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ABSTRACT: Let A be a complex matrix. The question when a generalized column constrained inverse coincides with
a generalized row constrained inverse was answered, which lead to the generalized constrained inverse of A was
introduced and this inverse coincides with the weak group inverse. Moreover, the “distance” between the generalized
constrained inverse and the inverse along two matrices was given, that is, the generalized constrained inverse of A
coincides with the (Ak, (Ak)∗A)-inverse of A, where k is the index of A.
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INTRODUCTION

Let C be the complex filed. The set Cm×n denotes the
set of all m × n complex matrices over the complex
filed C. Let A ∈ Cm×n. The symbol A∗ denotes the
conjugate transpose of A. Notations R(A) = {y ∈ Cm :
y = Ax , x ∈Cn},N (A) = {x ∈Cn : Ax = 0, x ∈Cn} and
RS (A) = {y ∈ Cn : y⊤ = x⊤A, x ∈ Cm} will be used in
the sequel. The smallest positive integer k such that
rank(Ak) = rank(Ak+1) is called the index of A ∈ Cn×n

and denoted by Ind(A). Let A ∈ Cm×n. If a matrix
X ∈ Cn×m satisfies

AXA= A, XAX = X , (AX )∗ = AX and (XA)∗ = XA,

then X is called the Moore-Penrose inverse of A [1, 2]
and denoted by X = A†. Let A ∈ Cm×n and X ∈ Cn×m.
If AXA= A holds, then X (and denoted by A−) is called
an inner inverse of A, the set A{1} represents the class
all inner inverse of A, i.e. A{1} = {X : AXA= A}. Let
A, X ∈ Cn×n. If

AXA= A, XAX = X and AX = XA,

then X is called a group inverse of A. If such X
exists, then it is unique and denoted by A# [3]. A
necessary and sufficient condition for a given complex
square matrix to have group inverse is Ind(A) ⩽ 1.
Manjunatha Prasad and Mohana [4] introduced the
core-EP inverse of matrix [4, Definition 3.1]. Let
A ∈ Cn×n. If there exists X ∈ Cn×n such that XAX =
X ,R(X ) =R(X ∗) =R(Ak), then X is called the core-
EP inverse of A. If such inverse exists, then it is unique
and denoted by A †⃝. For a square matrix A ∈ Cn×n,
a inner inverse of A with columns belonging to the
linear manifold generated by the columns of A will be
denoted by A−C . For a square matrix A ∈ Cn×n, a inner
inverse of A with rows belonging to the linear manifold
generated by the rows of A will be denoted by A−R .

By [5, Theorem 2.1], Wang introduced a new ma-
trix decomposition, namely the Core-EP decomposition
of A∈ Cn×n with Ind(A) = k. Given a matrix A∈ Cn×n,
then A can be written as the sum of matrices A1 ∈Cn×n

and A2 ∈ Cn×n, that is A= A1 + A2, where A1 ∈ CC M
n ,

Ak
2 = 0 and A∗1A2 = A2A1 = 0, CC M

n = {A ∈ Cn×n |
rank{(A)} = rank{(A2)}. By Theorems 2.3 and 2.4 in
[5], Wang proved this matrix decomposition is unique
and there exists a unitary matrix U ∈ Cn×n such that

A1 = U
�

T S
0 0

�

U∗ and A2 = U
�

0 0
0 N

�

U∗, (1)

where T ∈ Cr×r is nonsingular and N ∈ C(n−r)×(n−r) is
nilpotent. Some new generalized inverses was investi-
gated by using the Core-EP decomposition of A∈Cn×n,
for example, the generalized WG inverse [6]. New
type generalized inverse can be investigated in rings,
for example, the (p, q, m)-core inverse and the 〈p, q, n〉-
core inverse [7]. The EP-nilpotent decomposition of A
was introduced by Wang and Liu [8].

By [9, Definition 1.2] and [10, Definition 2.1],
the authors introduced the one-sided (b, c)-inverse in
rings. By [11, Definition 2.7], the authors introduced
the one-sided (B, C)-inverse for complex matrices. Let
A, B, C ∈ Cn×n. We call that X ∈ Cn×n is a left (B, C)-
inverse of A if we have N (C) ⊆ N (X ) and XAB = B.
We call that Y ∈ Cn×n is a right (B, C)-inverse of A if
we have R(Y ) ⊆ R(B) and CAY = C . In fact, there
is an important generalized inverse was introduced
in [12] by Rao and Mitra. Let A ∈ Cn×n. In [13],
Rakić showed that Rao and Mitra’s constrained inverse
of A coincides with the (B, C)-inverse of A, where
B, C ∈ Cn×n. Existence criteria and expressions of the
(b, c)-inverse in rings can be found in [14, 15]. In
the next section, two generalized constrained inverses
were introduced by using the core part of the Core-EP
decomposition of a complex matrix, the generalized
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column constrained inverse of A and the generalized
row constrained inverse of A. The expression of a
generalized column constrained inverse of A is A−gC =
A1(A2

1)
− and the expression of a generalized row con-

strained inverse of A is A−gR = (A
2
1)
−A1. After that,

we answer the question when a generalized column
constrained inverse coincides with a generalized row
constrained inverse, that is, if A−gC is a generalized
column constrained inverse of A and A−gR is a gener-
alized column constrained inverse of A, then Aw⃝ =
A−gC A1A−gR. Finally, we obtained the “distance” between
the generalized constrained inverse and the inverse
along two matrices, that is, the generalized constrained
inverse of A coincides with the (Ak, (Ak)∗A)-inverse of A
for A∈ Cn×n with Ind(A) = k.

TWO GENERALIZED CONSTRAINED INVERSES
WERE INTRODUCED BY USING THE CORE PART
OF THE CORE-EP DECOMPOSITION OF A
COMPLEX MATRIX

For a square matrix A∈Cn×n, an inner inverse of A with
columns belonging to the linear manifold generated
by the columns of A will be denoted by A−C . That
is, if X ∈ Cn×n satisfy AXA = A and R(X ) ⊆ R(A),
then X = A−C [16]. Motivated by the definition of
A−C , we introduced the generalized column constrained
inverse of A by using the core part of the Core-EP
decomposition of A. As the core part of the Core-EP
decomposition of A is useful in the study of some kinds
of generalized inverses. We use an inner inverse of A1
with columns belonging to the linear manifold gener-
ated by the columns of A1 to define the generalized
column constrained inverses of A.

Definition 1 Let A∈Cn×n with A= A1+A2 be the Core-
EP decomposition of A as in (1). For the square matrix
A1, an inner inverse of A1 with columns belonging to
the linear manifold generated by the columns of A1
will be called a generalized column constrained inverse
of A and denoted by A−gC . That is, if X ∈ Cn×n satisfy
A1XA1 = A1 and R(X ) ⊆R(A1), then X = A−gC .

Lemma 1 (Corollary 2.1 in [16]) Let A ∈ Cm×n and
P ∈ Cn×p. Then X = P(AP)− ∈ A{1} if and only if
rank(AP) = rank(A) for any (AP)− ∈ AP{1}.

As A1 ∈ CC M
n , we have generalized column con-

strained inverse of A always exists by Lemma 1 and
let P = A. In the following theorem, we will give
the expression of a generalized column constrained
inverse of A by using the core part of the Core-EP
decomposition of A.

Theorem 1 Let A∈ Cn×n with A= A1+A2 be the Core-
EP decomposition of A as in (1). Then the expression of
a generalized column constrained inverse of A is A−gC =
A1(A2

1)
−.

Proof : Since A1 is the core part of A, so rank(A2
1) =

rank(A1). By Lemma 1 and rank(A2
1) = rank(A1), we

can get A−gC = A1(A2
1)
−. 2

Theorem 2 Let A∈ Cn×n with A= A1+A2 be the Core-
EP decomposition of A as in (1). Then the expression of
a generalized column constrained inverse of A is

A−gC = U
�

T−1 Z
0 0

�

U∗, (2)

where Z = T X2+SX4 for some X2, X4 with suitable size.

Proof : From A1 = U
�

T S
0 0

�

U∗, we have

A2
1 = U
�

T 2 TS
0 0

�

U∗.

Let X = U
�

X1 X2
X3 X4

�

U∗ be a inner inverse of A2
1, then

we have

A2
1 = U
�

T 2 TS
0 0

�

U∗ = A2
1XA2

1

= U
�

T 2 TS
0 0

��

X1 X2
X3 X4

��

T 2 TS
0 0

�

U∗

= U
�

(T 2X1+ TSX3)T 2 (T 2X1+ TSX3)TS
0 0

�

U∗,

which implies

�

T 2 = (T 2X1+ TSX3)T
2

TS = (T 2X1+ TSX3)TS
(3)

The condition T 2 = (T 2X1 + TSX3)T 2 in (3) is equiv-
alent to E = T 2X1 + TSX3 by T is nonsingular. Then
E = T 2X1 + TSX3 gives the condition TS = (T 2X1 +
TSX3)TS in (3) is always hold. Also, E = T 2X1+TSX3
gives

T−1 = T X1+ SX3. (4)

By the definition of a generalized column constrained
inverse of A and Theorem 1, we have

A−gC = A1(A
2
1)
−

= U
�

T S
0 0

��

X1 X2
X3 X4

�

U∗

= U
�

T X1+ SX3 T X2+ SX4
0 0

�

U∗

= U
�

T−1 T X2+ SX4
0 0

�

U∗ (5)

by (4). 2
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Theorem 3 Let A∈ Cn×n with A= A1+A2 be the Core-
EP decomposition of A as in (1). Then the core-EP inverse
of A is a special generalized column constrained inverse
of A. Moreover, if Z = 0, then the core-EP inverse of A is
consistent with a special generalized column constrained

inverse of A, where A−gC = U
�

T−1 Z
0 0

�

U∗ with Z =

T X2+ SX4 for some X2, X4 with suitable size.

Proof : By [5, Theorem 3.2], we have A †⃝ =

U
�

T−1 0
0 0

�

U∗. Thus

A †⃝−A−gC = U
�

T−1 0
0 0

�

U∗−U
�

T−1 Z
0 0

�

U∗

= AkU
�

0 Z
0 0

�

U∗

Thus, the condition Z = 0 implies the core-EP inverse
is consistent with a special generalized column con-
strained inverse of A. 2

By [5, Theorem 2.3], we have A1 = Ak(Ak)†A =
PAk A and A2

1 = Ak(Ak)†AAk(Ak)†A= Ak+1(Ak)†A= APAk A.
Thus A−gC = A1(A2

1)
− = PAk A(APAk A)−. By [5, Corollary

3.3], we have A †⃝ = Ak(Ak+1) #⃝. Thus, the core-EP
inverse of A is consistent with a special generalized
column constrained inverse of A, that is

Ak(Ak+1) #⃝ = PAk A(APAk A)−. (6)

for any (APAk A)− ∈ APAk A{1}.
In the following theorem, we will show that a

special generalized column constrained inverse of A is
an outer inverse of A, which is useful in the Theorem 10
in the following section.

Theorem 4 Let A ∈ Cn×n. If X ∈ Cn×n is a special
generalized column constrained inverse of A, then XAX =
X and AX 2 = X .

Proof : Let A= A1+A2 be the Core-EP decomposition of
A∈ Cn×n with Ind(A) = k. Then there exists a unitary
matrix U ∈ Cn×n such that

A1 = U
�

T S
0 0

�

U∗ and A2 = U
�

0 0
0 N

�

U∗, (7)

where T ∈ Cr×r is nonsingular and N ∈ C(n−r)×(n−r) is
nilpotent.

By Theorem 2, we have A−gC = U
�

T−1 Z
0 0

�

U∗,

where Z = T X2 + SX4 for some X2, X4 with suitable

size. Then

A−gC AA−gC = U
�

T−1 Z
0 0

��

T S
0 N

��

T−1 Z
0 0

�

U∗

= U
�

E T−1S+ ZN
0 0

��

T−1 Z
0 0

�

U∗

= U
�

T−1 Z
0 0

�

U∗

= A−gC ,

and

A(A−gC )
2 = U
�

T S
0 N

���

T−1 Z
0 0

��2

U∗

= U
�

E T Z
0 0

��

T−1 Z
0 0

�

U∗

= U
�

T−1 Z
0 0

�

U∗

= A−gC .

2

Remark 1 Let A∈Cn×n. If X ∈Cn×n is a special gener-
alized column constrained inverse of A, then AXA ̸= A
and XA2 ̸= A.

Proof : Let A= A1+A2 be the Core-EP decomposition of
A∈ Cn×n with Ind(A) = k. Then there exists a unitary
matrix U ∈ Cn×n such that

A1 = U
�

T S
0 0

�

U∗ and A2 = U
�

0 0
0 N

�

U∗, (8)

where T ∈ Cr×r is nonsingular and N ∈ C(n−r)×(n−r) is
nilpotent.

By Theorem 2, we have A−gC = U
�

T−1 Z
0 0

�

U∗,

where Z = T X2 + SX4 for some X2, X4 with suitable
size. Then

AA−gC A= U
�

T S
0 N

��

T−1 Z
0 0

��

T S
0 N

�

U∗

= U
�

E T Z
0 0

��

T S
0 N

�

U∗

= U
�

T S+ T ZN
0 0

�

U∗

̸= A,

and

A−gC (A)
2 = U
�

T−1 Z
0 0

���

T S
0 N

��2

U∗

= U
�

E T Z
0 0

��

T−1 Z
0 0

�

U∗

= U
�

T S+ T−1SN + ZN2

0 0

�

U∗

̸= A.

2
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Theorem 5 Let A, X ∈ Cn×n with Ind(A) = k and A =
A1+A2 be the Core-EP decomposition of A as in (1). Then
the following statements are equivalent:

(1) X is a generalized column constrained inverse of A;

(2) A1XA1 = A1 and X = A1X 2;

(3) XAk ∈ (Ak)†A{1} and X = PAk X = AX 2;

(4) (Ak)†X ∗ ∈ A∗Ak{1} and X = PAk X = AX 2.

Proof : (1)⇒ (2). Let X be a generalized column con-
strained inverse of A. Then A1XA1 = A1 and R(X ) ⊆
R(A1). Thus, X = A1U for some U ∈ Cn×n by R(X ) ⊆
R(A1), which gives X = A1U = A1XA1U = A1X 2 by
A1XA1 = A1.
(2)⇒ (1) is trivial.
(1) ⇒ (3). We have X = A1X 2 = PAk AX 2 = PAk X

by Theorem 4 and [5, Theorem 2.3]. The
condition A1XA1 = A1 can be written as
Ak(Ak)†AXAk(Ak)†A = Ak(Ak)†A. Pre-multiplying
by (Ak)† on Ak(Ak)†AXAk(Ak)†A= Ak(Ak)†A gives

(Ak)†Ak(Ak)†AXAk(Ak)†A= (Ak)†Ak(Ak)†A.

That is,
(Ak)†AXAk(Ak)†A= (Ak)†A,

by (Ak)†Ak(Ak)† = (Ak)†, which gives XAk ∈ (Ak)†A{1}.
(3) ⇒ (4). The condition XAk ∈ (Ak)†A{1}

is (Ak)†AXAk(Ak)†A = (Ak)†A, is equivalent
to (Ak)∗AXAk(Ak)†A = (Ak)∗A. Taking ∗ on
(Ak)∗AXAk(Ak)†A= (Ak)∗A implies

A∗Ak(Ak)†X ∗A∗Ak = A∗Ak

by (Ak(Ak)†)∗ = Ak(Ak)†. The equality
A∗Ak(Ak)†X ∗A∗Ak = A∗Ak gives (Ak)†X ∗ ∈ A∗Ak{1}.
(4) ⇒ (1). The condition X = PAk X = AX 2 im-

plies X = PAk X = PAk AX 2 = Ak(Ak)†AX 2 = A1X 2, then
we have R(X ) ⊆ R(A1). The condition (Ak)†X ∗ ∈
A∗Ak{1} is A∗Ak(Ak)†X ∗A∗Ak = A∗Ak. Taking ∗ on
A∗Ak(Ak)†X ∗A∗Ak = A∗Ak gives

(Ak)∗AXAk(Ak)†A= (Ak)∗A,

which is equivalent to (Ak)†AXAk(Ak)†A= (Ak)†A. Pre-
multiplying by Ak on

(Ak)†AXAk(Ak)†A= (Ak)†A

gives Ak(Ak)†AXAk(Ak)†A = Ak(Ak)†A, that is A1XA1 =
A1. Thus, X is a generalized column constrained
inverse of A by Definition 1. 2

Definition 2 Let A∈Cn×n with A= A1+A2 be the Core-
EP decomposition of A as in (1). For the square matrix
A1, a inner inverse of A1 with rows belonging to the
linear manifold generated by the rows of A1 will be
called a generalized row constrained inverse of A and
denoted by A−gR. That is, if Y ∈Cn×n satisfy A1YA1 = A1

and RS (Y ) ⊆RS (A1), then Y = A−gR.

By [16, Theorem 2.1], we have the following
lemma.

Lemma 2 Let A,Q ∈ Cn×n. Then X = (QA)−Q ∈ A{1} if
and only if rank(QA) = rank(A) for any (QA)− ∈QA{1}.

As A1 ∈CC M
n , we have generalized row constrained

inverse of A always exists by Lemma 2 and let Q = A.
In the following theorem, we will give the expression
of a generalized row constrained inverse of A by using
the core part of the Core-EP decomposition of A.

Theorem 6 Let A∈ Cn×n with A= A1+A2 be the Core-
EP decomposition of A as in (1). Then the expression
of a generalized row constrained inverse of A is A−gR =
(A2

1)
−A1.

Proof : Since A1 is the core part of A, so rank(A2
1) =

rank(A1). By Lemma 1 and rank(A2
1) = rank(A1), we

can get A−gR = (A
2
1)
−A1. 2

Lemma 3 (Corollary 1a.1 in [17]) Let A ∈ Cm×n and
X ∈ Cn×m such that
�

AX is idempotent,
rank(AX ) = rank(A),

(9)

then X ∈ A{1}.

Lemma 4 Let A∈Cn×n with A= A1+A2 be the Core-EP
decomposition of A as in (1). If Y is a generalized row
constrained inverse of A, then rank(YA1) = rank(Y ).

Proof : Let Y be a generalized row constrained inverse
of A, so A1YA1 = A1 andRS (Y )⊆RS (A1) by Defini-
tion 2. Then

rank(Y )⩽ rank(A1)

by rank(Y ) = dim(RS (Y )) ⩽ dim(RS (A1)) =
rank(A1); rank(A1) ⩽ rank(Y ) by A1YA1 = A1.
Then we have rank(Y ) = rank(A1). The condition
A1YA1 = A1 implies rank(YA1) = rank(A1), so we can
get

rank(YA1) = rank(Y )

by rank(Y ) = rank(A1) and rank(YA1) = rank(A1). 2

Proposition 1 Let A ∈ Cn×n with A = A1 + A2 be the
Core-EP decomposition of A as in (1). Let Y be a
generalized row constrained inverse of A, then A1 =
A1YA1, Y = YA1Y , Y = Y 2A1 and A1 = A2

1Y .

Proof : Let Y be a generalized row constrained inverse
of A, then A1YA1 = A1 and RS (Y ) ⊆ RS (A1) by
Definition 2. Then Y = UA1 for some U ∈ Cn×n, which
gives

Y = UA1 = UA1YA1 = Y 2A1

by A1YA1 = A1. The equality A1YA1 = A1 implies YA1 is
idempotent, using rank(YA1) = rank(Y ) and Lemma 3,
we can get YA1Y = Y .
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By the proof of Lemma 4, we have rank(Y ) =
rank(A1), thenRS (Y ) =RS (A1) holds byRS (Y )⊆
RS (A1) and rank(Y ) = rank(A1). The condition
RS (Y ) =RS (A1) gives A1 = V Y for some V ∈ Cn×n,
then

A1 = V Y = V YA1Y = A2
1Y.

2

Proposition 2 Let A ∈ Cn×n with A = A1 + A2 be
the Core-EP decomposition of A as in (1). Let Y =

U
�

Y1 Y2
Y3 Y4

�

U∗ be a generalized row constrained inverse

of A, then we have

(1) T Y1+ SY3 = E;

(2) T Y2+ SY4 = T−1S;

(3) Y1T−1S = Y2;

(4) Y3T−1S = Y4.

Proof : Let Y = U
�

Y1 Y2
Y3 Y4

�

U∗ be a generalized row

constrained inverse of A, then A1 = A1YA1, Y = YA1Y
and A1 = A2

1Y by Proposition 1. Then

A1Y = U
�

T S
0 0

��

Y1 Y2
Y3 Y4

�

U∗

= U
�

T Y1+ SY3 T Y2+ SY4
0 0

�

U∗. (10)

By A1 = A1YA1 and (10), we have

A1YA1 = U
�

T S
0 0

��

Y1 Y2
Y3 Y4

��

T S
0 0

�

U∗

= U
�

T Y1+ SY3 T Y2+ SY4
0 0

��

T S
0 0

�

U∗

= U
�

(T Y1+ SY3)T (T Y1+ SY3)S = S
0 0

�

U∗

= U
�

T S
0 0

�

U∗, (11)

which implies
�

T = (T Y1+ SY3)T
S = (T Y1+ SY3)S

(12)

The condition T = (T Y1+SY3)T in (12) is equivalent to
E = T Y1+SY3 by T is nonsingular. Then E = T Y1+SY3
gives the condition S = (T Y1+SY3)S in (12) is always
hold.

By Y = YA1Y , E = T Y1+ SY3 and (10), we have

YA1Y = U
�

Y1 Y2
Y3 Y4

��

T S
0 0

��

Y1 Y2
Y3 Y4

�

U∗

= U
�

Y1 Y1(T Y2+ SY4)
Y3 Y3(T Y2+ SY4)

�

U∗ = U
�

Y1 Y2
Y3 Y4

�

U∗ (13)

which implies
�

Y2 = Y1(T Y2+ SY4)
Y4 = Y3(T Y2+ SY4)

(14)

By A1 = A2
1Y , E = T Y1+ SY3 and (10), we have

A2
1Y = U
�

T S
0 0

��

T S
0 0

��

Y1 Y2
Y3 Y4

�

U∗

= U
�

T S
0 0

��

T Y1+ SY3 T Y2+ SY4
0 0

�

U∗

= U
�

T S
0 0

��

E T Y2+ SY4
0 0

�

U∗

= U
�

T T (T Y2+ SY4)
0 0

�

U∗

= U
�

T S
0 0

�

U∗, (15)

which implies

T (T Y2+ SY4) = S.

That is
T Y2+ SY4 = T−1S. (16)

Thus, the equalities in (14) can be rewritten as

�

Y2 = Y1T−1S

Y4 = Y3T−1S
(17)

by (16). 2

WHEN A GENERALIZED COLUMN CONSTRAINED
INVERSE COINCIDES WITH A GENERALIZED ROW
CONSTRAINED INVERSE

Definition 3 Let A∈Cn×n with A= A1+A2 be the Core-
EP decomposition of A as in (1). For the square matrix
A1, a inner inverse of A1 with columns belonging to the
linear manifold generated by the columns of A1 and
rows belonging to the linear manifold generated by
the rows of A1 will be called a generalized constrained
inverse of A and denoted by A−gRC . That is, if X ∈ Cn×n

satisfy A1XA1 = A1, R(X ) ⊆ R(A1) and RS (X ) ⊆
RS (A1), then X = A−gRC .

Lemma 5 (Proposition 8.22 in [18]) Let A∈Cn×n. If
A= A2X = YA2 for some X , Y ∈ Cn×n, then A# = YAX .

Proposition 3 Let A ∈ Cn×n with A = A1 + A2 be the
Core-EP decomposition of A as in (1). If X is the gen-
eralized constrained inverse of A, then we have R(X ) =
R(Ak(Ak)†A) and N (X ) =R(Ak(Ak)†A).

Proof : Let X be the generalized constrained inverse
of A, then we have A1XA1 = A1, R(X ) ⊆ R(A1) and
RS (X ) ⊆ RS (A1) by Definition 3. Thus, the con-
dition R(X ) ⊆ R(A1) is equivalent to X = A1X 2 by
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A1XA1 = A1 and the condition RS (X ) ⊆ RS (A1) is
equivalent to X = X 2A1 by A1XA1 = A1. Thus, X # =
A1XA1 = A1, then A# = X , so A1X = XA1. The proof
is finished by A1XA1 = A1, R(X ) ⊆ R(A1), RS (X ) ⊆
RS (A1) and A1 = Ak(Ak)†A. 2

Theorem 7 Let A ∈ Cn×n. If X ∈ Cn×n is a gener-
alized constrained inverse of A, then this generalized
constrained inverse of A is unique. Moreover, Then the
generalized constrained inverse of A coincides with the
weak group inverse, that is A−gRC = Aw⃝.

Proof : Let X be the generalized constrained inverse of
A, that is A1XA1 = A1, R(X ) ⊆ R(A1) and RS (X ) ⊆
RS (A1). The condition R(X ) ⊆ R(A1) implies X =
A1U for some U ∈ Cn×n. Then

X = A1U = A1XA1U = A1X 2 (18)

by A1XA1 = A1. The condition RS (X ) ⊆ RS (A1)
implies X = VA1 for some v ∈ Cn×n. Then

X = VA1 = VA1XA1U = X 2A1 (19)

by A1XA1 = A1. By Lemma 5 and A1XA1 = A1, we
have X # = A1XA1 = A1. By the definition of the group
inverse, we have A#

1 = X , that is X = Aw⃝ by [19,
Theorem 3.7]. As Aw⃝ is unique by [19, Theorem 3.1],
so the generalized constrained inverse of A is unique
by A−gRC = Aw⃝. 2

Remark 2 By the proof of Theorem 7, one can see
that the generalized constrained inverse of a complex
matrix is unique.

In the following theorem, we will use the general-
ized column constrained inverse of A and the general-
ized row constrained inverse of A to give the expression
of the weak group inverse of A.

Theorem 8 Let A∈Cn×n. If A−gC is a generalized column
constrained inverse of A and A−gR is a generalized column
constrained inverse of A, then Aw⃝ = A−gC A1A−gR.

Proof : Let A−gC is a generalized column constrained in-
verse of A and A−gR is a generalized column constrained
inverse of A. Let A∈Cn×n with A= A1+A2 be the Core-
EP decomposition of A as in (1). Then by Theorem 2,
the expression of a generalized column constrained
inverse of A is

A−gC = U
�

T−1 Z
0 0

�

U∗, (20)

where Z = T X2+SX4 for some X2, X4 with suitable size.

Let Y = U
�

Y1 Y2
Y3 Y4

�

U∗ be a generalized row con-

strained inverse of A, then by Proposition 2, we have

T Y1+ SY3 = E and T Y2+ SY4 = T−1S. Thus

A1Y = U
�

T S
0 0

��

Y1 Y2
Y3 Y4

�

U∗

= U
�

T Y1+ SY3 T Y2+ SY4
0 0

�

U∗

= U
�

E T−1S
0 0

�

U∗. (21)

Hence, by (20) and (21) we have

A−gC A1A−gR = U
�

T−1 Z
0 0

��

E T−1S
0 0

�

U∗

= U
�

T−1 T−2S
0 0

�

U∗. (22)

By [19, Theorem 3.7], we have Aw⃝ =

U
�

T−1 T−2S
0 0

�

U∗, which gives Aw⃝ = A−gC A1A−gR

by (22). 2

THE “DISTANCE” BETWEEN THE GENERALIZED
CONSTRAINED INVERSE AND THE INVERSE
ALONG TWO MATRICES

Proposition 4 Let A, X ∈Cn×n with Ind(A) = k and A=
A1 + A2 be the Core-EP decomposition of A as in (1). If
X is a generalized column constrained inverse of A, then
X = XA1X .

Proof : Let A= A1+A2 be the Core-EP decomposition of
A ∈ Cn×n with ind(A) = k. Then there exists a unitary

matrix U ∈ Cn×n such that A1 = U
�

T S
0 0

�

U∗, where

T ∈ Cr×r is nonsingular. By Theorem 2, we have

X = U
�

T−1 Z
0 0

�

U∗,

where Z = T X2+SX4 for some X2, X4 with suitable size.
Then

XA1X = U
�

T−1 Z
0 0

��

T S
0 0

��

T−1 Z
0 0

�

U∗

= U
�

E T−1S
0 0

��

T−1 Z
0 0

�

U∗

= U
�

T−1 Z
0 0

�

U∗

= X ,

that is X = XA1X . 2

Theorem 9 Let A ∈ Cn×n and X ∈ Cn×n be a general-
ized column constrained inverse of A. Then X is the
(AAw⃝, AA−gC )-inverse of A1, where A1 is the core part of
the Core-EP decomposition of A, Aw⃝ is the weak group
inverse of A.
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Proof : By the proof of [5, Corollary 3.12], we have

AAw⃝ = U
�

E T−1S
0 0

�

U∗. (23)

By Proposition 4, we have X = XA1X . Next, we will
prove that X coincides with the (XA1, A1X )-inverse of
A. Then X = XA1X impliesR(X )⊆R(XA1),R(XA1)⊆
R(X ) is obvious, hence R(X ) = R(XA1). For any
u ∈ N (A1X ), that is A1Xu = 0. Then Xu = XA1Xu =
0, which implies N (A1X ) ⊆ N (X ), hence N (X ) =
N (A1X ) by N (X ) ⊆ N (A1X ) is trivial. Thus, A1
is (XA1, A1X )-invertible by [20, Theorem 2.1(ii) and
Proposition 6.1]. Therefore,

XA1 = U
�

T−1 Z
0 0

��

T S
0 0

�

U∗

= U
�

E T−1S
0 0

�

U∗

= AAw⃝

by the equality (23). Since

A1X =
�

T S
0 0

�

U
�

T−1 Z
0 0

�

U∗

= U
�

E T Z
0 0

�

U∗

and

AX =
�

T S
0 N

�

U
�

T−1 Z
0 0

�

U∗

= U
�

E T Z
0 0

�

U∗,

so we have A1X = AX . 2

Lemma 6 (Theorem 2.1(ii) and Proposition 6.1 in
[20]) Let A, B, C ∈ Cn×n. Then Y ∈ Cn×n is the (B, C)-
inverse of A if and only if YAY = Y , R(Y ) =R(B) and
N (Y ) =N (C).

Theorem 10 Let A ∈ Cn×n with Ind(A) = k. The
generalized constrained inverse of A coincides with the
(Ak, (Ak)∗A)-inverse of A.

Proof : By Definition 3, a generalized constrained in-
vertible matrix is a generalized column constrained
invertible, thus we have XAX = X by Theorem 4. Since

Ak = Ak(Ak)†Ak = Ak(Ak)†AAk−1,

soR(Ak(Ak)†A)⊆R(Ak). AndR(Ak)⊆R(Ak(Ak)†A) is
trivial, hence,

R(Ak) =R(Ak(Ak)†A). (24)

Let x ∈ N ((Ak)†A), that is (Ak)†Ax = 0, then
Ak(Ak)†Ax = 0, so N ((Ak)†A) ⊆ N (Ak(Ak)†A). Let y ∈
N (Ak(Ak)†A), that is Ak(Ak)†Ay = 0, then

(Ak)†Ay = (Ak)†Ak(Ak)†Ay = (Ak)†Ak[(Ak)†Ay] = 0,

so N (Ak(Ak)†A) ⊆N ((Ak)†A). Hence

N (Ak(Ak)†A) =R((Ak)†A). (25)

Let u ∈ N ((Ak)†A), that is (Ak)†Ax = 0, then

(Ak)∗Au= [Ak(Ak)†Ak]∗Au= (Ak)∗Ak(Ak)†Au= 0,

soN ((Ak)†A) ⊆N ((Ak)∗A). Let v ∈N ((Ak)∗A), that is
(Ak)∗Av = 0, then

(Ak)†Av = (Ak)†Ak(Ak)†Av(Ak)†[(Ak)†]∗(Ak)∗Av = 0,

so N ((Ak)∗A) ⊆N ((Ak)†A). Hence

N ((Ak)∗A) =R((Ak)†A). (26)

By (25) and (26), we have

N ((Ak)∗A) =R(Ak(Ak)†A). (27)

Thus
¨

XAX = X , R(Ak) =R(Ak(Ak)†A),

N ((Ak)∗A) =R(Ak(Ak)†A).
(28)

by (24). By Proposition 3, we have

R(X ) =R(Ak(Ak)†A), N (X ) =R(Ak(Ak)†A). (29)

Thus, by (28) and (29)

XAX = X , R(Ak) =R(X ), N ((Ak)∗A) =R(X ). (30)

The proof is finished by Lemma 6. 2

In [12], Rao and Mitra showed that A∥(B,C) =
B(CAB)−C , where (CAB)− stands for arbitrary inner
inverse of CAB. Thus, by Theorem 10, we have the
following theorem.

Theorem 11 Let A ∈ Cn×n with Ind(A) = k. Then the
expression of the generalized constrained inverse of A is
A−gRC = Ak((Ak)∗Ak+1)−(Ak)∗A for arbitrary inner inverse

of (Ak)∗Ak+1.

In fact, we can use the Moore-Penrose inverse of
(Ak)∗Ak+1 instead ((Ak)∗Ak+1)− in the formula A−gRC =
Ak((Ak)∗Ak+1)−(Ak)∗A.

CONCLUSION

In this paper, two generalized constrained inverses
were introduced by using the core part of the Core-
EP decomposition of a complex matrix: the generalized
column constrained inverse of A and the generalized
row constrained inverse of A. We answer the question
when a generalized column constrained inverse coin-
cides with a generalized row constrained inverse, that
is, if A−gC is a generalized column constrained inverse of
A and A−gR is a generalized column constrained inverse
of A, then Aw⃝ = A−gC A1A−gR. We obtained the “distance”
between the generalized constrained inverse and the
inverse along two matrices, that is, the generalized
constrained inverse of A coincides with the (Ak, (Ak)∗A)-
inverse of A for A∈ Cn×n with Ind(A) = k.
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