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ABSTRACT: Turing patterns formation may depend on variation of the initial conditions. In this work, the dependent
mechanism of initial distributions on pattern formation for the coupled discrete diffusion system is discussed, some
asymptotic behavior between pattern formation and initial value determined by the corresponding eigenvectors of the
eigenvalue for discrete Laplace operator can be given. To control the coupled discrete diffusion system for pattern
selection, an adaptive adjustment mechanism is applied, and some theoretical generalizations are obtained. Then, the
effectiveness of the theory analysis is validated though simulation results.
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INTRODUCTION

Since the pioneering theoretical works of Turing [1],
pattern dynamics, which can reflect the structural
changes between various elements in the dynamic
continuous or discrete reaction-diffusion systems, has
become a very active research field. It is an essen-
tial branch of the nonlinear science and is applied
in various aspects of physics, chemistry, biology and
information science, see e.g. [2–10] and references
therein. A nonlinear system is asymptotically stable
when there is no diffusion, but becomes unstable
when the diffusion is presented. This phenomenon is
called diffusion-driven instability (Turing instability).
Most numerical simulations of continuous or discrete
reaction-diffusion models on pattern formation have
used small random perturbations about the kinetic
steady state as initial data, the steady state is stable
to fluctuations but a parameter slowly changes, mov-
ing the system into the Turing space where Turing
instability occurs. Some good numerical techniques
are also applied to approximate the continuous Turing
systems [11–13]. For example, a 2-D reaction diffusion
equation is solved with the help of cubic B-spline
quasi-interpolation method, and various patterns are
captured in [13].

It is acceptable that Turing patterns formation
may depend on not only fluctuation of system pa-
rameters but variation of the initial conditions. In-
deed, both natural and social phenomena can be
affected in some ways by the fluctuation of initial
data. For some phenomena, such as harmonic oscilla-
tion, the dependence mechanism on initial conditions
is very simple, but when damped, the dependence
mechanism on initial values will become very com-

plex, which has been verified by experiments and
numerical simulations [11–18]. Murray [19] points
out that, under zero flux conditions, for Turing-type
reaction-diffusion equations, such as Thomas, Gierer-
Meinhardt, Schnakenberg and other one-dimensional
spatial variable models, both the solution patterns
obtained and the patterns’ polarity are sensitive to
changes in the initial conditions and in the model
domain’s size and shape. In the study on the initial
value dependence of local traveling wave convection
pattern selection of mixed fluid in [20], the numerical
results show that the dependence of traveling wave
evolution on initial value is different under different
conditions. Different initial distributions can result
into different spatial distribution structures [8, 21–23],
especially, when selecting some special initial values,
there are obviously different spatial patterns [8, 21].
Although the following viewpoint is put forward in
[24]: “It is observable that initial host patterns are
different in each case but the long-time patterns are
qualitatively the same”, it should be noted that the
spatial distribution of patterns may be significantly
different although different initial conditions generate
similar pattern structures, such as spiral patterns or
chaotic patterns. Similar phenomena also appear in
[25, 26].

The researches mentioned above have verified the
relationship between the system evolution or pattern
generation and the initial value (initial distribution)
from the perspective of experiment or numerical sim-
ulation, which implies whether the pattern evolution
continuously depends on the initial value or is sensitive
to the initial value, whether the generated pattern
has similarity or variability. Therefore, the study of
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the mathematical mechanism of the pattern evolution
affected by the initial value has attracted the attention
of some scholars. For discrete systems, Xu et al [27]
considered a two-dimensional logistic coupled map
lattice with the periodic boundary conditions, in which
any initial value can be linear expressed by correspond-
ing eigenvectors for discrete Laplace operator, some
asymptotic behavior between pattern formation and
initial value determined by the corresponding eigen-
vectors of the eigenvalue can be found out. Similar
methods were applied for a single-handed discrete
Fisher equation in [28]. The above research deals
with single equation discrete models. For the coupling
discrete diffusion case, does the pattern evolution also
have similar characteristics? Thus, in this paper, We
will attempt to answer this question.

If the diffusion-driven instability should be
avoided in some situations, and one may wish
recovery stability towards the desired orbit, or one
wish alter pattern evolution aim, such as from strip-like
pattern to spot-like structure, some measures should
be adopted to achieve the aim. Adaptive adjustment
mechanism or the learning rules will be an effective
one and need not alter the positions of positive
equilibrium, which utilizes neither prior knowledge
of the system itself nor extra external control signals,
and forces all one-dimensional discrete systems
to converge to their original periodic orbits [29].
The method is based on linearizing the system in
a neighborhood of a fixed point and evaluating the
eigenvalues of the corresponding Jacobian matrix,
and is easy to implement. Then, it is often used for
both discrete systems and continuous ones [30–33].
Motivated by adaptive adjustment mechanism, we
will apply it to the coupled discrete diffusion system
with the periodic boundary conditions to achieve the
target of pattern selection, and hope to give some
new generalizations for better interpretation and
application on the adaptive adjustment mechanism.

So this paper is organized as follows. In the second
section, we show how the different initial distribu-
tions have differential effects on the spatiotemporal
dynamics of the coupled discrete diffusion system,
some asymptotic behavior between pattern formation
and initial value determined by the corresponding
eigenvectors of the eigenvalue for discrete Laplace
operator can be found. Furthermore, a discrete Lotka-
Volterra cooperative system with the periodic boundary
conditions model is used as an example to investigate
the pattern selection with different initial value. Sub-
sequently, in the third section, an adaptive adjustment
mechanism is used to control the coupled discrete dif-
fusion system for pattern selection, and obtain its sta-
bility conditions. Furthermore, some theoretical gen-
eralizations on the adaptive adjustment mechanism
are shown, then we perform numerical simulations
of the adjustment discrete Lotka-Volterra cooperative

system for pattern formation. We summarize the main
research contents and draw conclusions in the last
section.

DEPENDENCE ON INITIAL VALUE

In this section, the following spatiotemporal discrete
diffusion systems are considered:

¨

xn+1
i j = f (xn

i j , yn
i j)+ D1∇2 xn

i j ,

yn+1
i j = g(xn

i j , yn
i j)+ D2∇2 yn

i j ,
(1)

with periodic boundary conditions















xn
i,0 = xn

i,m, xn
i,1 = xn

i,m+1,
xn

0, j = xn
m, j , xn

1, j = xn
m+1, j ,

yn
i,0 = yn

i,m, yn
i,1 = yn

i,m+1,
yn

0, j = yn
m, j , yn

1, j = yn
m+1, j ,

(2)

where i, j ∈ {1,2, · · · , m} = [1, m], n ∈ Z+, m is a
positive integer, D1, D2 > 0 are diffusion parameters, f
and g are reaction functions, and∇2 is discrete Laplace
operator defined as follows

∇2 xn
i j = xn

i+1, j + xn
i, j+1+ xn

i−1, j + xn
i, j−1−4xn

i j , (3)

∇2 yn
i j = yn

i+1, j + yn
i, j+1+ yn

i−1, j + yn
i, j−1−4yn

i j . (4)

Dependence analysis on initial value

Let the point E∗ = (x∗, y∗) is a positive equilibrium
of (1), and still denote xn

i j − x∗, yn
i j − y∗ as xn

i j , yn
i j

separately, then the linearization equation of (1) about
E∗ can be written as

¨

xn+1
i j = fx∗ x

n
i j + f y∗ y

n
i j + D1∇2 xn

i j ,

yn+1
i j = gx∗ x

n
i j + g y∗ y

n
i j + D2∇2 yn

i j ,
(5)

or

�

xn+1
i j

yn+1
i j

�

=
�

fx∗ f y∗

gx∗ g y∗

�

�

xn
i j

yn
i j

�

+
�

D1 0
0 D2

�

�

∇2 xn
i j

∇2 y i j
n

�

,

where fx∗ =
∂ f
∂ x |(x∗,y∗), f y∗ =

∂ f
∂ y |(x∗,y∗), gx∗ =

∂ g
∂ x |(x∗,y∗), g y∗ =

∂ g
∂ y |(x∗,y∗).

In the view of [27], the eigenvalue problem







∇2 x i j +λx i j = 0,
x0, j = xm, j , x1, j = xm+1, j ,
x i,0 = x i,m, x i,1 = x i,m+1,

has the eigenvalues

λkl = 4
�

sin2 (k−1)π
m

+ sin2 (l −1)π
m

�

, k, l ∈ [1, m],
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and the corresponding eigenfunctions

ϕkl
i j1 = sin

2i(k−1)π
m

sin
2 j(l −1)π

m
,

ϕkl
i j2 = cos

2i(k−1)π
m

cos
2 j(l −1)π

m
,

ϕkl
i j3 = sin

2i(k−1)π
m

cos
2 j(l −1)π

m
,

ϕkl
i j4 = cos

2i(k−1)π
m

sin
2 j(l −1)π

m
.

Then, respectively taking the inner product of (5) with
the corresponding eigenfunction ϕkl

i j of the eigenvalue
λkl , we can obtain

m
∑

i, j=1

ϕkl
i j xn+1

i j = fx∗

m
∑

i, j=1

ϕkl
i j xn

i j + f y∗

m
∑

i, j=1

ϕkl
i j yn

i j

+ D1

m
∑

i, j=1

ϕkl
i j∇

2 xn
i j ,

m
∑

i, j=1

ϕkl
i j yn+1

i j = gx∗

m
∑

i, j=1

ϕkl
i j xn

i j + g y∗

m
∑

i, j=1

ϕkl
i j yn

i j

+ D2

m
∑

i, j=1

ϕkl
i j∇

2 yn
i j .

Let Un =
m
∑

i, j=1
ϕkl

i j xn
i j , V n =

m
∑

i, j=1
ϕkl

i j yn
i j , we can get

Un+1 = fx∗U
n+ f y∗V

n− D1λkl U
n,

V n+1 = gx∗U
n+ g y∗V

n− D2λkl V
n,

or
�

Un+1

V n+1

�

=
�

1−x∗−D1λkl a12 x∗

a21 y∗ 1− y∗−D2λkl

��

Un

V n

�

.

Let

A=
�

fx∗ − D1λkl f y∗

gx∗ g y∗ − D2λkl

�

,

its eigenvalues are

λ+(k, l) =
1
2

tr(k, l)+
1
2

Æ

tr(k, l)2−4△ (k, l),

λ−(k, l) =
1
2

tr(k, l)−
1
2

Æ

tr(k, l)2−4△ (k, l),

where

tr(k, l) = fx∗ + g y∗ − (D1+ D2)λkl ,

△(k, l) = fx∗ g y∗ − f y∗ gx∗
− (D1 g y∗ + D2 fx∗)λkl

+ D1D2λ
2
kl .

Let

x0
i j =

m
∑

k,l=1

cklϕ
kl
i j , y0

i j =
m
∑

k,l=1

dklϕ
kl
i j ,

there exists an invertible matrix P such that

A= P−1
�

λ+(k, l) 0
0 λ−(k, l)

�

P

holds. Then
�

xn
i j

yn
i j

�

= An

�

x0
i j

y0
i j

�

= P−1
�

λn
+(k, l) 0

0 λn
−(k, l)

�

P

�

x0
i j

y0
i j

�

.

Let

λM (k, l) =
m

max
k=1,l=1

{|λ+(k, l)| , |λ−(k, l)|},

λK L =
m

max
k=1,l=1

λM (k, l),

we can obtain

1
λn

K L

�

xn
i j

yn
i j

�

= P−1

 

λn
+(k,l)
λn

K L
0

0
λn
−(k,l)
λn

K L

!

P

�

x0
i j

y0
i j

�

= P−1

 

λn
+(k,l)
λn

K L
0

0
λn
−(k,l)
λn

K L

!

P







m
∑

k,l=1
cklϕ

kl
i j

m
∑

k,l=1
dklϕ

kl
i j







∼
�

cK Lϕ
K L
i j

dK Lϕ
K L
i j

�

. (6)

Remark 1 From above discussion, we find that the

solution

�

xn
i j

yn
i j

�n∈Z+

i, j∈[1,m]
of the system (1)–(4) and the

sequence λn
K L

�

cK Lϕ
K L
i j

dK Lϕ
K L
i j

�n∈Z+

i, j∈[1,m]

have some asymptotic

behavior.

Example

In the subsection, we will perform a series of numerical
simulations to verify the above theoretical analysis. For
simplicity, we consider the following discrete Lotka-
Volterra cooperative system with the periodic boundary
conditions

¨

xn+1
i j = xn

i j exp(r − xn
i j + a yn

i j)+ D∇2 xn
i j ,

yn+1
i j = yn

i j exp(r + axn
i j − yn

i j)+ D∇2 yn
i j .

(7)

Turing instability conditions on the system (7) have
been presented by Xu et al [34], namely, if 0 < r < 2,
0< a < 1 and there exists the positive constant D such
that

λkl >
1
D

�

2−
r(1+ a)

1− a

�

,

holds, then the symmetric discrete system (7) is Turing
unstable at the positive fixed point E = ( r

1−a , r
1−a ). It

also means that

λk+τ,l+ι >
1
D

�

2− r(1+a)
1−a

�

, (τ, ι)∈ [0, m−2k]×[0, m−2l].
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Thus, the initial values v0
i j , y0

i j should be chosen by

x0
i j =

r
1− a

+ ϵ1

m−2k
∑

τ=0

m−2l
∑

ι=0

cτιϕ
k+τ,l+ι
i j ,

y0
i j =

r
1− a

+ ϵ2

m−2k
∑

τ=0

m−2l
∑

ι=0

dτιϕ
k+τ,l+ι
i j ,

where ϵ1 and ϵ2 are sufficiently small. Let

D >
1
λkl

�

2−
r(1+ a)

1− a

�

=
1

4sin2 π
201

�

2−
r(1+ a)

1− a

�

,

then, for any (k, l) ∈ [1, m]× [2, m] or (k, l) ∈ [2, m]×
[1, m], λkl satisfies the Turing instability condition. If
we choose r = 1.1, a = 0.2, then

D >
1

4 sin2 π
201

�

2−
r(1+ a)

1− a

�

≈ 358.21.

In this case, we choose that D = 400, m= 201 and

x0
i j =

r
1−a +0.01 sin 2iπ

201 sin 2 jπ
201 +0.01 sin 4iπ

201 sin 4 jπ
201 , (8)

y0
i j =

r
1−a +0.01 sin 2iπ

201 sin 2 jπ
201 +0.01 sin 4iπ

201 sin 4 jπ
201 , (9)

for simulations, a spatial-like pattern is shown in
Fig. 1(a), which is highly similar with the pattern
(Fig. 1(b)) generated when the initial value is selected
as follows.

x0
i j =

r
1− a

+0.01 sin
4iπ
201

sin
4 jπ
201

, (10)

y0
i j =

r
1− a

+0.01 sin
4iπ
201

sin
4 jπ
201

. (11)

Suppose that

λK L >
1
D

�

2−
r(1+ a)

1− a

�

,

and

λkl <
1
D

�

2−
r(1+ a)

1− a

�

, (k, l) ̸= (K , L),

in which (K , L) = (m+1
2 , m+1

2 ), if m is odd; (K , L) = (m
2 +

1, m
2 + 1), if m is even. In this case, we can choose the

initial values distribution

x0
i j =

r
1− a

+ ϵ1ϕ
K L
i j , y0

i j =
r

1− a
+ ϵ2ϕ

K L
i j .

Let m= 201, then

λkl = 4
�

sin2 (k−1)π
201

+ sin2 (l−1)π
201

�

, k, l ∈ [1, m],

λ101,101 = 4
�

sin2 (100)π
201 + sin2 (100)π

201

�

= 7.9995,

and

λ101,100 =λ100,101 = 4
�

sin2 (100)π
201 +sin2 (99)π

201

�

=7.9976.

Let r = 1.1, a = 0.2, and suppose that

7.9976<
1
D

�

2−
r(1+ a)

1− a

�

< 7.9995,

then
0.20626< D < 0.20631.

We choose D = 0.20628 and

x0
i j =

r
1− a

+0.001sin 2i(101−1)π
201 sin 2 j(101−1)π

201 , (12)

y0
i j =

r
1− a

+0.001sin 2i(101−1)π
201 sin 2 j(101−1)π

201 , (13)

spiral pattern will emerge in Fig. 2(a). Further-
more, we choose D = 0.20629 and D = 0.20630,
the corresponding spatial structures (Fig. 2(b) and
Fig. 2(c)) are also similar with Fig. 2(a). Therefore, it
can be judged numerically that if the parameters r and
a are kept fixed in the Turing instability region, and the
initial values are also fixed, the patterns generated in
the interval 0.20626< D < 0.20631 have similarity.

Through the previous discussion of eigenvalue
problem, we found that the same eigenvalue will
correspond to different eigenfunctions. In order to
numerically verify the pattern formation results caused
by different eigenfunctions, the following initial values
are selected.

x0
i j =

r
1− a

+0.001cos 2i(101−1)π
201 cos 2 j(101−1)π

201 , (14)

y0
i j =

r
1− a

+0.001cos 2i(101−1)π
201 cos 2 j(101−1)π

201 . (15)

with r = 1.1, a = 0.2, D = 0.20628. From Fig. 3, we
can find out that, if the initial values distribution
are chosen as (14)–(15) and (12)–(13), respectively,
although the spiral structure will also be generated,
there will be great differences in spatial distribution,
especially in the evolution process. Therefore, it can
be judged numerically that, if the system parameters
are fixed and different eigenvectors corresponding to
the same eigenvalue are selected as the initial values,
the resulting patterns may have certain differences.

Next, we fix the parameters r = 1.1, a = 0.2, D =
0.20628, and change the number of spatial grids, take
m = 200 and m = 201 separately. It can be observed
that the generated patterns are significantly different,
see Fig. 4. It is because, if m= 200, then

λkl = 4
�

sin2 (k−1)π
200 + sin2 (l−1)π

200

�

, k, l ∈ [1, m],

λ101,101 = 4
�

sin2 (101−1)π
200 + sin2 (101−1)π

200

�

= 8,

λ101,100 = 4
�

sin2 (101−1)π
200 + sin2 (100−1)π

200

�

= 7.999.
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Fig. 1 Selective patterns for x , when r = 1.1, a = 0.2, D = 360. (a) n= 50000, the initial values distribution is chosen as (8).
(b) n= 50000, the initial values distribution is chosen as (10).

Fig. 2 Snapshots of contour pictures of the time evolution on x , when r = 1.1, a = 0.2. (a) D = 0.20628, n = 50000.
(b) D = 0.20629, n= 50000. (c) D = 0.20630, n= 50000.

Fig. 3 Selective patterns on x resulting from different eigenfunctions, when r = 1.1, a = 0.2, D = 0.20628. (a) n = 1, the
initial values distribution is chosen as (12). (b) n = 100, the initial values distribution is chosen as (12). (c) n = 50000, the
initial values distribution is chosen as (12). (d) n= 1, the initial values distribution is chosen as (14). (e) n= 100, the initial
values distribution is chosen as (14). (f) n= 50000, the initial values distribution is chosen as (14).
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Fig. 4 Selective patterns on x for different m, when r = 1.1, a = 0.2, D = 0.20628. (a) n= 50000, m= 201. (b) n= 50000,
m= 200.

If still take r = 1.1, a = 0.2, and

7.999<
1
D

�

2−
r(1+ a)

1− a

�

< 8,

then
0.20625< D < 0.2062576.

We find out that the parameter D = 0.20628 does not
meet the Turing instability condition when m = 200,
but falls in the stable region, so the symmetry breaking
does not occur. At this time, we can infer that when m
is selected differently, the eigenvalue and eigenvector
have changed, and the corresponding iteration ma-
trix has also changed. Therefore, although the same
parameters are selected, the differential patterns may
occur.

ADAPTIVE ADJUSTMENT ON PATTERN
FORMATION

Adaptive adjustment method is a control strategy in
which state feedback method and parameter perturba-
tion are combined and used to stabilize instability or
chaos system [29–32]. So that, for a large range of
parameter the controlled system maintain its stability.
Now, deploying adaptive adjustment mechanism to
the system (1)–(2), we can obtain the corresponding
controlled system,
¨

xn+1
i j = γ1( f (xn

i j , yn
i j)+D1∇2 xn

i j)+(1−γ1)xn
i j ,

yn+1
i j = γ2(g(xn

i j , yn
i j)+D2∇2 yn

i j)+(1−γ2)yn
i j ,

(16)

with periodic boundary conditions















xn
i,0 = xn

i,m, xn
i,1 = xn

i,m+1,
xn

0, j = xn
m, j , xn

1, j = xn
m+1, j ,

yn
i,0 = yn

i,m, yn
i,1 = yn

i,m+1,
yn

0, j = yn
m, j , yn

1, j = yn
m+1, j ,

(17)

where γ1, γ2 are the adjustment parameters. If γ1 ̸=
γ2, the mechanism is called nonuniformly adaptive
adjustment, if γ1 = γ2, it is called uniformly adaptive
adjustment. At γ1, γ2 = 0, the controlled system (16)
becomes the original system (7).

Stability analysis

The discrete systems can be stabilized by an adaptive
adjustment [29, 30], then the stability analysis on sys-
tem (16)–(17) can also be done. For simplicity, the
detailed calculation is given through an example in the
next subsection. However, we find out the following
fact in this subsection.

Fix k, l ∈ N and assume that T is nonexpansive
mapping on a closed convex subset D ⊂ Rn. Defined
a sequence {x t} in D by x1, x2, . . . , xmax{k,l} ∈ D and

x t = λT x t−k +(1−λ)x t−l (18)

for t ∈N with t >max{k, l}. Under a suitable assump-
tion, does {x t} converge to a fixed point of T? We can
get the following conclusion.

Proposition 1 Fix k, l ∈ N, put m =max k, l. Let D be
the unit ball of the 2-dimensional real Hilbert space E.
If l ̸= 1, then for any λ > 0 there exists a nonexpansive
mapping T on D and a sequence {x t} such that {x t} dose
not converge.

Proof : Put m = max{k, l}. Define a nonexpansive
mapping T by

T (u1, u2) =
�

u1 cos 2πk
l −u2 sin 2πk

l , u1 sin 2πk
l +u2 cos 2πk

l

�

for (u1, u2) ∈ D. Set x1, x2, · · · , xm ∈ D by

x j = (cos 2π j
l , sin 2π j

l ), j = 1, 2, . . . , m.

We shall show

x j = (cos 2π j
l , sin 2π j

l ) for all j ∈ N.
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It holds when j ⩽ m. We assume that t > m and the
equation holds for j < t. Then we have

x t = λT x t−k +(1−λ)x t−k

= λT
�

cos 2π(t−k)
l , sin 2π(t−k)

l

�

+(1−λ)
�

cos 2π(t−k)
l , sin 2π(t−l)

l

�

= λ
�

cos 2π(t−k+k)
l , sin 2π(t−k+k)

l

�

+(1−λ)
�

cos 2πt
l , sin 2πt

l

�

=
�

cos 2πt
l , sin 2πt

l

�

.

By induction,we obtain the equation. This completes
the proof. 2

Remark 2 Proposition 1 implies that the adaptive ad-
justment or learning rule system of the form

x t+1 = λT x t +(1−λ)x t−l

can be unstable when l ⩾ 1.

Simulations

As an example, we consider the following discrete
control system with the periodic boundary conditions.
¨

xn+1
i j =γ(x

n
i j exp(r−xn

i j+a yn
i j)+D∇2 xn

i j)+(1−γ)x
n
i j ,

yn+1
i j =γ(y

n
i j exp(r+axn

i j−yn
i j)+D∇2 yn

i j)+(1−γ)y
n
i j .

(19)

Then we can deduce the symmetric discrete system
with uniformly adaptive adjustment is stable at the
positive fixed point E = ( r

1−a , r
1−a ) if and only if

0< r < 2, 0 < a < 1 and there exists the nonnegative
constant γ such that

0< γ
� r(1+ a)

1− a
+ Dλkl

�

< 2

holds. For its details, see the appendix.
We still assume that r = 1.1, a= 0.2, D= 0.20628,

m= 201, and

x0
i j =

r
1− a

+0.001sin 2i(101−1)π
201 sin 2 j(101−1)π

201 ,

y0
i j =

r
1− a

+0.001sin 2i(101−1)π
201 sin 2 j(101−1)π

201 ,

in this case, λ101,101 = 4
�

sin2 (101−1)π
201 +sin2 (101−1)π

201

�

=
7.9995, then (19) is stable when 0.39396< γ < 1. We
can observe that, with the iteration’s further increased
if γ = 0.5, the boundary of the domain moves in time
till a single domain covers the space, whose pattern
is similar with Fig. 4(b). Even if other parameter γ ∈
(0.39396, 1) is selected, similar fact will be observed,
which only has different single color to the whole
domain. Next, we take γ = 0.05, which falls on the
unstable region, the evolution pattern is shown in
Fig. 5(a). The spiral-like pattern is observed, which

is similar with Fig. 2(a). With the further increase
of γ ∈ (0, 0.39396), spiral patterns can still emerge,
the density of the spirals will decrease, and there is a
trend towards steady state, see Fig. 5(b) and Fig. 5(c).
However, if γ = 1.1 which still falls on the unstable
region, one can see that a single blue covers the whole
space, which we call ‘not good’ pattern or ‘overflowing’
pattern (Fig. 5(d)).

To examine Proposition 1, we construct the follow-
ing discrete control system with the periodic boundary
conditions for simulations. Set r = 1.1, a = 0.2, D =
0.20628, m= 201, and

¨

xn+1
i j = γ(xn

i j exp(r − xn
i j + a yn

i j)+D∇2 xn
i j)+(1−γ)x

n−1
i j ,

yn+1
i j = γ(yn

i j exp(r + axn
i j − yn

i j)+D∇2 yn
i j)+(1−γ)y

n−1
i j .

We can find spiral-like patterns and ‘overflowing’ pat-
terns can emerge, but steady state patterns can not be
observed for all γ > 0.

CONCLUSION

We give several concluding remarks in this section.
1) Taking the coupled discrete diffusion equation

as the research object, the relationship between the
pattern evolution and the initial value is discussed. The
analysis method is derived from [27], it is more general
and suitable for high-dimensional situations. Indeed,
in this work, theoretical analysis shows that taking the
initial value in the Turing unstable selection region,
the pattern generation is affected by the eigenfunc-
tion corresponding to the eigenvalue of the discrete
Laplace operator with the largest modulus. Using
the eigenfunction corresponding to this eigenvalue to
select the initial value, we can obtain a pattern with
certain characteristics. Numerical simulations verify
the following conclusions:

(a) With fixed initial values, the parameter space
can be obtained in the Turing unstable region, and
the patterns generated in this parameter space have
similarity.

(b) With fixed parameters, taking different eigen-
function corresponding to the same eigenvalue as the
initial value, can lead to the difference of the generated
pattern.

(c) With fixed parameters, when the spatial lattice
division changes, the eigenvalues and eigenfunctions
will change, and lead to the difference of the generated
patterns.

2) We use adaptive adjustment mechanism to
control the discrete Turing system, showing that the
controlled system can select the pattern formation. In
addition, some theoretical generalization on adaptive
adjustment mechanism is obtained. The simulation re-
sult has also validated the effectiveness of the adaptive
adjustment mechanism.
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Fig. 5 Selective patterns on x for different γ, when r = 1.1, a = 0.2, D = 0.20628, m = 201, n = 50000. (a) γ = 0.05.
(b) γ= 0.15. (c) γ= 0.4. (d) γ= 1.1.

Appendix

In this appendix, we discuss the instability of (19) with
the periodic boundary conditions at the positive fixed
point E = ( r

1−a , r
1−a ).

Then, the linearized form of (19) at E = ( r
1−a , r

1−a )
is

¨

xn+1
i j =(1−

r(1−γ)
1−a )x

n
i j +

r(1−γ)
1−a yn

i j + D(1−γ)∇2 xn
i j ,

yn+1
i j =

r(1−γ)
1−a xn

i j +(1−
r(1−γ)

1−a )y
n
i j + D(1−γ)∇2 yn

i j .
(20)

Taking the inner product of (20) with the corre-
sponding eigenfunction of the eigenvalue λkl , we see
that











































m
∑

i, j=1
ϕkl

i j xn+1
i j =(1−

r(1−γ)
1−a )

m
∑

i, j=1
ϕkl

i j xn
i j+

r(1−γ)
1−a

m
∑

i, j=1
ϕkl

i j yn
i j

+D(1−γ)
m
∑

i, j=1
ϕkl

i j∇
2 xn

i j ,

m
∑

i, j=1
ϕkl

i j yn+1
i j = r(1−γ)

1−a

m
∑

i, j=1
ϕkl

i j xn
i j+(1−

r(1−γ)
1−a )

m
∑

i, j=1
ϕkl

i j yn
i j

+D(1−γ)
m
∑

i, j=1
ϕkl

i j∇
2 yn

i j .

(21)

Let Un =
m
∑

i, j=1
ϕkl

i j xn
i j , V n =

m
∑

i, j=1
ϕkl

i j yn
i j , and use the

periodic boundary conditions (2), then we have
¨

Un+1 = (1− r(1−γ)
1−a )U

n+ r(1−γ)
1−a V n−D(1−γ)λkl U

n,

V n+1 = r(1−γ)
1−a Un+(1− r(1−γ)

1−a )V
n−D(1−γ)λkl V

n.
(22)

If (Un, V n) is a solution of the system (22), then (xn
i j =

Unϕkl
i j , yn

i j = V nϕkl
i j ) is also obviously a solution of

(20) with the periodic boundary conditions. Thus, the
stable system (22) will produce that the problem (20)
is stable.

Let

J =

�

(1− r(1−γ)
1−a )−D(1−γ)λkl

r(1−γ)
1−a

r(1−γ)
1−a (1− r(1−γ)

1−a )−D(1−γ)λkl

�

,

its eigenvalues are

λ1(k, l) = 1− (1−m)Dλkl ,

λ2(k, l) = (1−m)
�

1−
r(1+ a)

1− a
− Dλkl

�

+m.
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By means of
�

�λ1,2(k, l)
�

� < 1, the stability con-
ditions of the system (20) with periodic boundary
conditions can be obtained.
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