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ABSTRACT: Given a rational number α ̸= 2, we establish a criterion for the existence of the general solution of an
alternative quadratic functional equation of the form

f (x y)+ f (x y−1) = 2 f (x)+2 f (y) or f (x y)+ f (x y−1) = α f (x)+2 f (y),

where f is a mapping from an abelian group (G, ·) to a uniquely divisible abelian group (H,+). We also find the general
solution in the cases when G is a 6-divisible abelian group and G is a cyclic group.
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INTRODUCTION

One of the most interesting problem of functional
equations is solving the alternative functional equa-
tion. For instance, the alternative Cauchy functional
equation
�

f (x+ y)−a f (x)−b f (y)
��

f (x+ y)− f (x)− f (y)
�

= 0

related to the classical Cauchy functional equation

f (x + y) = f (x)+ f (y)

has been studied by Kannappan et al [1]. Forti [2] ex-
tended the above work by finding the general solution
in a more general setting of the form
�

c f (x + y)− a f (x)− b f (y)− d
�

�

f (x + y)− f (x)− f (y)
�

= 0,

and it also extended the work of Ger [3] as well as that
of Forti and Paganoni [4, 5]. Skof [6] proposed the four
alternative functional equations as follows:

| f (x + y)|= |2 f (x)+2 f (y)− f (x − y)|,
| f (x − y)|= |2 f (x)+2 f (y)− f (x + y)|,
|2 f (y)|= | f (x + y)+ f (x − y)−2 f (x)|,

and |2 f (x)|= | f (x + y)+ f (x − y)−2 f (y)|

and proved that each of above functional equations is
equivalent to the classical quadratic functional equa-
tion

f (x + y)+ f (x − y) = 2 f (x)+2 f (y), (1)

where f is a function from a real linear space to the
set of real numbers. The quadratic functional equation
(1) can be stated as

f (x y)+ f (x y−1) = 2 f (x)+2 f (y) (2)

when the domain of f is a group. Nakmahachalasint
[7] showed that an alternative quadratic functional
equation of the form

f (x y)+ f (x y−1) = ±
�

2 f (x)+2 f (y)
�

is equivalent to the quadratic functional equation (2),
where f is a function from a 2-divisible group to a
uniquely abelian group. Forti [8] studied the solution
of an alternative functional equation of the form

f (x y)+ f (x y−1)−2 f (x)−2 f (y) ∈ {0,1},

where f is a function from a group to the set of
real numbers. Tipyan [9] proved that an alternative
quadratic functional equation of the form

f (x y)+ f (x y−1) = 2 f (x)±2 f (y)

is equivalent to the quadratic functional equation (2),
where f is a function from a 2-divisible abelian group
to a linear space.

In this paper, given a rational number α ̸= 2, we
establish a criterion for the existence of the general so-
lution of an alternative quadratic functional equation
of the form

f (x y)+ f (x y−1) = 2 f (x)+2 f (y) or

f (x y)+ f (x y−1) = α f (x)+2 f (y) (3)
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where f is a mapping from an abelian group to a
uniquely divisible abelian group. We also find the
general solution in the cases when G is a 6-divisible
abelian group and G is a cyclic group.

AUXILIARY LEMMAS

Throughout the paper, we let (G, ·) be an abelian group
and H be a uniquely divisible abelian group. Given a
rational number α ̸= 2 and a function f : G→ H. For
every pair of x , y ∈ G, we denote the statement

P f (α)y (x) =
�

f (x y)+ f (x y−1) = 2 f (x)+2 f (y)

or f (x y)+ f (x y−1) = α f (x)+2 f (y)
�

.

The set of all solutions to the statement P f (α)y (x) will

be denoted byA (α)(G,H), i.e.,

A (α)(G,H) = { f : G→ H | P f (α)y (x) for all x , y ∈ G}.

In this section, we will prove some auxiliary lem-
mas that will lead to the proof of main results.

Lemma 1 Let f ∈ A (α)(G,H). If f (e) ̸= 0, then α = 0 and
f is constant.

Proof : Assume that f (e) ̸= 0. By the alternatives in
P f (α)e (e), we obtain that α = 0. By f (e) ̸= 0 and the
alternatives in P f (α)e (x), we get f (x) = f (e) for all
x ∈ G. Hence, we have the desired result. 2

Lemma 2 Let f ∈ A (α)(G,H). Then f (x−1) = f (x) for all
x ∈ G, i.e., f is even.

Proof : If f (e) ̸= 0, then by Lemma 1, f is constant.
If f (e) = 0, then the alternatives in P f (α)x (e) gives
f (x−1) = f (x) for any x ∈ G. Therefore, we get the
desired result. 2

Lemma 3 Let f ∈ A (α)(G,H) and f (e) = 0. If α /∈
{−2,−1}, then f (x2) = 4 f (x) for all x ∈ G.

Proof : It should be noted that f is even by Lemma 2.
We will prove this lemma by contradiction. Assume
that α /∈ {−2,−1} and there exists a ∈ G such that

f (a2) ̸= 4 f (a). (4)

The alternatives in P f (α)a (a) gives

f (a2) = (2+α) f (a). (5)

It should be noted that if f (a) = 0, then f (a2) = 0,
a contradiction to (4). By (5) and the alternatives in
P f (α)a2 (a), we have

f (a3) ∈ {(5+2α) f (a), (3+3α) f (a)}. (6)

By (5) and the alternatives in P f (α)a (a2), we get

f (a3) ∈ {(5+2α) f (a), (1+2α+α2) f (a)}. (7)

Next, we consider two possible cases of f (a3) as fol-
lows. Suppose f (a3) ̸= (5+ 2α) f (a). By (6) and (7),
we obtain f (a) = 0, a contradiction. Suppose f (a3) =
(5+2α) f (a). By (5), the alternatives in P f (α)a3 (a) and
P f (α)a (a3) gives

f (a4) ∈ {(10+3α) f (a), (8+4α) f (a)} and

f (a4) ∈ {(10+3α) f (a), (4α+2α2) f (a)}.

Hence we conclude that

f (a4) = (10+3α) f (a) or α= −
5
2

. (8)

By (5), the alternatives in P f (α)a2 (a2), we have

f (a4) ∈ {(8+4α) f (a), (4+4α+α2) f (a)}. (9)

Suppose α ̸= −5/2. By (8) and (9), we get α = −3.
Hence, f (a2) = f (a3) = − f (a) and f (a4) = f (a).
Thus, the alternatives in P f (−3)

a (a4) gives f (a5) ∈
{5 f (a), 0}, while the alternatives in P f (−3)

a2 (a3) gives
f (a5) ∈ {−4 f (a), f (a)}. Hence, f (a) = 0, a contradic-
tion. Suppose α = −5/2. We have f (a3) = 0. Thus,
(5) becomes f (a2) = − 1

2 f (a) and (9) becomes

f (a4) ∈
¦

−2 f (a),
1
4

f (a)
©

. (10)

By the alternatives in P f (−3)
a (a3), we get

f (a4) =
5
2

f (a). (11)

By (10) and (11), we have f (a) = 0, a contradic-
tion. 2

Lemma 4 Let f ∈A (α)(G,H) and x ∈ G. If f (x2) = 4 f (x),
then f (xn) = n2 f (x) for all integers n.

Proof : It should be noted that f is even by Lemma 2.
Assume that f (x2) = 4 f (x). If f (e) ̸= 0, then by
Lemma 1, we obtain that f is constant, i.e., f (x) =
f (e). Hence, f (x) = f (x2) = 4 f (x) and then f (x) = 0,
a contradiction. We must have f (e) = 0. Suppose
f (x3) ̸= 9 f (x). The alternatives in P f (α)x2 (x) gives

f (x3) = (7+α) f (x), (12)

while the alternatives in P f (α)x (x
2) gives

f (x3) = (1+4α) f (x). (13)
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By (12) and (13), we conclude f (x3) = f (x) = 0, a
contradiction to f (x3) ̸= 9 f (x). Now we obtain that

f (xn) = n2 f (x) (14)

holds for n = 1, 2,3. Let k ⩾ 3 be an integer. Assume
that (14) holds for n = 1,2, . . . , k. We have f (x k−1) =
(k−1)2 f (x) and f (x k) = k2 f (x). Suppose f (x k+1) ̸=
(k+1)2 f (x). The alternatives in P f (α)xk (x) gives

f (x k+1) = (α+2k2− (k−1)2) f (x),

while the alternatives in P f (α)x (x
k) gives

f (x k+1) = (αk2+2− (k−1)2) f (x).

Hence, f (x k+1) = f (x) = 0, a contradiction to
f (x k+1) ̸= (k + 1)2 f (x). Therefore, (14) must hold
for n = k + 1. By induction and the evenness of
f , we conclude that (14) holds for all integers n as
desired. 2

Lemma 5 Let f ∈ A (α)(G,H). If f (e) = 0 and there exists
a ∈ G such that f (a2) ̸= 4 f (a), then f (a) ̸= 0 and
(i) α= −1 and

f (an) =

�

0 if 3 | n,
f (a) otherwise

for all integers n, or
(ii) α= −2 and

f (an) =

�

0 if n is even,
f (a) otherwise

for all integers n.

Proof : It is should be noted that f is even by Lemma 2.
Assume that f (e) = 0 and there exists a ∈ G such that
f (a2) ̸= 4 f (a). The alternatives in P f (α)a (a) gives
f (a2) = (2+α) f (a). It should be noted that if f (a) = 0,
then f (a2) = 0, a contradiction. By the assumptions,
Lemma 3 gives α ∈ {−1,−2}.

Case (i). Suppose α = −1. We get f (a2) = f (a).
The alternatives in P f (−1)

a (a2) gives

f (a3) ∈ {3 f (a), 0}. (15)

Suppose f (a3) ̸= 0 and so f (a3) = 3 f (a). The alterna-
tives in P f (−1)

a (a3) gives

f (a4) ∈ {7 f (a),−2 f (a)},

while the alternatives in P f (−1)
a2 (a2) gives

f (a4) ∈ {4 f (a), f (a)}.

We get f (a) = 0, a contradiction. We must have
f (a3) = 0. Observe that the alternatives inP f (−1)

a3 (a3)

gives f (a6) = 0, and the alternatives in P f (−1)
a (a3)

and P f (−1)
a2 (a3) gives f (a4) = f (a5) = f (a). Then,

the alternatives in P f (−1)
a6 (a3) gives f (a9) = 0, and

the alternatives in P f (−1)
a4 (a3) and P f (−1)

a5 (a3) gives
f (a7) = f (a8) = f (a). For each a positive integer
n, we use the alternatives in P f (−1)

a3n (a3) to prove

f (a3n+3) = 0 and we use the alternatives inP f (−1)
a3n−2(a3)

and P f (−1)
a3n−1(a3) to prove f (a3n+1) = f (a3n+2) = f (a).

By induction and the evenness of f , we get the desired
result.

Case (ii). Suppose α = −2. We get f (a2) =
0. Observe that the alternatives in P f (−2)

a2 (a2) gives
f (a4) = 0 and the alternatives in P f (−2)

a (a2) gives

f (a3) = f (a). Then the alternatives in P f (−2)
a4 (a2)

gives f (a6) = 0 and the alternatives in P f (−2)
a3 (a2)

gives f (a5) = f (a). For each a positive integer n, we
use the alternatives in P f (−2)

a2n (a2) to prove f (a2n+2) =
0 and we use alternatives in P f (−2)

a2n−1(a2) to prove
f (a2n+1) = f (a). By induction and the evenness of f ,
we get the desired result. 2

Lemma 6 Let f ∈A (α)(G,H). If f (x2) = 4 f (x) for all x ∈
G, then f is quadratic.

Proof : It should be noted that f is even by Lemma 2.
We will prove this lemma by contradiction. Assume
that

f (x2) = 4 f (x) (16)

for all x ∈ G but f is not quadratic. Setting x = e in
(16), we get f (e) = 0. Thus, there exist x , y ∈ G such
that

f (x y)+ f (x y−1) ̸= 2 f (x)+2 f (y). (17)

By the alternatives in P f (α)y (x), we obtain

f (x y)+ f (x y−1) = α f (x)+2 f (y). (18)

By (16), (17) and the alternatives in P f (α)x y−1(x y), we
get

4 f (x)+4 f (y) = α f (x y)+2 f (x y−1). (19)

Let k := f (x). Eliminating f (x y−1) and f (y) from
(18) and (19), we have f (x y) = −2k. Similarly, by
replacing y by y−1 in the process of (19), we get
f (x y−1) = −2k. Hence, (19) reduces to

2 f (y) = (−4−α)k. (20)

By (16), we have f (y2) = 4 f (y) and then by (20), we
get

f (y2) = (−8−2α)k. (21)

If k = 0, then by (18) and (20), we obtain 2 f (y) =
0 and f (x y) + f (x y−1) = 0, a contradiction to (17).
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Suppose k ̸= 0. By (20), the alternatives inP f (α)y (x y)
gives

f (x y2) ∈ {(−9−α)k, (−5−3α)k} (22)

and the alternatives in P f (α)y (x y−1) gives

f (x y−2) ∈ {(−9−α)k, (−5−3α)k}. (23)

Next, we consider the possible cases of (22) and (23)
as follows.

Case (i). Assume that f (x y2) = f (x y−2) = (−9−
α)k or f (x y2) = f (x y−2) = (−5− 3α)k. By (21) and
the alternatives in P f (α)y2 (x), we conclude that k = 0,
a contradiction.

Case (ii). Assume that f (x y2) = (−9− α)k and
f (x y−2) = (−5− 3α)k. By f (y2) = 4 f (y), Lemma 4
gives

f (y3) = 9 f (y). (24)

By (20) and (24), we get

f (y3) =
�

−18−
9
2
α
�

k. (25)

By (20), the alternatives in P f (α)y (x y2) gives

f (x y3) ∈ { (−20−3α)k, (−2−10α−α2)k}, (26)

and the alternatives in P f (α)y (x y−2) gives

f (x y−3) ∈ { (−12−7α)k, (−2−6α−3α2)k}. (27)

We next consider four possible cases of f (x y3) and
f (x y−3) as follows.
(a) Suppose f (x y3) = (−20 − 3α)k and f (x y−3) =
(−12 − 7α)k. By (25) and the alternatives in
P f (α)y3 (x), we obtain that k = 0, a contradiction.

(b) Suppose f (x y3) = (−20 − 3α)k and f (x y−3) =
(−2 − 6α − 3α2)k. By (25), the alternatives in
P f (α)y3 (x) gives α ∈

¦

− 2,−7/3
©

, while the alter-

natives in P f (α)x (y
3) gives α ∈ {−2,−8}. Hence,

α= −2 and then

f (y2) = −4k and f (x y3) = −14k. (28)

By f (x y) = f (x y−1) =−2k and (28), the alterna-
tives in P f (α)y2 (x y) gives k = 0, a contradiction.

(c) Suppose f (x y3) = (−2 − 10α − α2)k and
f (x y−3) = (−12 − 7α)k. By (25), the
alternatives in P f (α)y3 (x) gives α ∈ {−10,−11},
while the alternatives in P f (α)x (y

3) gives

α ∈
¦

−10,−16/7
©

. Hence, α= −10 and then

f (y2) = 12k and f (x y3) = −2k. (29)

By f (x y) = f (x y−1) =−2k and (29), the alterna-
tives in P f (α)y2 (x y) gives k = 0, a contradiction.

(d) Suppose f (x y3) = (−2 − 10α − α2)k and
f (x y−3) = (−2 − 6α − 3α2)k. By (25), the
alternatives in P f (α)y3 (x) gives α ∈

¦

− 15/4,−4
©

,

while the alternatives in P f (α)x (y
3) gives

α ∈
¦

−15/4,−6
©

. Hence, α= −15/4, and then

f (y2) = −
1
2

k and f (x y3) =
343
16

k. (30)

By f (x y) = f (x y−1) =−2k and (30), the alterna-
tives in P f (α)y2 (x y) gives k = 0, a contradiction.

Case (iii). If f (x y2) = (−5−3α)k and f (x y−2) =
(−9 − α)k, then the proof is as in Case (ii) after
replacing y by y−1. 2

MAIN RESULTS AND EXAMPLES

In this section, we shall use the lemmas in the previous
section to obtain the main theorems. Moreover, we will
give the general solution of the alternative quadratic
functional equation (3) on a cyclic group. We first
prove the main theorem.

Theorem 1 Let f ∈A (α)(G,H). Then f is quadratic or one
of the following properties holds.
(i) α= 0 and f is constant.
(ii) α = −1 and there exists a ∈ G such that f (a) ̸= 0

and

f (an) =

�

0 if 3 | n,
f (a) otherwise

for all integers n.
(iii) α = −2 and there exists a ∈ G such that f (a) ̸= 0

and

f (an) =

�

0 if n is even,
f (a) otherwise

for all integers n.

Proof : We consider the possible cases of f (e) as fol-
lows. If f (e) ̸= 0, then Lemma 1 gives the property (i).
Assume that f (e) = 0. If f (x2) = 4 f (x) for all x ∈ G,
then by Lemma 6, we obtain that f is quadratic. If
there exists a ∈ G such that f (a2) ̸= 4 f (a), then we
get properties (ii) and (iii) by Lemma 5. 2

In other words, the above theorem indicates that
when α ∈ {−1,−2}, there exists a function f ∈A (α)(G,H)
but f is not necessarily quadratic. We will give the
following two examples.

Example 1 Let f : Z→ H be such that

f (n) =

�

0 if 3 | n,
k otherwise

for all n ∈ Z and for some k ∈ H\{0}.

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


ScienceAsia 50 (5): 2024: ID 2024048 5

Observe that

f (1+1)+ f (1−1) = k ̸= 4k = 2 f (1)+2 f (1).

Let x and y be integers. If 3 | x and 3 | y , then

f (x + y)+ f (x − y) = 0= 2 f (x)+2 f (y);

else if 3 | x and 3 ∤ y , or 3 ∤ x and 3 | y , then

f (x + y)+ f (x − y) = 2k = 2 f (x)+2 f (y);

otherwise,

f (x + y)+ f (x − y) = k = − f (x)+2 f (y).

Therefore, f ∈A (−1)
(Z,H) but f is not quadratic.

Example 2 Let f : Z→ H be such that

f (n) =

�

0 if n is even,
k otherwise

for all n ∈ Z and for some k ∈ H\{0}.

Observe that

f (1+1)+ f (1−1) = 0 ̸= 4k = 2 f (1)+2 f (1).

Let x and y be integers. If x and y have the same
parity, then

f (x + y)+ f (x − y) = 0= −2 f (x)+2 f (y);

otherwise,

f (x + y)+ f (x − y) = 2k = 2 f (x)+2 f (y).

Therefore, f ∈A (−2)
(Z,H) but f is not quadratic.

Example 1 and Example 2 indicate that if G = Z is
a cyclic group, then there exist non-quadratic solutions
of (3) in the case when α = −1 and α = −2, respec-
tively. However, to the best of our knowledge, it is not
known whether there exist non-quadratic solutions of
(3) when G is a non-cyclic group.

The next theorem will establish the equivalence of
the alternative quadratic functional equation (3) and
the quadratic functional equation (2) for a function
defined on a 6-divisible abelian group.

Theorem 2 Let G be a 6-divisible abelian group and f ∈
A (α)(G,H). If α ̸= 0, then f is quadratic.

Proof : It should be noted that f is even by Lemma 2.
Assume that α ̸= 0. Lemma 1 gives f (e) = 0. We
will prove that f (x2) = 4 f (x) for all x ∈ G by con-
tradiction. Suppose that there exists a ∈ G such that
f (a2) ̸= 4 f (a). By Lemma 5, we obtain that f (a) ̸= 0
and

(i) α= −1 and

f (an) =

�

0 if 3 | n,
f (a) otherwise

for all integers n, or
(ii) α= −2 and

f (an) =

�

0 if n is even,
f (a) otherwise

for all integers n.
Case (i): Assume that property (i) holds. Since G

is 6-divisible, there exists b ∈ G such that b3 = a, i.e.,
f (b3) = f (a). By the alternatives inP f (−1)

b (b), we get

f (b2) ∈ {4 f (b), f (b)}. (31)

We first consider the case when f (b2) = 4 f (b). By
Lemma 4, we obtain that f (b3) = 32 f (b) and f (b9) =
92 f (b). Since f (b9) = f (a3) = 0, we get f (b) =
0. Hence, f (a) = f (b3) = 0, a contradiction. Next,
we consider the case when f (b2) = f (b). By the
alternatives in P f (−1)

b (b2), we conclude that f (b) =
1
3 f (a) and so is f (b2). The alternatives in P f (−1)

b2 (b2)
gives

f (b4) ∈
¦4

3
f (a),−

2
3

f (a)
©

.

Thus we get a contradiction by the alternatives in
P f (−1)

b (b3).
Case (ii): Assume that property (ii) holds. Since

G is 6-divisible, there exists b ∈ G such that b2 = a,
i.e., f (b2) = f (a). The alternatives in P f (−2)

b (b) gives

f (b) = 1
4 f (a). The alternatives in P f (−2)

b (b2) gives

f (b3) ∈
¦9

4
f (a),−

11
4

f (a)
©

.

By the alternatives in P f (−2)
b (b3), we get

f (b4) ∈ {4 f (a),−6 f (a)}.

Since b4 = a2, we have f (b4) = f (a2) = 0. Hence,
f (a) = 0, a contradiction.

Therefore, we must have f (x2) = 4 f (x) for all x ∈
G and by Lemma 6, we conclude that f is quadratic as
desired. 2

Next, we will give the general solution of the
alternative quadratic functional equation (3) on an
infinite cyclic group and a finite cyclic group as in two
following theorems.

Theorem 3 Let (G, ·) be an infinite cyclic group with
G = 〈g〉. A function f ∈ A (α)(G,H) if and only if f is
quadratic or one of the following properties holds.
(i) α= 0 and f is constant.
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(ii) α= −1 and

f (gn) =

�

0 if 3 | n,
k otherwise

for all integers n and for some k ∈ H\{0}.
(iii) α= −2 and

f (gn) =

�

0 if n is even,
k otherwise

for all integers n and for some k ∈ H\{0}.

Proof : Assume that f ∈A (α)(G,H) and f is not quadratic.
By Theorem 1, we conclude that one of the following
properties holds.
(i) α= 0 and f is constant.
(ii) α=−1 and there exists g i ∈ G for some an integer

i ̸= 0 such that f (g i) ̸= 0 and

f (g in) =

�

0 if 3 | n,
f (g i) otherwise

(32)

for all integers n.
(iii) α=−2 and there exists g i ∈ G for some an integer

i ̸= 0 such that f (g i) ̸= 0 and

f (g in) =

�

0 if n is even,
f (g i) otherwise

(33)

for all integers n.
It should be noted that f is even by Lemma 2. We
first assume that property (ii) holds. Suppose f (g2) ̸=
f (g). The alternatives in P f (−1)

g (g) gives f (g2) =
4 f (g). Lemma 4 gives f (g3i) = (3i)2 f (g), while (32)
gives f (g3i) = 0. Hence, f (g) = 0 and then f (g2) = 0,
a contradiction to f (g2) ̸= f (g). Thus, we must have
f (g2) = f (g). The alternatives in P f (−1)

g (g2) gives

f (g3) ∈ {3 f (g), 0}.

Suppose f (g3) ̸= 0. Hence f (g3) = 3 f (g). The
alternatives in P f (−1)

g (g3) gives

f (g4) ∈ {7 f (g),−2 f (g)},

while the alternatives in P f (−1)
g2 (g2) gives

f (g4) ∈ {4 f (g), f (g)}.

We obtain that f (g) = 0 and then f (g3) = 0, a contra-
diction to f (g3) ̸= 0. We must have f (g3) = 0. Observe
that the alternatives in P f (−1)

g3 (g3) gives f (g6) = 0,

and the alternatives in P f (−1)
g (g3) and P f (−1)

g2 (g3)
gives f (g4) = f (g5) = f (g). Then, the alternatives
in P f (−1)

g6 (g3) gives f (g9) = 0, and the alternatives

in P f (−1)
g4 (g3) and P f (−1)

g5 (g3) gives f (g7) = f (g8) =
f (g). For each a positive integer n, we use the
alternatives in P f (−1)

a3n (g3) to prove f (g3n+3) = 0 and

we use the alternatives in P f (−1)
a3n−2(g3) and P f (−1)

a3n−1(g3)
to prove f (a3n+1) = f (g3n+2) = f (g). By induction
and the evenness of f , we get the property (ii) in the
theorem.

Next, we assume that property (iii) holds. Sup-
pose f (g2) ̸= 0. The alternatives in P f (−2)

g (g) gives

f (g2) = 4 f (g). Lemma 4 gives f (g2i) = (2i)2 f (g),
while (33) gives f (g2i) = 0. Hence, f (g) = 0 and
then f (g2) = 0, a contradiction to f (g2) ̸= 0. Thus,
we must have f (g2) = 0. Observe that the alternatives
in P f (−2)

g2 (g2) gives f (g4) = 0 and the alternatives in

P f (−2)
g (g2) gives f (g3) = f (g). Then, the alternatives

in P f (−2)
g4 (g2) gives f (g6) = 0 and the alternatives in

P f (−2)
g3 (g2) gives f (g5) = f (g). For each a positive in-

teger n, we use the alternatives inP f (−2)
g2n (g2) to prove

f (g2n+2) = 0 and we use alternatives in P f (−2)
g2n−1(g2) to

prove f (g2n+1) = f (g). By induction and the evenness
of f , we get the property (iii) in the theorem.

Conversely, we can directly prove that if one of the
properties in the theorem holds, then f ∈A (α)(G,H). 2

Theorem 4 Let (G, ·) be a finite cyclic group of order
m ⩾ 2 with G = 〈g〉. A function f ∈ A (α)(G,H) if and only
if f is quadratic or one of the following properties holds.
(i) α= 0 and f is constant.
(ii) α= −1, 3 | m and

f (gn) =

�

0 if 3 | n,
k otherwise

for all integers n and for some k ∈ H\{0}.
(iii) α= −2, m is even and

f (gn) =

�

0 if n is even,
k otherwise

for all integers n and for some k ∈ H\{0}.

Proof : Assume that f ∈A (α)(G,H) and f is not quadratic.
Thus we must have the possibilities in Theorem 3.
However, some cases are admissible with some addi-
tional conditions. First, we assume that α= −1, and

f (gn) =

�

0 if 3 | n,
k otherwise

for all integers n and for some k ∈ H\{0}. Suppose 3 ∤
m. Then, there exists an integer i such that f (g i) = 0.
Since 3 ∤ m, f (g i+m) = k. From m is the order of G,
we get g i = g i+m, i.e., f (g i) = f (g i+m). Hence, k = 0,
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a contradiction. Therefore, we must have 3 | m. Next,
we assume that α= −2 and

f (gn) =

�

0 if n is even,
k otherwise

for all integers n and for some k ∈ H\{0}. Suppose that
m is odd. we get

0= f (e) and f (gm) = k.

From m is the order of G, we get gm = e, i.e., f (gm) =
f (e). We get k = 0, a contradiction. Hence, m must be
even.

Conversely, we can directly prove that if one of the
properties in the theorem holds, then f ∈A (α)(G,H). 2

Acknowledgements: This research was supported by De-
partment of Mathematics and Statistics, Faculty of Science,
Udon Thani Rajabhat University. In addition, I most grate-
fully acknowledge my family, the most important thing in
my life, for their understanding and support throughout the
period of this research.

REFERENCES

1. Kannappan PL, Kuczma M (1974) On a functional equa-
tion related to the Cauchy equation. Ann Polon Math 30,
49–55.

2. Forti GL (1979) La soluzione generale dell’equazione
funzionale {c f (x + y)− a f (x)− b f (y)− d}{ f (x + y)−
f (x)− f (y)}= 0. Matematiche (Catania) 34, 219–242.

3. Ger R (1976) On a method of solving of conditional
Cauchy equations. Uni Beograd Publ Elektrotehn Fak Ser
Mat Fiz 544–576, 159–165.

4. Forti GL, Paganoni L (1981) A method of solving of a
conditional Cauchy equation on abelian groups. Ann Mat
Pura Appl 127, 77–99.

5. Paganoni L, Rätz J (1995) Conditional functional equa-
tion and orthogonal additivity. Aeq Math 50, 135–142.

6. Skof F (1995) On some alternative quadratic equations.
Results Math 27, 402–411.

7. Nakmahachalasint P (2012) An alternative Jensen’s
functional equation on semigroups. ScienceAsia 38,
408–413.

8. Forti GL (2013) A note on an alternative quadratic equa-
tion. Annales Univ Sci Budapest Sect Comp 40, 223–232.

9. Tipyan P, Udomkavanich P, Nakmahachalasint P (2019)
An alternative quadratic functional equation on 2-
divisible commutative groups. Thai J Math 17, 165–172.

www.scienceasia.org

http://www.scienceasia.org/
http://dx.doi.org/10.1007/BF01811720
http://dx.doi.org/10.1007/BF01811720
http://dx.doi.org/10.1007/BF01811720
http://dx.doi.org/10.1007/BF01831116
http://dx.doi.org/10.1007/BF01831116
http://dx.doi.org/10.1007/BF03322846
http://dx.doi.org/10.1007/BF03322846
http://dx.doi.org/10.2306/scienceasia1513-1874.2012.38.408
http://dx.doi.org/10.2306/scienceasia1513-1874.2012.38.408
http://dx.doi.org/10.2306/scienceasia1513-1874.2012.38.408
www.scienceasia.org

