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ABSTRACT: A topological index is a numerical invariant which depicts the properties of molecules in accordance to
their chemical structure. For a given integer n> 0, if a graph G exists with a total eccentric index of ζ(G) = n, then “n”
is said to be total eccentric graphical, which is kind of an inverse problem for topological indices. An (integer) interval
[α,β] is called p-total eccentric (free) interval if for all n ∈ [α,β] there exists a (no) graph G(p, q) with ζ(G) = n. In
this article, we determine several results for the existence and non-existence of total eccentric graphical intervals for
graphs G on p vertices.
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INTRODUCTION

Preliminaries

Molecular graph theory is one of the prominent areas
in mathematical chemistry. The chemical structures
are converted into graph theory invariants by consid-
ering atoms as vertices and edges as covalent bonds
between the atoms. In the field of computational
chemistry as well as physical chemistry, these methods
are used to predict molecular properties and test theo-
retical concepts using computational methods. With
the help of topological indices, QSAR/QSPR studies
[1] are rapidly growing by applying mathematical
principles to infer the characteristics and biological
interactions of diverse chemical substances. This study
is particularly useful when the chemical substance is
unavailable and when predicting molecular properties
that are either difficult to find or may pose health risks.

A topological index is a one-of-a-kind real value
that could be assigned to molecular graphs via a func-
tion or mapping. Usually, it is a unique real number
related to the molecular graph’s structure. The task of
creating a chemical structure (a graph) with a given
molecular index (if it exists) is known as the “inverse
problem” of the molecular index.

Definition 1 Total eccentric index of G = ζ(G) =
∑

x∈V (G)
e(x) where e(x) = max

y∈V (G)
d(x , y).

Definition 2 If a graph G exists for a given order p
with ζ(G) = n for all n∈ [α,β] then the integer interval
[a, b] is called p-total eccentric interval.

Definition 3 If there exists no graph G for a given
order p with ζ(G) = n for all n∈ [α,β] then the integer
interval [a, b] is called p-total eccentric free interval.

Literature survey

In [2], Goldman et al initially studied the inverse prob-
lems and discovered that this could be used in building
the data base for drug development in computer chem-
istry. Chemical compounds with desired structure and
properties are uncovered, developed, and enhanced
using computer-aided drug discovery (CADD), as dis-
cussed in [3, 4]. Computational chemists could use
the inverse problem to design or study a chemical
structure with a specific chemical and biological prop-
erties, which are studied in [5–9]. As a result of their
widespread use and modern technological capabilities,
many indices have been developed and their math-
ematical and chemical parameters evaluated. Many
eccentricity-based indices have been developed; the
formulation of safe anti-HIV pharmaceuticals is one of
their significant contributions [5]. The total eccentric
index is the over all sum of the eccentricities of a graph
[10], and it is being researched further for its potential
applications in a variety of fields, discussed in [11–15].

Methodology

The first and most popular distance-based topological
index was the Wiener index, which was introduced
in [16]. As a result of its applications in numerous
disciplines [17–19], many other topological indices
of chemical graphs have been introduced and stud-
ied [20]. The inverse problem of finding a graph
with given order p, whose Wiener index n ∈ [α,β]
is introduced in [21]. The authors established var-
ious intervals and free intervals for the well-known
Weiner index. Also, they proved [

�p
2

�

, (p − 1)2] and
[
�p

2

�

, (p − 1)2 + k(p − 3)] are p-Wiener intervals, and
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� p2−7p+24
6 , p2−p−6

6

�

is a p-Wiener free interval. As a
result of these findings, we enhanced this strategy for
the total eccentric index and established certain p-
eccentric graphical intervals and p-eccentric graphical
free intervals for total eccentric index. In addition, we
find a relationship between the total eccentric index of
a graph G and G− e. For graph theoretical definitions
and terminologies, we follow [18, 22–24].

Theorem 1 ([2]) For any path P with y edges and
y +1 vertices,

ζ(P) =

� 3
4 y2+ y, if y is even
3
4 y2+ y +1/4, if y is odd.

MAIN RESULT

Theorem 2 For each k, 2 ⩽ k ⩽ p − 2,
� 

(3p+k)(p−k)−4k+4
4

£

,
 

(3p+k)(p−k)
4

£�

is a p-total eccentric
interval and all these intervals are mutually disjoint.

b

bbb b b b b b b b bb b b b b b

vk+1

v1 v2 v3 vk−1 vk vk+2 vk+3 vpvp−1vp−2vk+4

Fig. 1 The constructed graph G.

Proof : Let G be a graph whose vertex set is {v1,
v2,. . . , vp} and the edge set is {v j vk+1 : 1 ⩽ j ⩽ k} ∪
{v j v j+1 : k+ 1 ⩽ j < p}. Fig. 1 depicts the graph that
is constructed. In the graph G,

e(v j) =







p− k, for 1⩽ j ⩽ k
p− j, for k+1⩽ j ⩽ k+ ⌊ p−k

2 ⌋
j− k, for k+ ⌊ p−k

2 ⌋+1⩽ j ⩽ p.

Now
k
∑

j=1

e(v j) =
k
∑

j=1

(p− k) = k(p− k),

k+⌊ p−k
2 ⌋
∑

j=k+1

e(v j) =
k+⌊ p−k

2 ⌋
∑

j=k+1

(p− j)

= p− (k+1)+ p− (k+2)+ · · ·+ p− (k+ ⌊
p− k

2
⌋)

= p− (k+1)+ p− (k+2)+ · · ·+ p− (k+ ⌊
p− k

2
⌋)

= ⌊
p− k

2
⌋
�

p− k−
1
2

�

⌊
p− k

2
⌋+1
�

�

and

p
∑

j=k+⌊ p−k
2 ⌋+1

e(v j) =
p
∑

j=k+⌊ p−k
2 ⌋+1

( j− k)

=
�

k+ ⌊
p− k

2
⌋+1− k
�

+
�

k+ ⌊
p− k

2
⌋+2− k
�

+ · · ·+(p− k)

=
�

p− k−⌊
p− k

2
⌋
��

⌊
p− k

2
⌋
�

+
1
2

�

p− k−⌊
p− k

2
⌋
��

p− k−⌊
p− k

2
⌋+1
�

=
�

p− k−⌊
p− k

2
⌋
��1

2
⌊

p− k
2
⌋+

p− k+1
2

�

Hence, the total eccentricity of G is,

ζ(G) =
p
∑

j=1

e(v j)

=
� p−k

2

�

(p−k−1)−
� p−k

2

�
2

+
(p−k)(p+k+1)

2

=

¨

(p−k)(3p+k)
4 , if p− k is even

(3p+k)(p−k)+1
4 , if p− k is odd

=
¡

(3p+ k)(p− k)
4

¤

.

Let G1 be the graph obtained from G by joining
the vertex v1 with v2, v3, . . . , vk and vk+2. In G1, the
eccentricity of v1 is decreased by 1, and the eccentricity
of V (G)−{v1} remains the same as in G. This implies
that ζ(G1) = ζ(G)−1=

 

(3p+k)(p−k)
4

£

−1.
Let G2 be the graph obtained from G1 by joining

the vertex v2 with the vertices v3, v4, . . . , vk and vk+2.
In G2, the eccentricity of v2 is decreased by 1, and
the eccentricity of V (G1)−{v2} remains the same as in
G1. This implies that ζ(G2) = ζ(G1)− 1 = ζ(G)− 2 =
 

(3p+k)(p−k)
4

£

−2.
This process is repeated up to vk−1 and the

graph Gk−1, obtained from Gk−2 by joining vk−1 with
vk and vk+2, has a total eccentric index ζ(Gk−1) =
⌈ (3p+k)(p−k)

4 ⌉− (k−1) = ⌈ (3p+k)(p−k)−4k+4
4 ⌉.

Hence,
� 

(3p+k)(p−k)−4k+4
4

£

,
 

(3p+k)(p−k)
4

£�

is a
p-total eccentric interval for each k, 2 ⩽ k ⩽ p − 2.
Denote this p-total eccentric interval as [Ak, Bk],
2 ⩽ k ⩽ p − 2. Take k = p − i and denote
the p-total eccentric interval corresponding to
k = p − i as [A′i , B′i]. Then for 2 ⩽ i ⩽ p − 2,

[A′i , B′i] =
� 

(4p−i)i−4p+4i+4
4

£

,
 

(4p−i)i
4

£�

and these
intervals are mutually exclusive if A′i+1 − B′i > 0. That
is, [A′i , B′i] and [A′i+1, B′i+1] are not the overlapped
intervals in the real line R+.
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Case(i): i is even

A′i+1 =
  (4p− i−1)(i+1)−4p+4i+8

4

£

=
 4pi− i2

4
+

2i+7
4

£

=
4pi− i2

4
+

i+4
2

and B′i =
(4p− i)i

4

Then A′i+1− B′i =
4pi− i2

4
+

i+4
2
−
�4pi− i2

4

�

=
i
2
+2> 0.

Case(ii): i is odd

A′i+1 =
  (4p− i−1)(i+1)−4p+4i+8

4

£

=
 

p(i+1)− p+ i+2−
(i+1)2

4

£

= p(i+1)− p+ i+2−
(i+1)2

4

and B′i = ⌈pi−
i2

4
⌉

= ⌈pi−
(i−1)2

4
−
(i−1)

2
⌉

= pi−
(i−1)2

4
−
(i−1)

2

Then A′i+1− B′i = 2+
i−1

2
> 0.

Hence, all these intervals are mutually disjoint,
and for each k in 2 ⩽ k ⩽ p − 2, the interval
� 

(3p+k)(p−k)−4k+4
4

£

,
 

(3p+k)(p−k)
4

£�

is a p-total eccentric
interval. 2

Theorem 3 For any p⩾ 5,
��

3p2−4p−3
4

�

+1,
�

3p2−2p
4

�

−1
�

is a p-total eccentric free interval.

Proof : Let Gi be a graph obtained from a path
v1v2 · · · vp−1 by attaching a pendent vertex vp to a
vertex vi , for some i, 2⩽ i ⩽ ⌊ p

2 ⌋.
Case(i): p is odd. The eccentricity of the vertices of Gi
are

e(v j) =

�

p−1− j for 1⩽ j ⩽ p−1
2

e(vp− j) for p+1
2 ⩽ j ⩽ p−1

e(vp) = p− i.

and

ζ(Gi) =
p
∑

j=1

e(v j) = 2

p−1
2
∑

j=1

(p−1− j)+ p− i

= 2
� p−1

2
(p−1)−(1+2+3+· · ·+

p−1
2
)
�

+p−i

=
3p2−8p+5

4
+ p− i

=
3p2−4p+5

4
− i.

Case(ii): p is even. The eccentricity of the vertices of
Gi are

e(v j) =







p−1− j for 1⩽ j ⩽ p
2 −1

p−2
2 for j = p

2

e(vp− j) for p
2 +1⩽ j ⩽ p−1

e(vp) = p− i.

and

ζ(Gi) =
p
∑

j=1

e(v j) = 2

p
2 −1
∑

j=1

(p−1− j)+
p−2

2
+ p− i

= 2
�

(
p
2
−1)(p−1)−(1+2+3+· · ·+(

p
2
−1))
�

+
p−2

2
+p−i

=
3p2 −8p+4

4
+ p− i

=
3p2 −4p+4

4
− i.

Hence, ζ(Gi) =
�

3p2−4p+5
4

�

−i for 2⩽ i ⩽ ⌊ p
2 ⌋. ζ(Gi)

attains maximum for i = 2, that is, i is minimum.
Among the trees T on p vertices, ζ(T ) is maximum
when T is a path, and the next maximum is obtained
from the graph structure having p vertices, which is
G2. If we add more edges to the graph G2, then
the resultant graph’s total eccentric index is less than
ζ(G2). Hence, the result follows. 2

Remark 1 For the intervals given in Theorem 3, if
p = 3 and p = 4, the free intervals are [4,4] and [9, 9]
respectively.

Theorem 4 For any p⩾ 4,
��

3p2−6p+7
4

�

,
�

3p2−4p−3
4

��

is
a p-total eccentric interval.

Proof : From the graph Gi constructed in the proof
of Theorem 3, it is observed that ζ(Gi) = ζ(Gi−1) −
1 = ζ(G2) − (i − 2), for 3 ⩽ i ⩽ ⌊ p

2 ⌋. Hence, ζ(Gi)
is minimum when i = ⌊ p

2 ⌋, and the minimum value

is ζ(G2) −
�

⌊ p
2 ⌋ − 2
�

= ⌊ 3p2−6p+7
4 ⌋. Hence, the result

follows. 2
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Remark 2 The graph G2 constructed in Theorem 3 is
isomorphic to the graph G constructed in Theorem 2
when k = 2. Hence, the upper bounds of both in-
tervals in Theorem 2 and Theorem 4 coincide with
each other. The interval

��

3p2−6p+7
4

�

,
�

3p2−4p−3
4

��

is

of length ⌊ p−2
2 ⌋, and the interval [A2, B2] is of length

2. As a result, for all p ⩾ 6, [A2, B2] is contained in
��

3p2−6p+7
4

�

,
�

3p2−4p−3
4

��

. Also, the intervals [A3, B3]

and
��

3p2−6p+7
4

�

,
�

3p2−4p−3
4

��

are disjoint.

Theorem 5
��

3p2−14p
4

�

+ p+4,
�

3p2−14p
4

�

+2p−2
�

is a
p-total eccentric interval for p ⩾ 8.

Proof : Let G be a graph obtained from a path v1, v2,
v3, . . . , vp−2 on p−2 vertices by attaching a vertex vp−1

at vi , for some i, 2 ⩽ i ⩽ ⌈ p−2
2 ⌉ and a vertex vp at v j ,

for some j, ⌈ p−2
2 ⌉+1⩽ j ⩽ p−3. In the graph G,

e(vk) =

�

p−2− k for 1⩽ k ⩽ ⌈ p−2
2 ⌉

k−1 for ⌈ p−2
2 ⌉+1⩽ k ⩽ p−2

e(vp−1) = e(vi)+1= p−1− i

e(vp) = e(v j)+1= j.

Now

p
∑

k=1

e(vk) =
⌈ p−2

2 ⌉
∑

k=1

(p−2−k)+
p−2
∑

k=⌈ p−2
2 ⌉+1

(k−1)+p−1−i+ j

= ζ(Pp−2)+ p+ j− i−1.

By Theorem 1,

ζ(Pp) =
�3p2−2p

4

�

=
�3(p−2)2−2(p−2)

4

�

+ p+ j− i−1

=
�3p2−14p

4

�

+ p+ j− i+3.

ζ(G) is maximum when i is minimum and j is maxi-
mum, and the maximum value is B= ⌊ 3p2−14p

4 ⌋+p+(p−
3)−2+3= ⌊ 3p2−14p

4 ⌋+2p−2. ζ(G) is minimum when i is
maximum and j is minimum, and the minimum value
is A= ⌊ 3p2−14p

4 ⌋+p+⌈ p−2
2 ⌉+1−⌈ p−2

2 ⌉+3= ⌊ 3p2−14p
4 ⌋+p+

4. Thus, [A, B] =
�

⌊ 3p2−14p
4 ⌋+ p+4, ⌊ 3p2−14p

4 ⌋+2p−2
�

is a p-total eccentric interval. 2

Remark 3 From Theorem 2, [A3, B3] =
��

3p2−6p−17
4

�

,
�

3p2−6p−9
4

��

. Since the length of the interval [A, B] is
p− 6, the length of the interval [A3, B3] is 2 and B3 =
B, [A3, B3] is a subinterval of [A, B] for p ⩾ 8. For 6 ⩽
p ⩽ 14, [A4, B4]∩ [A, B] =∅ and for p ⩾ 15, [A4, B4]∩

[A, B] ̸=∅. But A−B5 = 10, for all p ⩾ 6. This implies
that [Ak, Bk]∩[A, B] =∅ for 5⩽ k⩽ p−2. From these,
it may be concluded that the p-total eccentric interval
[A, B] obtained in Theorem 5 is an extension of either
[A3, B3] or [A4, B4] obtained in Theorem 2 and disjoint
from [Ak, Bk] for 5⩽ k ⩽ p−2.

Theorem 6 Let G be graph on p ⩾ 3 vertices with at
least two full degree vertices and e be an edge of G then

ζ(G−e) =



































ζ(G)+2 if end vertices of e are full degree

vertices,

ζ(G)+1 if exactly one end vertices of e is

full degree vertex,

ζ(G) if both end vertices of e are not

full degree vertices.

Proof : Let v1, v2, . . . , vk be the full degree vertices and
vk+1, . . . , vp be the remaining vertices of G and e be an
edge of G.
Case(i): End vertices of e are full degree vertices. Let
e = vi v j , 1⩽ i, j ⩽ k and i ̸= j. In G− e,

eG−e(vl) =

�

eG(vl)+1 if either l = i or l = j,
eG(vl) otherwise.

and hence, the result follows.
Case(ii): Exactly one end vertex of e is a full degree
vertex say vi . In G− e,

eG−e(vl) =

�

eG(vl) if l ̸= i,
eG(vl)+1 if l = i.

Case(iii): End vertices of e is not a full degree vertices.
Let e = vi v j , k + 1 ⩽ i, j ⩽ p and i ̸= j. In G − e,
eG−e(vl) = eG(vl) for 1 ⩽ l ⩽ p. Hence, the result
follows. 2

Theorem 7 For any positive integer k⩾ 4,
�

(4k−2)2k−
k + 2 − 2k−1, (4k − 2)2k − k + 2

�

is a p-total eccentric
interval when p = 2k+1−1.

b

b b

b b b b

b b b b b b b b
b

b

b
b
b

b b

v1

v2 v3

v4 v5 v6 v7

v8 v10 v11 v12 v13 v14

v2k
v2k+1−1

v15

b

v9

Fig. 2 Binary Tree with v2k+1−1 vertices.

Proof : Consider a binary tree T with 2k+1 − 1 vertices
for k ⩾ 4. T is labelled as shown in Fig. 2. The degree
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sequence of T is

d(vi) =







2 for i = 1,
3 2⩽ i ⩽ 2k −1,
1 2k ⩽ i ⩽ 2k+1−1.

The eccentricity of the vertices of T are

e(vi) =







k for i = 1,
k+ j 2 j ⩽ i ⩽ 2 j+1−1, j = 1,2, . . . , k−1,
2k 2k ⩽ i ⩽ 2k+1−1.

Hence, the total eccentricity of T is

ζ(T ) =
2k+1−1
∑

i=1

e(vi)

= e(v1)+
2k−1
∑

i=2

e(vi)+
2k+1−1
∑

i=2k

e(vi)

= k+
k−1
∑

j=1

2 j+1−1
∑

i=2 j

(k+ j)+
2k+1−1
∑

i=2k

2k

= k+ k(2+22+ · · ·+2k−1)+ (1(2)+2(22)

+ · · ·+(k−1)(2k−1))+ (2k)2k

= (4k−2)2k − k+2.

Consider a path vi v⌊ i
2 ⌋

v⌊ i
4 ⌋

v⌊ i
8 ⌋

for any i = 2k, 2k + 4,

2k + 8, . . . , 2k+1 − 4. For a fixed value of i, if we join
vi and v⌊ i

4 ⌋
by an edge, the total eccentric index of this

new graph is ζ(T )−1. Again, if we join vi and v⌊ i
8 ⌋

by
an edge, the total eccentric index of this new graph is
ζ(T )− 2. Applying the above procedure to all i, the
total eccentric index of the resultant graph is ζ(T )−
2k−1. Hence, for any k ⩾ 4,

�

(4k−2)2k − k+2−2k−1,
(4k−2)2k − k+2

�

is a p-total eccentric interval when
p = 2k+1−1. 2

CONCLUSION

In this paper, we consider the inverse problem of the
topological index for the total eccentric index. This
study employs a novel method to address the ques-
tion,“Is there a simple connected graph G of order p
whose total eccentric index n ∈ [α,β]?” as opposed
to the conventional inverse problem. We studied such
intervals and tried to extend their lengths by using
different graph constructions. Also, find some free
intervals for which no graph exists. These findings
are useful for the construction of new molecular struc-
tures. These findings are also significant in deter-
mining the existence or non-existence of a particular
molecular structure in the study of computer-aided
drug designs and chemical graph theory.
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