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ABSTRACT: In this paper, we focus on the property of the meromorphic functions when it has shared values with its
difference operators, from which we obtain the transcendence of the meromorphic functions, and then we prove that the
meromorphic functions has the value distribution property, and finally we derive the expressions of the meromorphic
functions.
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INTRODUCTION

We assume that the reader is familiar with the funda-
mental concepts of Nevanlinna’s value distribution the-
ory (see [1–3]). Throughout this paper, a meromorphic
function will always mean meromorphic in the whole
complex plane.

Let f and g be meromorphic functions and a be a
complex number. Let E(a, f ) be the set of all zeros of
f (z)−a with counting multiplicities (CM). If E(a, f )⊆
E(a, g), we say f (z) and g(z) partially share a CM, and
if E(a, f ) = E(a, g), then f (z) and g(z) share a CM.

If the meromorphic function α(z)( ̸≡ ∞) is satis-
fied, it follows that T (r,α) = o(T (r, f )), r→∞, r ̸∈ E,
where E ⊂ [0,∞) is a set of real numbers with finite
measures, that is, T (r,α) = S(r, f ), then α is called a
small function of f (z).

For a meromorphic function f (z), we define its
shift by f (z+ c) and its difference operators by

∆c f (z) := f (z+ c)− f (z),

∆n
c f (z) :=∆n−1

c (∆c f (z)), n ∈ N, n⩾ 2.

Let f be a non-constant meromorphic in C. Then
the order ρ ( f ) and the lower order µ ( f ) of f are
defined in turn as follow:

ρ ( f ) = lim sup
r→∞

log T (r, f )
log r

,

µ ( f ) = lim inf
r→∞

log T (r, f )
log r

.

The study of functional expressions with specific
properties has always been a hot issue for mathemati-
cians, and the uniqueness of meromorphic functions
and their derivatives with shared values is even more
important for complex analysts. In 1986, Jank et al [4]

characterized functional expressions from the perspec-
tive of shared values and proved that

Theorem 1 ([4]) Let f be a non-constant meromorphic
function, a is a finite non-zero constant. If f , f ′ and f ′′

CM shared a, then f = Aez , where A is a finite non-zero
constant.

In recent years, with the difference analogue of the
lemma on the logarithmic derivative, many researchers
naturally considered the value distribution issues for
meromorphic functions and its difference operators
[5–11] and references therein. Then, some complex
researchers [12–16] obtained difference analogue of
the result of Theorem 1, and characterized the proper-
ties of f (z) from the perspective of shared values and
proved the following results.

Theorem 2 ([12]) Let f (z) be a non-constant entire
function of finite order, and let a(z)(̸≡ 0) ∈ S(r, f ) be
a periodic entire function with period c. If f (z), ∆c f (z)
and ∆2

c f (z) share a(z) CM, then ∆2
c f ≡∆c f .

Theorem 3 ([15]) Let f (z) be a non-periodic entire
function of finite order, and let a(z)(̸≡ 0) ∈ S(r, f ) be
a periodic entire function with period c. If f (z), ∆c f (z)
and ∆2

c f (z) share a(z) CM, then ∆c f (z)≡ f (z).

Theorem 4 ([16]) Let f (z) be a non-constant entire
function of finite order, and let a(z)(̸≡ 0) ∈ S(r, f ) be
an entire function with ρ(a) < 1. If f (z), ∆c f (z) and
∆2

c f (z) share a(z) CM, then ∆c f (z)≡ f (z).

In Theorem 4 set a(z) ≡ 1, then f (z) = 1+ eAz+B,
where A(̸= 0), B are two constants. Let c satisfy eAc =
1, then ∆2

c f (z) ≡ ∆c f (z) ≡ 0. It is easy to find f (z),
∆c f (z) and ∆2

c f (z) share 1 CM, but ∆c f (z) ̸≡ f (z).
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Therefore, combining with the above results, we
naturally have the following question:

Can we characterize the expressions of f (z) when
the meromorphic function f , ∆c f (z) and ∆2

c f (z)
shared a value?

Firstly, we obtain that f (z) be transcenden-
tal meromorphic functions when f (z), ∆c f (z) and
∆2

c f (z) shared a value.

Theorem 5 If a function f (z) and ∆c f (z) share 1 CM,
then f is not a polynomial function. Furthermore, if
f (z) and ∆c f (z) share 1 and ∞ CM, then f (z) is a
transcendental meromorphic function.

Remark 1 The condition of “CM” sharing is accurate.
For example, let f (z) = z2+1, then

∆c f (z) = (z+ c)2+1− z2−1= 2zc+ c2,

let c2 = 1, that is, c = ±1, then f (z) and ∆c f (z) share
1 IM.

Secondly, by Theorem 5, f (z) is a transcendental
meromorphic function. Thus, we have obtained the
following value distribution properties.

Theorem 6 Let f (z) be a non-constant entire function
of finite order, and ∆2

c f (z) ̸≡ ∆c f (z). If f (z), ∆c f (z)
and ∆2

c f (z) share 1 and ∞ CM, then the following
holds:

(i) T (r, f ) = N
�

r,
1

f (z)−1

�

+ S(r, f );

(ii) T (r, f ) = N
�

r,
1

∆c f (z)−1

�

+ S(r, f );

(iii) T (r, f ) = N
�

r,
1

∆2
c f (z)−1

�

+ S(r, f ).

Finally, by Theorem 6, we characterize the expres-
sions of f (z) from the perspective of shared values.

Theorem 7 Let f be a meromorphic function of finite
order, and c be a non-zero constant. If f (z),∆c f (z) and
∆2

c f (z) share 1 and∞ CM, then one of the following
situations is true:
(i) f (z) = eaz g(z), where g(z) is a meromorphic func-

tion with a period of c and eac = 2, a is a finite non-
zero constant;

(ii) f (z) = 1+eAz+B, where A(̸= 0), B are two constants
and eAc = 1.

Corollary 1 Let f be an entire function of finite order,
c is a non-zero constant. If f (z), ∆c f (z) and ∆2

c f (z)
share 1 CM, then f (z) = 1+ eAz+B, where A(̸= 0), B are
two constants and eAc = 1.

Remark 2 The result f (z) = eaz g(z) under the situa-
tion of Theorem 7(i) is hold. For example, let f (z) =
e

z
c ln2 sin 2π

c z, then ∆c f (z) = e
z
c ln2 sin 2π

c z, ∆2
c f (z) =

e
z
c ln2 sin 2π

c z. Obviously, f (z), ∆c f (z) and ∆2
c f (z) CM

share 1 and f (z) = e
ln 2

c z g(z), where g(z) = sin 2π
c z is

an entire function with a period of c.

LEMMAS

In order to prove our main results, we shall recall some
lemmas as follows.

Lemma 1 (Theorem 2.1 in [10]) Let f (z) be a mero-
morphic function with orderρ=ρ( f ), ρ <∞, and let c
be a fixed non-zero complex number, then for each ϵ > 0,
we have

T (r, f (z+ c)) = T (r, f (z))+O(rρ−1+ϵ)+O(log r).

Lemma 2 (Lemma 2.3 in [11]) Let c ∈ C, n ∈ N, and
let f be a meromorphic function of finite order. Then for
any small periodic function a ∈ S(r, f ), we have

m
�

r,
∆n

c f

f − a

�

= S(r, f ),

where the exceptional set associated with S(r, f ) is of at
most finite logarithmic measure.

Lemma 3 (Lemma 1.10, p. 82 in [3]) Let f1(z) and
f2(z) be non-constant meromorphic functions in the
complex plane and c1, c2, c3 be non-zero constants. If
c1 f1+ c2 f2 ≡ c3, then

T (r, f1)< N(r,
1
f1
)+N(r,

1
f2
)+N(r, f1)+ S(r, f1).

Lemma 4 (Theorem 1.15, p. 31 in [3]) Let f (z) and
g(z) be two non-constant meromorphic functions in the
complex plane with ρ( f ) and ρ(g) as their orders,
respectively. If ρ( f )< ρ(g), then

ρ( f g) = ρ( f + g) = ρ(g).

Lemma 5 (Theorem 1.14, p. 30 in [3]) Let f (z) and
g(z) be two non-constant meromorphic functions. If the
order of f (z) and g(z) is ρ ( f ) and ρ (g) respectively,
then

ρ ( f · g)⩽max {ρ ( f ) ,ρ (g)} ,
ρ ( f + g)⩽max {ρ ( f ) ,ρ (g)} .

Lemma 6 (p. 65 in [3]) Let h(z) be a non-constant en-
tire function and f (z) = eh(z). Let ρ and µ be the order
and the lower order of f (z), respectively. We have the
following holds:
(i) If h(z) is a polynomial of degree p, then ρ = µ= p;
(ii) If h(z) is a transcendental entire function, then ρ =

µ=∞.

Lemma 7 Let α(z) be a non-constant polynomial and c
be a non-zero constant. Then the following holds:
(i) degα(z+2c) = degα(z+ c) = degα(z);
(ii) deg∆cα(z) = degα(z)−1;
(iii) deg(α(z+2c)−α(z)) = degα(z)−1.
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Proof : Set α(z) = anzn+an−1zn−1+· · ·+a0, where an(̸=
0), an−1, · · · , a0 are constants. For α(z+ c), we have,

α(z+ c) = an(z+ c)n+ an−1(z+ c)n−1+ · · ·+ a1(z+ c)+ a0

= an(z
n + C1

n zn−1c+ C2
n zn−2c2 + · · ·+ cn)+ an−1(z

n−1

+ C1
n−1zn−2c+C2

n−1zn−3c2+ · · ·+cn−1)+· · ·+a1(z+c)+a0

= anzn +(C1
n anc+ an−1)z

n−1 +(C2
n anc2 + C1

n−1an−1c

+ an−2)z
n−2 + · · ·+(ancn + an−1cn−1 + · · ·+ a1c+ a0).

Similarly, we get,

α(z+2c) = anzn +(C1
n an(2c)+ an−1)z

n−1 +(C2
n an(2c)2

+ C1
n−1an−1(2c)+ an−2)z

n−2 + · · ·+(an(2c)n

+ an−1(2c)n−1 + · · ·+ a1(2c)+ a0),

hence, from the relationship between expansions of the
highest order items of α(z+2c), α(z+ c) and α(z), we
obtain,

degα(z+2c) = degα(z+ c) = degα(z).

This is (i) of Lemma 7.
For ∆cα(z), we have

∆cα(z) = α(z+ c)−α(z)

= ncanzn−1+(C2
n anc2+ C1

n−1an−1c)zn−2

+ · · ·+(ancn+ an−1cn−1+ · · ·+ a1c),

then,
deg∆cα(z) = degα(z)−1.

This is (ii) of Lemma 7.
For α(z+2c)−α(z), we have

α(z+2c)−α(z)=2ncanzn−1+(C2
n an(2c)2+C1

n−1an−1(2c))zn−2

+ · · ·+(an(2c)n + an−1(2c)n−1 + · · ·+ a1(2c)),

therefore,

deg(α(z+2c)−α(z)) = degα(z)−1.

This is (iii) o Lemma 7.
This completes the proof of Lemma 7. 2

Lemma 8 Let f be a non-constant meromorphic func-
tion of finite order. If f (z), ∆c f (z) and ∆2

c f (z) share 1
CM and satisfy the following

E(∞,∆2
c f ) ⊆ E(∞, f ), E(∞,∆c f ) ⊆ E(∞, f ),

then, we have∆2
c f (z) =∆c f (z)+ϕ(z)( f (z)−1), where

T (r,ϕ(z)) = S(r, f ).

Proof : Since f (z) be a non-constant meromorphic
function of finite order, and

∆c f (z) = f (z+ c)− f (z),

∆2
c f (z) =∆c(∆c f (z)) = f (z+2c)−2 f (z+ c)+ f (z).

Therefore, by Lemma 1, we have

T (r,∆c f ) = T (r, f (z+ c)− f (z))

⩽ 2T (r, f )+O(rρ−1+ε)+O(log r),

T (r,∆2
c f ) = T (r, f (z+2c)−2 f (z+ c)+ f (z))

⩽ 3T (r, f )+O(rρ−1+ε)+O(log r).

Hence,

ρ (∆c f ) = lim sup
r→∞

log+ T (r,∆c f (z))
log r

⩽ limsup
r→∞

log+ T (r, f )
log r

= ρ( f ),

and

ρ
�

∆2
c f
�

= lim sup
r→∞

log+ T
�

r,∆2
c f (z)
�

log r

⩽ lim sup
r→∞

log+ T (r, f )
log r

= ρ( f ),

therefore,∆c f (z),∆2
c f (z) are also non-constant mero-

morphic functions of finite order.
Since f (z), ∆c f (z) and ∆2

c f (z) share 1 CM
and satisfy E(∞,∆2

c f ) ⊆ E(∞, f ), E(∞,∆c f ) ⊆
E(∞, f ); then, we have

∆2
c f (z)−1

f (z)−1
= R1(z)e

α(z),

∆c f (z)−1
f (z)−1

= R2(z)e
β(z),

(1)

where R1(z), R2(z) are entire functions, α(z), β(z) are
non-constant polynomials.

Set

ϕ(z) =
∆2

c f (z)−∆c f (z)

f (z)−1
,

that is, ∆2
c f (z) =∆c f (z)+ϕ(z)( f (z)−1).

By (1), we get that ϕ(z) = R1(z)eα(z)−R2(z)eβ(z).
Then, by Lemma 2 and T (r,ϕ(z)) = m(r,ϕ(z)) +
N(r,ϕ(z)), we deduce that

m(r,ϕ(z))⩽ m
�

r,
∆2

c f (z)

f (z)−1

�

+m
�

r,
∆c f (z)
f (z)−1

�

+log2

= S(r, f ).

Moreover, by ϕ(z) = R1(z)eα(z) − R2(z)eβ(z) and
E(∞,∆2

c f ) ⊆ E(∞, f ), E(∞,∆c f ) ⊆ E(∞, f ), we
have

N(r,ϕ(z)) = N
�

r,
∆2

c f (z)−∆c f (z)

f (z)−1

�

= S(r, f ),

that is,
T (r,ϕ(z)) = S(r, f ).

This completes the proof of Lemma 8. 2
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PROOF OF THEOREMS

First we give the proof of Theorem 5.

Proof of Theorem 5

Suppose that f (z) be a non-constant rational function;
then

f (z) =
P(z)
Q(z)

,

where P(z), Q(z) are non-zero relatively prime poly-
nomials. Since f (z) and ∆c f (z) share 1 and∞ CM;
then

∆c f (z)−1
f (z)−1

= K , (2)

where K be a non-zero constant. Let Pc , Qc represents

Pc := P(z+ c), Qc :=Q(z+ c),

hence, Pc , Qc are also relatively prime polynomials.
Therefore, we have

∆c f (z) = f (z+ c)− f (z)

=
P(z+ c)
Q(z+ c)

−
P(z)
Q(z)

=
PcQ−Qc P

QcQ
=

Pc
Q
Qc
− P

Q
.

Substituting the above formula into (2), we have

Pc
Q
Qc
− P −Q

Q
= K

P −Q
Q

,

that is,

Pc
Q
Qc
= (K +1)P +(1− K)Q, (3)

noting that the right of (3) is a polynomial. Thus, we
discuss the left side of this equation, the zeros of Qc are
all zeros of Q, since Qc and Q have a same coefficient
of the highest order; then, we get Qc = Q, where Q(z)
is a non-zero constant.

By Lemma 7 we have f (z) is a polynomial, then
deg∆c f = deg f − 1. Since f (z) and ∆c f (z) share
1 CM, by (2), f (z) − 1 and ∆c f − 1 have the same
zeros and the same number of degree, that is, f (z) is a
constant, so f (z) is not a rational function.

This completes the proof of Theorem 5. 2

Proof of Theorem 6

Since transcendental meromorphic functions f (z),
∆c f (z) and ∆2

c f (z) share 1 and∞ CM; then

∆2
c f (z)−1

f (z)−1
= eα(z),

∆c f (z)−1
f (z)−1

= eβ(z), (4)

where α(z), β(z) are non-zero polynomials.

By ∆2
c f (z) ̸≡∆c f (z) and (4), we arrive at ϕ(z) =

eα(z)−eβ(z) ̸= 0; then, eα(z)

ϕ(z) −
eβ(z)

ϕ(z) = 1. By Lemma 3, we

set f1 =
eα

ϕ , f2 =
eβ

ϕ ; then,

T (r,
eα

ϕ
)⩽ N(r,

ϕ

eα
)+N(r,

ϕ

eβ
)+N(r,

eα

ϕ
)+ S(r,

eα

ϕ
)

= S(r, f )+ S(r,
eα

ϕ
).

By Lemma 8, we have

T (r, eα)⩽ T (r,
eα

ϕ
ϕ)

⩽ T (r,
eα

ϕ
)+ T (r,ϕ) = S(r, f ). (5)

Hence, T (r, eα) = S(r, f ). Similarly, we can obtain
that T (r, eβ ) = S(r, f ).

From (4), we get that 1
f (z)−1 =

∆2
c f (z)

f (z)−1 − eα(z); thus,
by Lemma 2 and (5), we have

m
�

r,
1

f (z)−1

�

= m
�

r,
∆2

c f (z)

f (z)−1
− eα(z)
�

⩽ m
�

r,
∆2

c f (z)

f (z)−1

�

+m(r, eα(z))+ S(r, f )

= S(r, f ). (6)

Combining the first fundamental Nevanlinna the-
orem with (6), we get that

T (r, f ) = T
�

r,
1

f (z)−1

�

+O(1)

= N
�

r,
1

f (z)−1

�

+m
�

r,
1

f (z)−1

�

+O(1)

= N
�

r,
1

f (z)−1

�

+ S(r, f ),

this is (i) of Theorem 6.
Since f (z), ∆c f (z) and ∆2

c f (z) share 1 and ∞
CM, thus (ii) and (iii) of Theorem 6 are also estab-
lished. 2

Proof of Theorem 7

According to f (z), ∆c f (z) and∆2
c f (z) share 1 and∞

CM; thus, we have

Assertion 1: ∆2
c f (z)≡∆c f (z).

The following is a description of expressions of
the meromorphic function f . Suppose that ∆2

c f (z) ̸≡
∆c f (z), since f (z), ∆c f (z) and ∆2

c f (z) share 1 and
∞ CM; then, by Lemma 8, (4) can be rewritten as
∆c f (z) = eβ(z)( f (z)−1)+1, it follows that

f (z+ c) = (1+ eβ(z)) f (z)− eβ(z)+1, (7)
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that is,

∆2
c f (z) =∆c(e

β(z)( f (z)−1)+1)

= eβ(z+c)( f (z+ c)−1)+1−eβ(z)( f (z)−1)−1

= eβ(z+c)( f (z+ c)−1)− eβ(z)( f (z)−1), (8)

substituting (7) into (8), we have

∆2
c f (z) = eβ(z+c)( f (z)+ eβ(z) f (z)− eβ(z))

− eβ(z) f (z)+ eβ(z)

= (eβ(z+c)+β(z)+ eβ(z+c)− eβ(z)) f (z)

− eβ(z+c)+β(z)+ eβ(z). (9)

Thus, (9) can be rewritten as

∆2
c f (z) = γ(z) f (z)+δ(z), (10)

where

γ(z) = eβ(z+c)+β(z)+ eβ(z+c)− eβ(z), (11)

δ(z) = −eβ(z+c)+β(z)+ eβ(z) = −γ(z)+ eβ(z+c), (12)

then, T (r, eβ ) = S(r, f ); thus, we get that T (r,γ(z)) =
S(r, f ) and T (r,δ(z)) = S(r, f ). Then, we rewrite (10)
as

∆2
c f (z)−1−γ(z)( f (z)−1) = γ(z)+δ(z)−1. (13)

Suppose that γ(z) +δ(z)− 1 ̸≡ 0. Let z0 be a k order
zero of f (z) − 1; since f (z), ∆2

c f (z) share 1 CM, so
z0 is also k order zero of ∆2

c f (z)− 1. Thus, z0 is at
least k order zero of∆2

c f (z)−1−γ(z)( f (z)−1). Then,
combining Theorem 6 with (13), we have that

N
�

r,
1

γ(z)+δ(z)−1

�

= N
�

r,
1

∆2
c f (z)−1−γ(z)( f (z)−1)

�

⩾ N
�

r,
1

f (z)−1

�

= T (r, f )+ S(r, f ). (14)

On the other hand, we have

N
�

r,
1

γ(z)+δ(z)−1

�

⩽ T
�

r,
1

γ(z)+δ(z)−1

�

= S(r, f ), (15)

then, incorporating (14) with (15), we have that
T (r, f ) = S(r, f ), which is a contradiction.

Hence, γ(z)+δ(z)−1≡ 0. Combining with (12),
we have

eβ(z+c) ≡ 1,

then, β(z + c) = 2kπi, k ∈ Z. Therefore, eβ(z) ≡
eβ(z+c) ≡ 1.

From (13), we get that
∆2

c f −1
f −1 = γ(z), combining

this with (4), we have that eα ≡ 1, which is eα ≡
eβ ; thus, ∆2

c f ≡ ∆c f , which is contradiction with
assumptions. This completes the proof of Assertion 1.

Set,
ψ(z) =∆c f (z)− f (z), (16)

then,

ψ(z) =∆c f (z)− f (z) = f (z+ c)−2 f (z),
ψ(z+ c) =∆c f (z+ c)− f (z+ c)

= f (z+2c)−2 f (z+ c),

therefore,

ψ(z)+ f (z) =∆c f (z)− f (z)
= f (z+ c)− f (z) =∆c f (z),

ψ(z+ c)+ f (z) =∆c f (z+ c)− f (z+ c)
= f (z+2c)−2 f (z+ c)+ f (z)

=∆2
c f (z),

hence, ∆2
c f (z) ≡∆c f (z), that is, ψ(z + c) =ψ(z), we

get that ψ(z) is a meromorphic periodic function of
period c. From (16), we have

∆c f (z)−1= f (z)−1+ψ(z),

since f (z) be non-constant meromorphic functions;
then,

∆c f (z)−1
f (z)−1

= 1+
ψ(z)

f (z)−1
. (17)

By Theorem 6, there be transcendental functions f (z),
and f (z),∆c f (z) share 1 and∞ CM; then, there exists
polynomials β(z) satisfying

∆c f (z)−1
f (z)−1

= eβ(z).

Combining this with (17), we have

1+
ψ(z)

f (z)−1
= eβ(z).

We have the following two cases:
Case 1: For eβ(z) ≡ 1; then, ∆c f (z) ≡ f (z), that

is, f (z+c) = 2 f (z). Firstly, we have the following hold:

Assertion 2: The necessary and sufficient condition
for f (z + c) = 2 f (z) is f (z) = eaz g(z), where eac = 2
and g(z) is meromorphic functions with a period of c,
and a is a finite non-zero complex number.

Adequacy:

f (z+ c) = eaz eac g(z) = 2 f (z),

where eac = 2.
Necessity: Set a = ln 2/c; then,

g(z) =
f (z)
eaz

,

where g(z) is a meromorphic function.
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Secondly, let us prove g(z) is a meromorphic func-
tion with a period of c,

g(z+ c) =
f (z+ c)
ea(z+c)

=
2 f (z)
2eaz

= g(z).

Thus the form (i) of Theorem 7 is proved.
Case 2: For eβ(z) ̸≡ 1; then, we deduce that

f (z) =
ψ(z)

eβ(z)−1
+1. (18)

Since ψ(z) is a meromorphic function with a period c;
then, we get that

∆c f (z) = f (z+ c)− f (z)

=
ψ(z+ c)

eβ(z+c)−1
+1−

ψ(z)
eβ(z)−1

−1

=ψ(z)∆c

�

1
eβ(z)−1

�

, (19)

and

∆2
c f (z) = f (z+2c)−2 f (z+ c)+ f (z)

=
ψ(z+2c)
eβ(z+2c)−1

+1−2
ψ(z+ c)
eβ(z+c)−1

−2+
ψ(z)

eβ(z)−1
+1

=
ψ(z+2c)
eβ(z+2c)−1

−2
ψ(z+ c)

eβ(z+c) −1
+

ψ(z)
eβ(z) −1

=ψ(z)∆2
c

�

1
eβ(z) −1

�

.

From Assertion 1, for ∆2
c f (z)≡∆c f (z), we have

∆2
c

�

1
eβ(z)−1

�

=∆c

�

1
eβ(z)−1

�

,

that is,

1
eβ(z+2c)−1

−3
1

eβ(z+c)−1
+2

1
eβ(z)−1

= 0, (20)

hence,

eβ(z+c)+β(z)−3 eβ(z+2c)+β(z)+2eβ(z+2c)+β(z+c)

−3 eβ(z+c)+2eβ(z)+ eβ(z+2c) = 0,

then,

eβ(z+c)−3 eβ(z+2c)+2eβ(z+2c)+∆cβ(z)

−3 e∆cβ(z)+2+ eβ(z+2c)−β(z) = 0,

therefore, we get that

eβ(z+c)+
�

2e∆cβ(z)−3
�

eβ(z+2c)

= 3e∆cβ(z)−2− eβ(z+2c)−β(z). (21)

The following is the discussions of β(z):

Subcase 2.1: For eβ(z) ̸≡ eβ(z+c); then, for (21), we
have

ρ
�

eβ(z+c)+
�

2e∆cβ(z)−3
�

eβ(z+2c)
�

= ρ
�

3e∆cβ(z)−2− eβ(z+2c)−β(z)�, (22)

by Lemma 6, we get that ρ(eβ(z)) = degβ(z). More-
over, combining Lemma 5 with Lemma 7, we get that

ρ
�

3e∆cβ(z)−2− eβ(z+2c)−β(z)�

⩽max{ρ(3 e∆cβ(z)−2),ρ(−eβ(z+2c)−β(z))}
= degβ(z)−1. (23)

Similarly,

ρ
�

eβ(z+c)+(2e∆cβ(z)−3
�

eβ(z+2c))

⩽max{ρ(eβ(z+c)),ρ((2 e∆cβ(z)−3)eβ(z+2c))}
= degβ(z+ c) = degβ(z). (24)

If ρ
�

eβ(z+c)+(2e∆cβ(z)−3)eβ(z+2c)
�

< degβ(z); then,
by Lemma 4,

degβ(z) = ρ
�

eβ(z+c)+(2e∆cβ(z)−3)eβ(z+2c)

eβ(z+c)

�

= ρ
�

1+
�

2 e∆cβ(z)−3
�

eβ(z+2c)−β(z+c)
�

⩽ degβ(z)−1, (25)

this is impossible. Thus,

ρ
�

eβ(z+c)+
�

2 e∆cβ(z)−3
�

eβ(z+2c)
�

= degβ(z).

Combining (22) with (23), we arrive at degβ(z) ⩽
degβ(z)−1, which is a contradiction.

Subcase 2.2: For eβ(z) ≡ eβ(z+c); then, by (19), we
get that ∆c f (z) ≡ 0. Next, we assert that f (z) = 1+
eAz+B, where A(̸= 0), B are two constants and eAc = 1.

Since ∆c f (z)−1
f (z)−1 = eβ(z); then,

f (z) = 1− e−β(z),

where β(z) is a non-zero polynomial.
The following is a discussion of the degree of poly-

nomials β(z). For degβ(z) ⩾ 2; then, from Lemma 7,
deg(β(z + c) − β(z)) = deg(β(z)) − 1 ⩾ 1. Also by
∆c f (z)≡ 0, there is eβ(z+c)−β(z) ≡ 1; hence,

(β ′(z+ c)−β ′(z))eβ(z+c)−β(z) ≡ 0,

thus, we get that β ′(z+c)−β ′(z)≡ 0, which contradicts
with the above A(̸= 0).

So, deg(β(z)) = 1; thus, f (z) = 1+ eAz+B, where
A(̸= 0), B are two constants. Noticing that∆c f (z)≡ 0,
we can deduce that eAc = 1.

This completes the proof of form (ii) of Theorem 7.
Thus, Theorem 7 is proved. 2
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