex2 ex1

ex1 ex0 exn−1
. . .
ex2

... ex1
. . .

. . .
...

exn−2
. . .

. . .
ex0 exn−1

exn−1 exn−2 · · · ex1 ex0
















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and eH−1 can be considered as a perturbation to the
Hankel matrix inverse H−1. Therefore, eH−1 can be
represented as

eH−1 =
1

2ex0
(eS1F∗n eΛC1

− eS2F∗n eΛC2
)FnJ .

In the practical calculation, we compute H−1v by using
(6) and realised the matrix-vector products through
some FFTs. Thus it is more convincible to analyze the
stability of formula (6). Inspired by the proof [27],
we first give two lemmas for the norm of circulant and
skew-circulant matrices.

Lemma 1 Let C be a circulant matrix of order n. The
first column of C is represented as c= [c0, c1, . . . , cn−1]⊤,
then

∥C∥2 ⩽ ∥c∥1 (8)

Proof : The eigenvalues of matrix C are as follows. For
j = 0, 1, . . . , n−1, there holds

λ j(C) =
n−1
∑

k=0

ck

�

ω j
�k

,

where ω = cos 2π
n + i sin 2π

n (i =
p
−1). It is evident

that the spectral norm of matrix C can be computed by

∥C∥2 = max
0⩽ j⩽n−1

�

�λ j(C)
�

�= max
0⩽ j⩽n−1

�

�

�

�

n−1
∑

k=0

ck

�

ω j
�k
�

�

�

�

⩽ max
0⩽ j⩽n−1

¨

n−1
∑

k=0

|ck| ·
�

�

�

�

ω j
�k
�

�

�

«

=
n−1
∑

i=0

|ck|= ∥c∥1.

2
Similarly, we can obtain the following lemma for

skew-circulant matrix.

Lemma 2 Let S be a skew-circulant matrix of order n.
The first column of S is represented as s = [s0, s1, . . .,
sn−1]⊤, then

∥S∥2 ⩽ ∥s∥1 (9)

Based on Lemma 1 and Lemma 2, we show the sta-
bility analysis for the inverse formula (6) of a Hankel
matrix.

Theorem 1 Let ϵ > 0. If

∥ex− x∥1
∥x∥1

⩽ ϵ and
∥ey− y∥1
∥y∥1

⩽ ϵ, (10)

then

∥H−1− eH−1∥2

⩽
�

�

�

�

1
x0

�

�

�

�

[ϵ+(ϵ+(1+ ϵ)ϵ̃)(1+ ϵ)]∥x∥1∥y∥1. (11)

Proof :





H−1 − eH−1






2 =













1
2x0
(S1F∗nΛC1

Fn − S2F∗nΛC2
Fn)J

−
1

2ex0
(eS1F∗n eΛC1

Fn − eS2F∗n eΛC2
Fn)J













2

⩽












1
2x0
(S1F∗nΛC1

Fn − S2F∗nΛC2
Fn)

−
1

2ex0
(eS1F∗n eΛC1

Fn − eS2F∗n eΛC2
Fn)













2
∥J∥2

=













1
2x0
(S1F∗nΛC1

Fn − S2F∗nΛC2
Fn)

−
1

2ex0
(eS1F∗n eΛC1

Fn − eS2F∗n eΛC2
Fn)













2

=













�

1
2x0

S1

�

F∗nΛC1
Fn − S2

�

1
2x0

F∗nΛC2
Fn

�

−
�

1
2 x̃0

S̃1

�

F∗n eΛC1
Fn + S̃2

�

1
2 x̃0

F∗n eΛC2
Fn

�













2

⩽












�

1
2x0

S1

�

F∗nΛC1
Fn −
�

1
2 x̃0

S̃1

�

F∗n eΛC1
Fn













2

+













S̃2

�

1
2 x̃0

F∗n eΛC2
Fn

�

−S2

�

1
2x0

F∗nΛC2
Fn

�













2
. (12)

Moreover, we deduce that













�

1
2x0

S1

�

F∗nΛC1
Fn −
�

1
2 x̃0

S̃1

�

F∗n eΛC1
Fn













2

=













�

1
2x0

S1

�

F∗nΛC1
Fn −
�

1
2x0

S1

�

F∗n eΛC1
Fn

+
�

1
2x0

S1

�

F∗n eΛC1
Fn −
�

1
2 x̃0

S̃1

�

F∗n eΛC1
Fn













2

=













�

1
2x0

S1

�

�

F∗nΛC1
Fn − F∗n eΛC1

Fn
�

+
�

1
2x0

S1 −
1

2 x̃0
S̃1

�

F∗n eΛC1
Fn













2

⩽
�

�

�

�

1
2x0

�

�

�

�

∥S1∥2




F∗nΛC1
Fn − F∗n eΛC1

Fn







2

+













1
2x0

S1 −
1

2 x̃0
S̃1













2





F∗n eΛC1
Fn







2

⩽
�

�

�

�

1
2x0

�

�

�

�

∥S1∥2




C1−C̃1







2+













1
2x0

S1−
1

2 x̃0
S̃1













2





C̃1







2 . (13)

We obtain from (9), (10) that












1
2x0

S1 −
1

2 x̃0
S̃1













2

⩽












1
2x0

x −
1

2 x̃0
x̃













1

=

�

�

�

�

1
2x0

�

�

�

�













x − x̃ +
�

1−
x0

x̃0

�

x̃













1

⩽
�

�

�

�

1
2x0

�

�

�

�

(∥x − x̃∥1 + ϵ̃∥x̃∥1)

⩽
�

�

�

�

1
2x0

�

�

�

�

[ϵ+(1+ ϵ)ϵ̃] · ∥x∥1, (14)
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where ϵ̃ = |1/x0−1/ x̃0|
1/x0

is the relative error of 1/x0.
Furthermore, we notice from (8), (9) and (10) that

∥S1∥2 ⩽ ∥x∥1, ∥eC1∥2 ⩽ ∥ey∥1 ⩽ (1+ ϵ)∥y∥1, (15)

and
∥C1− eC1∥2 ⩽ ∥y−ey∥1 ⩽ ϵ∥y∥1. (16)

From (13)–(16), we can get












�

1
2x0

S1

�

F∗nΛC1
Fn−
�

1
2 x̃0

S̃1

�

F∗n eΛC1
Fn













2

⩽
�

�

�

�

1
2x0

�

�

�

�

∥x∥1∥y∥1 · ϵ

+

�

�

�

�

1
2x0

�

�

�

�

· [ϵ+(1+ ϵ)ϵ̃] · ∥x∥1 · ∥y∥1 · (1+ ϵ)

⩽
�

�

�

�

1
2x0

�

�

�

�

[ϵ+(ϵ+(1+ϵ)ϵ̃)(1+ ϵ)] · ∥x∥1 · ∥y∥1. (17)

Using the same trick, for the second part of the
right-hand side of (12), we can prove that












S̃2

�

1
2 x̃0

F∗n eΛC2
Fn

�

− S2

�

1
2x0

F∗nΛC2
Fn

�













2

⩽
�

�

�

�

1
2x0

�

�

�

�

[ϵ+(ϵ+(1+ϵ)ϵ̃)(1+ϵ)] · ∥x∥1 · ∥y∥1, (18)

and (11) is obtained by combining (12), (17), and
(18). 2

Denote H = A − σB. When the Hankel sys-
tems are solved approximately, the errors for the
matrix-vector products can be represented as f j =
eH−1Bv j −H−1Bv j , j = 1,2, . . . , m. If we denote Fm =
[f1, f2, · · · , fm], we have the following relation for the
m-step “inexact” shift-and-invert Arnoldi procedure:

(A−σB)−1BVm+ Fm =
�

(A−σB)−1B+ E
�

Vm

= VmHm+hm+1,mvm+1e⊤m,

where Vm = [v1,v2, . . . ,vm] is an n × m orthonormal
matrix, E = FmV⊤m , and Hm is an upper Hessenberg
matrix of order m. It should be noted that Vm and Hm
are different from those in (2).

Let (eµ, ew) be an eigenpair of Hm, and let eλ= 1/eµ+
σ. Denote by

brreal = AVm ew− eλBVm ew (19)

the “real” residual with respect to the approximate
eigenpair (eλ, Vm ew) of the matrix pencil (A, B), and by

rreal = (A−σB)−1BVm ew− eµVm ew, (20)

and

rcomp =
�

(A−σB)−1B+ E
�

Vm ew− eµVm ew

= hm+1,m(e
⊤
m ew) · vm+1, (21)

the “real” and the “computed” residual for the approx-
imate eigenpair (eµ, Vm ew) of (A−σB)−1B, respectively.
Multiplying (eλ−σ)(A−σB) on both sides of (20) yields

(eλ−σ)(A−σB)rreal = (eλ−σ)BVm ew− (A−σB)Vm ew

= eλBVm ew−AVm ew= −brreal.

As a result,

∥brreal∥⩽ |eλ−σ| · ∥A−σB∥ · ∥rreal∥. (22)

Thus, it is interesting to investigate the gap between
rreal and rcomp in the “inexact” Hankel eigensolver.

In the following, we establish a relationship be-
tween the error of Hankel systems and the residual of
eigenproblem (1) and investigate how to choose the
stopping threshold ϵ for solving the Hankel systems
(4). Based on that, we propose an inexact shift-
and-invert Arnoldi method for solving the large-scale
generalized Hankel eigenproblem.

Theorem 2 Under the above notations, if ϵ<<1 and

ϵ ⩽
|x0| · eδ

3
p

m · ∥x∥1∥y∥1 · ∥B∥2
,

then
∥rreal− rcomp∥2 ≲ eδ,

where m is the step of the shift-and-invert Arnoldi pro-
cess, δ is a prescribed tolerence.

Proof : By (11), we have

∥f j∥2 = ∥ eH−1Bv j −H−1Bv j∥2 ⩽ ∥H−1− eH−1∥2 · ∥Bv j∥2

⩽
�

�

1
x0

�

�[ϵ+(ϵ+(1+ϵ)ϵ̃)(1+ϵ)]∥x∥1∥y∥1∥Bv j∥2.

If ϵ̃ ⩽ ϵ<<1, then

�

�

�

�

1
x0

�

�

�

�

· [ϵ+(ϵ+(1+ ϵ)eϵ)(1+ ϵ)] · ∥x∥1∥y∥1




Bv j







2

≲
�

�

�

�

1
x0

�

�

�

�

·3ϵ · ∥x∥1∥y∥1∥B∥2 ·




v j







2

⩽
�

�

�

�

3
x0

�

�

�

�

· ∥x∥1∥y∥1∥B∥2 · ϵ

where we removed the high order term O (ϵ). Conse-
quently, if

ϵ ⩽
|x0| · eδ

3
p

m · ∥x∥1∥y∥1 · ∥B∥2
,

i.e.,

∥f j∥2 ≲
�

�

3
x0

�

� · ∥x∥1∥y∥1∥B∥2 · ϵ ⩽
eδ
p

m
, (23)
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for j = 1, 2, . . . , m, then we have from (20), (21) and
(23) that

∥rreal− rcomp∥2 = ∥EVm ew∥2 =









m
∑

j=1

f j ew j










2

⩽
m
∑

j=1

∥f j∥2 · |ew j |⩽ max
1⩽ j⩽m

∥f j∥2 ·
p

m∥ew∥2 ≲ eδ,

where ew= [ew1, . . . , ewm]⊤, and we utilized the inequal-
ity ∥ew∥1 ⩽

p
m∥ew∥2 =

p
m. 2

We prefer to use the 2-norm in practical computa-
tions since Vm is orthonormal. We want to provide an
approximate stopping criterion for solving the Hankel
systems (4). We can utilize the following inequal-
ity as the stopping criterion for the Hankel eigen-
computation by (3):

∥Aexi − eλiBexi∥2
∥A−σB∥2

⩽ hm+1,m|eλi −σ| · |e⊤m ewi |⩽ δ, (24)

for i = 1,2, . . . ,ℓ, where δ is the user-prescribed toler-
ance for the Hankel eigenproblem and ℓ is the required
number of eigenpairs. Inspired by (22) and (24), let

eδ = ∥A−σB∥2 ·δ,

then it follows from Theorem 2 that if

ϵ ⩽
|x0| · ∥A−σB∥2

3
p

m · ∥x∥1∥y∥1 · ∥B∥2
·δ, (25)

then we obtain that

∥rreal− rcomp∥2
∥A−σB∥2

≲ δ.

Remark 1 From equation (25), we observe that when

ξ≡
|x0|
∥x∥1∥y∥1

and η≡
∥A−σB∥2
3
p

m · ∥B∥2

are small, it is necessary to solve the Hankel linear
systems with a relatively high accuracy, as given in
equation (4). Otherwise, we can solve them with a
relatively low accuracy. Some parameters that appear
in equation (25), such as ∥x∥1 and ∥y∥1, are not always
available. If ξ is not too small, we recommend using

�

∥rx∥2,∥ry∥2
	

⩽
max(∥fcA−σB∥2,∥lrA−σB∥2)
3
p

m ·max(∥fcB∥2,∥lrB∥2)
·δ (26)

as the stopping criterion for solving the Hankel sys-
tems, where rx = en − Hex and ry = e1 − Hey are the
residuals of the Hankel systems; fcA−σB and lrA−σB are
the first column and the last row of A−σB, respectively;
and fcB and lrB are the first column and the last row
of B, respectively. The effectiveness of this scheme

is demonstrated in the numerical experiments in the
following section. Actually, the solution of x of Hankel
linear system Hx= b can be obtained by solving JHx=
Jb, where JH is a Toeplitz matrix. Thus we can use the
GMRES algorithm with Chan’s preconditioner [28, 29]
for solving (4).

The implementation of the shift-and-invert
Arnoldi process in practical computations is limited
by the high storage and computational complexity as
the Arnoldi step m increases. In our algorithm, we
can employ some restarting strategies, such as the
implicitly restarted shift-and-invert Arnoldi algorithm
[30] or the thick-restarted Arnoldi algorithm [31, 32],
to address these difficulties. The algorithm is described
as follows:

Algorithm 1 An inexact shift-and-invert Arnoldi
algorithm for generalized Hankel eigenproblems

Step 1. Given a shift σ, a convergence threshold δ for
the eigenproblem, and four vectors fcA, lrA, fcB, and
lrB, which are the first column and the last row of A
and B, respectively. Compute the inverse of A−σB.
Solve the Hankel linear systems (4) “inexactly" with
the stopping criterion given in (26).

Step 2. Compute the desired eigenpairs using a
restarted shift-and-invert Krylov subspace algorithm,
such as the implicitly restarted shift-and-invert Arnoldi
algorithm [30] or the thick-restarted Arnoldi algorithm
[31, 32].

NUMERICAL EXPERIMENTS

In this section, we present numerical experiments
to demonstrate the efficiency of our new algorithm
and validate the theoretical results. All experiments
were conducted on a MacOS 13 operating system
with 3.20 GHz CPU and 8GB RAM, using a MATLAB
9.11.0 (R2021b) implementation with machine pre-
cision of ε ≈ 2.22 × 10−16. To solve the generalized
Hankel eigenproblems, we utilize the MATLAB built-
in function eigs.m, which implements the implicitly
restarted shift-and-invert Arnoldi algorithm, and the
Hankel matrix-vector products are realised by using
the fast implementation [21]. We use the default pa-
rameter settings provided by eigs.m for the numerical
experiments. The algorithms used in this section are
described as follows:
• Inexact-eigs (Algorithm 1) represents the “in-

exact” shift-and-invert Arnoldi algorithm that employs
the (unrestarted) GMRES algorithm with Chan’s pre-
conditioner [28, 29] as the solver for (4). Given a
convergence threshold δ, we use (26) as the stopping
criterion for the Hankel systems. Specifically, we use

∥M−1b−M−1(A−σB)eq∥2

⩽
max(∥fcA−σB∥2,∥lrA−σB∥2)
3
p

20max(∥fcB∥2,∥lrB∥2)
δ (27)
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as the stopping criterion for the Hankel systems, where
M stands for Chan’s preconditioner, eq = ex or ey is the
approximate solution, and b = en or e1 represents the
right-hand side. This algorithm approximates the so-
lution of the Hankel systems with an iterative method.
• Exact-eigs represents the “exact” shift-and-

invert Arnoldi algorithm that employs the (un-
restarted) GMRES algorithm with Chan’s precondi-
tioner for (4). For the Hankel linear systems, the
stopping criterion is:

∥M−1b−M−1(A−σB)eq∥2 ⩽ 10−14.

An iterative solver is used to solve the two Hankel
systems “exactly” in this algorithm. We use the zero
vector as the initial guess for GMRES in both Inexact-
eigs and Exact-eigs.

In the following tables, “n” indicates the Hankel
matrix size, “(27)” indicates the value of the right-
hand side of “(27)”, “CPU (s)” signifies the CPU time
utilized in seconds, and “–” indicates that the algorithm
is “out of memory”. To demonstrate the effiency of
the inexact approach, we provide the maximum “real”
residual norm, cf. (19):

∥brreal∥2 = max
i=1,...,ℓ

∥A(Vm ewi)− eλiB(Vm ewi)∥2,

where ℓ is the number of required eigenpairs and
(eλi , Vm ewi), i = 1, 2, . . . ,ℓ, are Ritz pairs gained from
running Inexact-eigs. The CPU time of “Inexact-eigs”
and “Exact-eigs” include the time to solve Hankel
systems and compute eigenpairs.

We use the built-in MATLAB function eigs(A,B)
to solve the same problem and calculate the computa-
tion time.

Example 1 The purpose of this example is to demon-
strate the efficiency of the inexact strategy (27) for
large generalized Hankel eigenproblems. We generate
the Hankel matrices by

H =













h−(n−1) h−(n−2) · · · h−1 h0
h−(n−2) h−(n−3) · · · h0 h1

... . .
.

. .
.

h1
...

h−1 . .
.

. .
.

. . . hn−2
h0 h1 . . . hn−2 hn−1













,

with generating functions f are taken from [26]. We
generate matrix A using the function

f (θ ) = θ 2+ t · iθ 3, θ ∈ [−π,π],

and matrix B using

f (θ ) = θ 2+ t · i sgn(θ ), θ ∈ [−π,π],

where t > 0 is a scalar and sgn(θ ) is the sign function.
Our goal is to find the 10 smallest eigenpairs of (A, B)
with t = 1 and a shift σ of 0.

Table 1 displays the residual, stopping criterion for
solving the Hankel systems (4) in Inexact-eigs, and
CPU time for solving the generalized Hankel eigen-
systems using different algorithms. We observe that
the stopping criterion for Inexact-eigs in solving the
Hankel systems (4) is approximately O (10−7), whereas
Exact-eigs uses a tight stopping criterion of 10−14.
From Table 1, we can see that the Inexact-eigs strat-
egy significantly reduces the CPU time compared with
Exact-eigs and eigs(A, B), especially for larger system
sizes. This illustrates the effectiveness of our “inexact”
strategy.

Table 2 provides the 10 smallest eigenvalues ob-
tained using the MATLAB built-in function eigs(A, B),
as well as the approximations calculated by running
Inexact-eigs and Exact-eigs. The results show that
the eigenpairs obtained from Inexact-eigs are accurate
enough.

Example 2 The test matrices used in this example are
derived from the references [33, 34]. We generate the
Hankel matrix A using the even function θ 2 defined
on [0,π], which was introduced in Example 1. The
Hankel matrix B = (bi j) is given by

bi j =

¨

1+ π
4

5 , if i+ j=n+1,

(−1)|n−i− j−1|
�

4π2

|n+1−i− j|2 −
24

|n+1−i− j|4

�

, otherwise,

which is derived from the even function θ 4+1 limited
to [−π,π]. We aim to compute the 8 eigenpairs closet
to σ = 0.5 for this test problem.

We compare three algorithms in this example:
the Inexact-eigs scheme, the Exact-eigs scheme, and
MATLAB’s built-in function eigs(A, B). Table 3 list the
CPU times for these algorithms.

We can see from Table 3 that the Inexact-eigs
method outperforms both the Exact-eigs method and
eigs(A, B) in terms of CPU time. This superiority can be
attributed to using the formula (27) for solving Hankel
systems, which allows the Inexact-eigs scheme to use a
much looser stopping criterion of O (10−7) compared to
the Exact-eigs scheme with stopping criterion of 10−14.
This improvement is significant especially when n is
large.

Example 3 The test practical problem is from the
reference [35]. We consider the fractional diffusion
equation















∂ u(x ,t)
∂ t = d1

∂ αu(x ,t)
∂+ xα + d2

∂ αu(x ,t)
∂− xα + f (x , t),

x ∈ (xL , xR), t ∈ (0, T],
u(xL , t) = u(xR, t) = 0, 0⩽ t ⩽ T,
u(x , 0) = u0(x), x ∈ [xL , xR].

(28)

By employing the shift Grünwald approximation, the
corresponding linear equation of (28) can be written
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Table 1 Numerical results of the algorithms for computing the 10 smallest eigenpairs in magnitude with σ = 0 and the
tolerance δ = 10−6, t = 1; where “–” represents “out of memory”.

n (27) ∥brreal∥2 CPU (s) CPU (s) CPU (s)
Inexact-eigs Exact-eigs eigs(A,B)

210 1.7949×10−7 3.5066×10−9 0.1504 0.2411 0.1242
212 1.7955×10−7 2.1892×10−10 0.3658 49.3848 1.5663
214 1.7956×10−7 3.3090×10−11 2.2071 – 88.4073
216 1.7957×10−7 1.9814×10−12 20.0692 – –
218 1.7957×10−7 5.1204×10−13 225.8262 – –

Table 2 The 10 smallest eigenvalues in magnitude computed by using eigs(A, B) and the approximations obtained from
running Inexact-eig and Exact-eig, n= 3000, t = 1.

eigs: λi , i = 1,2, . . . , 10 Inexact-eigs Exact-eigs

5.42135073×10−9 ±3.00211667×10−6i 5.42135053×10−9 ±3.00211671×10−6i 5.42135097×10−9 ±3.00211667×10−6i
5.64830095×10−8 ±1.45117763×10−5i 5.64829970×10−8 ±1.45117765×10−5i 5.64830052×10−8 ±1.45117763×10−5i
2.08752894×10−7 ±3.47985781×10−5i 2.08752852×10−7 ±3.47985784×10−5i 2.08752893×10−7 ±3.47985781×10−5i
5.18404010×10−7 ±6.38568356×10−5i 5.18403893×10−7 ±6.38568363×10−5i 5.18404008×10−7 ±6.38568356×10−5i
1.04205274×10−6 ±1.01686715×10−4i 1.04205245×10−6 ±1.01686716×10−4i 1.04205273×10−6 ±1.01686715×10−4i

as
�

hα

∆t
I − D(m)
�

u(m) =
hα

∆t
u(m−1)+hα f (m),

with h= 1/ (n+1) ,∆t = 2h are the size of spatial grid
and time step respectively, and

D(m) = d1Gα+ d2GT
α ,

where

Gα =

























g(α)1 g(α)0 0 · · · 0 0
g(α)2 g(α)1 g(α)0 0 · · · 0

... g(α)2 g(α)1
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

g(α)n−1
. . .

. . .
. . . g(α)1 g(α)0

g(α)n g(α)n−1 · · · · · · g(α)2 g(α)1

























n×n

the entries of Gα are defined as follows:

�

g(α)0 = 1,
g(α)k+1 =
�

1− α+1
k+1

�

g(α)k , k = 1, 2,3, . . . .

We choose the diffusion coefficients d1 = 0.8, d2 =
0.2, α = 1.4. Let A = hα

∆t I − D(m), A is a nonsymmet-
ric Toeplitz matrix. The permutation matrix J was
introduced [35, 36] to transform the non-symmetric
Toeplitz matrix problem into symmetric Hankel matrix
problem in order to use the properties of symmetric
matrix. To analyze the eigenpairs of A is equal to solv-
ing the generalised Hankel eigenproblem Hx = λJx,
where H = J T . We compute the 10 eigenpairs with
σ= 0 and σ= 0.5 in Table 4 and Table 5, respectively.
We can see from Table 4 and Table 5 that the Inexact-
eigs scheme converges faster than Exact-eigs method
in most cases. When n is large, both Exact-eigs and
eigs(A, B) do not work, due to the heavy computa-
tional complexity. As a comparison, our Inexact-eigs
algorithm still converges within acceptable CPU time.
Thus, the new algorithm is preferable to large Hankel
generalized eigenproblems.

CONCLUSION

In this paper, we propose an inexact shift-and-invert
Arnoldi algorithm for solving generalized Hankel
eigenproblems. Firstly, we need to solve two large
Hankel systems, but the cost becomes prohibitive if
the desired accuracy is too high. To overcome this

Table 3 Numerical results of the algorithms for computing the 8 eigenpairs closet to σ = 0.5 and the tolerance δ = 10−6;
where “–” represents “out of memory”.

n (27) ∥brreal∥2 CPU (s) CPU (s) CPU (s)
Inexact-eigs Exact-eigs eigs(A,B)

210 1.8834×10−7 1.4991×10−7 0.1247 0.1343 0.2231
212 1.8834×10−7 8.3084×10−8 0.1829 0.2851 3.0463
214 1.8834×10−7 3.4707×10−7 0.3205 1.1403 219.0806
216 1.8834×10−7 2.4584×10−8 0.8528 11.9347 –
218 1.8834×10−7 2.2137×10−9 1.6465 – –
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Table 4 Numerical results of the algorithms for computing the 10 smallest eigenpairs in magnitude with σ = 0 and the
tolerance δ = 10−6; where “–” represents “out of memory”.

n (27) ∥brreal∥2 CPU (s) CPU (s) CPU (s)
Inexact-eigs Exact-eigs eigs(A,B)

210 7.2140×10−8 1.7265×10−8 0.1537 0.1700 0.2382
212 7.2140×10−8 1.7059×10−8 0.2366 1.4420 2.8346
214 7.2136×10−8 1.8922×10−9 0.4016 4.7940 215.0230
216 7.2135×10−8 4.3532×10−9 1.4058 – –
218 7.2135×10−8 3.8934×10−10 5.4774 – –

Table 5 Numerical results of the algorithms for computing the 10 eigenpairs closet to σ = 0.5 and the tolerance δ = 10−6;
where “–” represents “out of memory”.

n (27) ∥brreal∥2 CPU (s) CPU (s) CPU (s)
Inexact-eigs Exact-eigs eigs(A,B)

210 3.7268×10−8 1.2304×10−8 0.1824 4.9649 0.2969
212 3.7268×10−8 1.4190×10−9 0.3370 870.5256 3.7431
214 9.8939×10−10 5.4106×10−12 0.6775 – 181.6075
216 3.7268×10−8 8.0073×10−10 2.3588 – –
218 3.7268×10−8 9.4170×10−10 13.5398 – –

difficulty, we establish a relationship between the error
of the Hankel systems and the residual of the Hankel
eigenproblem, and we provide a cheap stopping crite-
rion for solving the Hankel systems inexactly. Numeri-
cal results show that our “inexact” strategy outperform
solving the Hankel systems “exactly”, especially when
the Hankel systems are large.
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