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ABSTRACT: Cancer and hypertension have severely burdened the medical health system. Cumulative clinical findings
suggest an association between hypertension and cancer development, although the underlying mechanisms remain
unclear. Notably, a functional relationship between inflammation, hypertension, and cancer could explain the clinical
link between these diseases. Ca2+ homeostasis dysregulation seems to play a key role in these diseases. Ca2+ signalling
positively responds to inflammation. Furthermore, a core regulator of Ca2+ metabolism, cAMP, has been shown to
indirectly regulate pro- and anti-inflammatory responses. In this review, by introducing the innate biological nano
confinements and its potential function, we discussed the role of Ca2+/cAMP signalling in inflammation, hypertension,
and cancer to understand the interaction between Ca2+/cAMP signalling pathways and these diseases and finally
improve therapeutic strategies.

KEYWORDS: Ca2+/cAMP signalling, cancer with concurrent hypertension, calcium homeostasis, calcium channel
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INTRODUCTION

Cancer and hypertension pose huge social and eco-
nomic burdens to human society. Hypertension is
assumed to be closely associated with high incidence
of cancer [1]. Atrial natriuretic peptide (ANP) is a
hormone secreted by the heart tissue and plays an im-
portant role in lateral spread of tumour transforming
into colorectal cancer. The ANP not only regulated
the Wnt/β-catenin signalling pathway but also partic-
ipated in the hypertension-induced atrial dysfunction
[2]. Interestingly, a functional relationship between
inflammation, hypertension, and cancer might explain
the link between these diseases [3, 4]. It was specu-
lated that cancers resulted from chronic inflammation,
whereby the inflammatory environment with overex-
pressed growth factors, activated stroma, and unstable
DNA damage initiate cancer development [5–7].

Immune responses triggered by immunogenicity
factors, such as specific immune cell types, cytokines,
toll-like receptors, and components of inflammasomes,
have a significant impact on the incidence of hyper-
tension. Therefore, immunoregulation is considered
a promising target for hypertension management [4].
Ca2+ and cAMP signalling regulate diverse functions
and their over-activation is associated with many dis-
eases. The Ca2+ and cAMP signalling pathways in-
teract on numerous levels. They regulate the activity
of each other to determine the intensity of their re-

sponse and cooperate to determine the physiological
response by integration of their stimulatory/inhibitory
activities. Mutual regulation of the Ca2+ and cAMP
signals is referred to as crosstalk, while integration of
their effects can result in an additive or synergistic
physiological response. An increased expression of
cAMP, the major regulator of Ca2+ homeostasis, has
been shown to exhibit antitumor effects [8]. Moreover,
cAMP can affect pro- and anti-inflammatory responses;
for instance, an increasing intracellular cAMP level
reduces pro-inflammatory mediators, promoting an
anti-inflammatory effect [9–12]. The cAMP signal is
determined by the balance between the activities of
adenylyl cyclases (ACs) and the phosphodiesterases
(PDEs). Intracellular Ca2+ homeostasis plays a vital
role in the pathogenesis of inflammation, hypertension
and cancer, that is, Ca2+ dysregulations was critically
associated with the development and progression of
cancer [13, 14]. Therefore, maintaining a balance of
intracellular Ca2+ has high potential in controlling can-
cer progression and hypertension [15–19]. In addition,
there is much evidence indicating a strong relationship
between Ca2+ signalling and inflammatory responses
[20, 21].

Several Ca2+ channel blockers (CCBs) have been
successfully administered in cancer therapy, while they
have been previously used to control hypertension
empirically, a possible mechanism of action could rest
in the fact that these pharmaceuticals may restore the
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dysregulation of Ca2+ homeostasis [22–26]. Their
role in maintaining Ca2+ homeostasis might be an
underlying mechanism for their use in cancer treat-
ment [27–32]. Additionally, we have proposed that
substances (particularly small molecules and ions as-
sociated with signal transduction, such as Ca2+) ex-
isting both intra- and intercellularly are orderly dis-
tributed in a time and spatial manner under the control
of our newly conceptualized innate biological nano-
confinements (iBNCs) [33]. This finding will enable
cancer precision therapy [34] with a targeted drug
delivery system at the nano dimension [35].

In this review, we discussed the association of
Ca2+/cAMP signalling in inflammation, hypertension,
and cancer to understand the link between these three
conditions. This will aid in improving therapeutic
strategies.

CANCER AND HYPERTENSION

Basic mechanisms

Cancer has long been ranked as the second most lethal
disease [3]. The design and exploration of safer
and more efficacious drugs have become the primary
strategies for cancer therapy. Inflammation has been
recognized to influence cancer development and stim-
ulate several stages of tumorigenesis. Cancer and
inflammatory cells are involved in a well-orchestrated
reciprocal interaction that forms an inflammatory tu-
mour microenvironment. The cells within this mi-
croenvironment are highly plastic and continuously
shift their phenotypic characteristics. Therefore, elu-
cidating the cellular mechanisms underlying tumour-
promoting inflammation is essential for the develop-
ment of anticancer therapies [3, 36, 37].

The consequences or comorbidities of hyperten-
sion, such as inflammation, dysregulated immunity,
and cardiovascular diseases, make it a leading cause
of mortality [1, 4, 38]. Based on the speculation that
elevation in blood pressure result from inflammation
and immune activation, patients with pre-hypertension
should be more cautious to avoid a severe hyperten-
sive state [4, 38]. However, this speculation requires
further validation so that the possible effect of im-
munotherapy on malignant hypertension, especially in
patients with concurrent cancer can be investigated.

Clinical evidence

Previous studies have shown an observational associ-
ation between hypertension and cancer development.
However, the causality and mechanisms have not been
fully uncovered [1, 39–42]. An international longitu-
dinal cohort study examining the association between
metabolic syndrome and cancer among populations
from Norway, Austria, and Sweden from 1972 to 2005
showed a significantly increased risk of developing
cancer in several organs, with a cancer risk increase
per 10-mmHg increment. Furthermore, these clinical

findings indicated that this cancer risk association was
common regardless of some variables, such as sex
[1, 39]. However, the older population was at more
risk of cancer [1, 39].

A meta-analysis comprising 18 studies revealed
that the incidence of renal cell carcinoma was 1.6 times
higher among patients with hypertension than those
with normal blood pressure. This result suggests that
hypertension is a risk for renal cell carcinoma occurring
[40, 41]. In another analysis based on 85 prospective
studies, drawn from 148 publications focusing on any
type of cancer, revealed that hypertension was closely
associated with a high risk of kidney, colorectal, and
breast cancer [42].

Several studies have demonstrated that CCBs exert
promising anticancer effects by reducing the intracel-
lular influx of Ca2+ [13, 22–26, 43–47]. However, it re-
mains unclear how this anti-hypertension Ca2+/cAMP
signalling exerts its anticancer effect.

ROLE OF Ca2+/CAMP SIGNALLING IN
HYPERTENSION AND CANCER CROSS-LINK

Ca2+/cAMP signalling is a vital biochemical process
that exists in almost all mammals. The Ca2+/cAMP
signalling pathway is regulated by various enzymes,
molecules, and is affected by other signalling path-
ways, depending on the specific demands and cellular
heterogeneity, including ACs, PDEs, and Ca2+ channel
proteins [20, 48–55] (Fig. 1). The endoplasmic reticu-
lum (ER) systems and Ca2+ channel protein families
play an important role in the Ca2+/cAMP pathway
[20, 48–55]. Finally, the endothelial system which
represents the largest barrier in the body, ensures Ca2+

homeostasis [56, 57]. Previous studies have reported
that Ca2+/cAMP signalling can modulate the behaviour
of neurons and neuroendocrine cells through the re-
lease of neurotransmitters [20, 48, 51], and may even
impact neuronal death [58–60] and cancer develop-
ment [27, 61].

The sympathetic hyperactivity leads to elevated
blood pressure owing to a high level of serum cate-
cholamines, as demonstrated by experiments in a spon-
taneously hypertensive rat model. Intracellular Ca2+

concentration is modulated by the endoplasmic retic-
ulum, which in turn activates catecholamine release
[17–19]. Additionally, we have previously demon-
strated that urocortin II administration can effectively
regulate the calcification of vessels to restore blood
pressure [62–65].

Among the Ca2+ channel protein families, the L-
type channel protein is closely related to cancer pro-
gression, whereby an increase in its expression level
increases the risk for cancer progression, particularly
for colon and oesophageal cancers [27, 61]. Con-
cordantly, a high expression level of the L-type Ca2+

channel protein has been shown in pan-cancer samples
via microarray assays. Moreover, similar results were
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Fig. 1 Regulation on Ca2+/cAMP signalling pathways and cellular responses. Briefly, the reduction of Ca2+ influx through
L-type Ca2+ channels, produced by CCBs (calcium channel blockers) and the innate biological nanoconfinements (iBNCs) has
the potential to restore the unexpected cellular response, such as endoplasmic reticulum disruption or iBNCs collapse.
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Fig. 2 Correlation between Ca2+ dysregulation, cancer, and hypertension. Disruption of Ca2+/cAMP will influence the
sympathetic activity and cellular microenvironment, then possibly initiated the hypertension or cancer. This pathway will
be inhibited or restored under the invention of iBNCs and CCBs synergistically.

found for the detection of L-type CCBs [22–26].
The elevated expression of cAMP may be partially

attributed to the induction of ACs activators, which
promote anticancer effects [27, 66–68]. However,
the comprehensive mechanisms underlying this phe-
nomenon are unclear. Nevertheless, we may obtain
valuable clues from the following findings: activated
cAMP signalling may promote further cAMP synthesis,
hinder degradation of cAMP, and activate cAMP recep-
tors [68–76]. In a basic cell biology study, an analogue
of cAMP, 8-Cl-cAMP, was demonstrated to have signif-
icant antiproliferative effects, whereby its underlying
mechanisms were speculated to be growth arrest or
proapoptotic effects [69]. Other studies have identified
significant alterations in the expression levels of cAMP

signalling in haematological malignancies compared to
normal hematopoietic cells [74–76].

Based on these findings, we speculate that be-
cause the alteration of L-type Ca2+ channel proteins
induces a decrease in Ca2+ influx [20, 48–55, 58–61]
and the cAMP-stimulating compounds induce CCBs
effects, targeting the Ca2+/cAMP signalling pathway
may be a novel anti-cancer therapy. Furthermore,
we speculate that dysregulation of Ca2+ homeostasis
might be the underlying mechanism of cancer develop-
ment [27, 61]. Notably, changes in Ca2+ concentration
caused by other factors, affect the cAMP signalling
pathway, resulting in a risk of cancer development.
For instance, a high increase in Ca2+ concentration
through the inhibition of ACs isoforms [59, 68] and
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anticancer effects have been demonstrated in several
studies whereby the expression level of cAMP sig-
nalling is upregulated [8, 27, 68, 69]. In contrast, some
studies have shown that a high, Ca2+ concentration
can inhibit cAMP signalling pathways, reducing the
anticancer effect. Consequently, a lower influx of
Ca2+ through CCBs can improve the anticancer effects
[22–26]. Furthermore, eukaryotic elongation factor 2
kinase (eEF-2K) was also known as calcium/calmod-
ulin (Ca2+/CaM)-dependent protein kinase III and ini-
tially identified as a Ca2+/CaM-dependent protein ki-
nase (CaM-PK) that phosphorylates an abundant sub-
strate of 100 kDa in mammalian cells. It is critical for
eEF-2K that the precise coordinate of these signals to
appropriately regulate protein translation rates. eEF-
2K have been reported owning different functions in
many kinds of cancer, due to its overexpress and over-
activation in cancer cells [77].

In the hypertension research field, strong evidence
have been found between the dysregulation of Ca2+

signalling and a high blood pressure level owing to
an abnormal catecholamine release [17–19]. This
Ca2+/cAMP signalling disruption is shown in Fig. 2.
Briefly, patients with hypertension presented a feature
of imbalance of Ca2+ homeostasis, who will expose
to a higher risk of malignant cellular response, such
as ER disruption and dis-controllable of iBNCs, even-
tually resulting in cancer development. Mutually,
cancer patients often had an abnormal tumor micro-
environment and the Ca2+/cAMP signalling pathway.
These two sides are possibly interacted and exacer-
bated the outcomes.

CONCLUSION

Ca2+ and Ca2+/cAMP signalling play vital roles in both
the process of hypertension and cancer development.
The targeted molecules, CCBs, have potential anti-
cancer effects in addition to their antihypertensive
function. The mechanisms by which Ca2+/cAMP sig-
nalling and CCBs, along with the extraordinary func-
tion of iBNCs, synergistically modulate hypertension
and cancer development need to be further investi-
gated in large-scale clinical cohort studies.
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