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ABSTRACT: Alzheimer’s disease is a neurodegenerative disorder characterized by the accumulation of amyloid peptides
in the brain. While the production of Aβ is dependent on the cleavage of the β-amyloid precursor protein by the
β-secretase BACE1, the α-secretase activity, mainly supported by ADAM10, counterbalances this pathway by both
preventing Aβ production and triggering the release of the neuroprotective soluble APP alpha (sAPPα metabolite.
For this reason, strategies aimed at promoting α-secretase and/or blocking β-secretase seem to be indicated for the
purpose of containing the disease. Here we investigated the effects of ECa 233, a standardized extract of the plant
Centella asiatica, on βAPP levels and sAPPα secretion as well as on the expression and catalytic activity of the α-
secretases ADAM10 and ADAM17 and the β-secretase BACE1 in human cells. Our results interestingly demonstrate
that the ECa 233 extract is able to significantly stimulate α-secretase activity and to inhibit β-secretase activity in a
dose-dependent manner in the human SH-SY5Y neuroblastoma cell line. In conclusion, these results reveal an original
doubly beneficial effect of ECa 233, which is both capable of promoting the non-amyloidogenic α-secretase activity and
interfering with the amyloidogenic pathway and thereby stands as a promising candidate for the future development
of mild, safe and preventive therapeutic treatment of Alzheimer’s disease.
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INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent neu-
rodegenerative disorder and is by far the leading cause
of dementia in the elderly, thus representing a major
global public health problem. The disease first man-
ifests itself in the appearance of short-term memory
impairment followed by a more general alteration in
cognitive functions leading irremediably to death. One
of the main hallmark of AD is the abnormal load of
extracellular β-amyloid peptide (Aβ) leading to the
occurrence of senile plaques that first form in the
entorhinal cortex and then in the hippocampus before
spreading into the cerebral cortex. In addition, the ex-
acerbation of several deleterious pathogenic processes
accompanies the development of the disease among
which we can cite oxidative stress, neuroinflammation,
mitochondrial dysfunction, altered calcium homeosta-
sis and apoptosis.

The production of Aβ peptides is initiated by cleav-

age of the β-amyloid precursor protein (βAPP) by the
β-secretase BACE1 and ends with the hydrolysis of
the C99 fragment by the heterotetrameric γ-secretase
complex [1]. Concomitantly with this amyloidogenic
pathway, βAPP is also, and predominantly, the target
of the α-secretase activity, which fulfills a doubly ben-
eficial action by interfering with Aβ production (since
it operates in the middle of the Aβ sequence) and
giving rise to the secretion of the neuroprotective, neu-
rotrophic and memory-enhancing sAPPα metabolite,
thus establishing α-secretase activation as a promis-
ing anti-AD therapeutic strategy [2]. However, this
approach faces a major problem which is the large
number of proteins other than βAPP fulfilling vital
physiological functions and which are the target of
the two major enzymes responsible for this activity,
ADAM10 and ADAM17 [3]. In this context, the use
of plant extracts and plant-derived active compounds
is increasingly gaining popularity and has been consid-
ered in recent years as a credible alternative to anti-AD
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pharmacotherapies, principally because the side effects
associated with their use are very moderate or even
nonexistent [4].

Centella asiatica (Linn.) is a plant of the Apiaceae
family that grows in swamps of temperate and tropical
areas and holds an important place in the international
market of medicinal plants. Chemically, it is mainly
composed of the pentacyclic triterpenoids asiaticoside
and madecassoside and their respective metabolites
asiatic acid and madecassic acid [5]. During the past
twenty years, a number of beneficial effects have been
attributed to extracts of this plant or to its active in-
gredients against various pathological conditions [6].
Hence, methanol and water extracts of C. asiatica were
reported to display anti-hyperlipidemic properties in
murine [7]. It has also been shown that C. asiatica
hydrogel accelerates wound healing in rabbits [8], a
property that can reasonably be attributed to asiati-
coside as evidenced in rats [9]. In addition, C. asi-
atica water extract was shown to alleviate epilepsy-
provoked cognitive impairments in a mouse model of
the disease [10] and to reduce adriamycin-induced
myocardial failure in rats [11]. Finally, asiatic acid was
reported to provide neuroprotection in a mouse model
of focal cerebral ischemia [12]. The neuroprotective
tonus of C. asiatica was further confirmed by several
studies. Firstly, a chloroform:methanolic extract of the
plant was shown to be neuroprotective in mono sodium
glutamate-treated rats [13]. Secondly, asiaticoside,
asiatic acid and medecassoside were established as
the probable responsible active components mediating
neuroprotection as documented in vivo following D-
galactose-induced cognitive impairments in mice [14].

Further evidence of the beneficial effects of C. asi-
atica on brain function was brought by the demonstra-
tion that basal learning and memory performance can
be improved following ingestion of aqueous extract of
whole plant (200 mg/kg) for 14 days in rats [15], a
phenomenon also observed following intraperitoneal
injection of asiatic acid (30 mg/kg), suggesting that
this triterpenoid group is, at least partly, supporting
the memory-enhancing capability of the extracts [16].
Moreover, oral administration of an ethanol extract of
the plant (300–1500 mg/kg) was shown to ameliorate
learning and memory impairment induced by transient
bilateral common carotid artery occlusion in mice [17].

Because learning and memory are severely im-
paired in AD, the hypothesis that C. asiatica could
behave as an ameliorating factor with respect to the
disease logically appeared and several studies have ev-
idenced some positive effects of aqueous extract of the
plant on AD pathology. Thus, it ameliorates behavior in
a streptozotocin-injected rat model of AD [18], reduces
Aβ-induced neurodegeneration in hippocampal neu-
rons [19], alleviates behavioral deficits in the Tg2576
transgenic mouse model of the disease and conveys
neuroprotection in 5×FAD transgenic mice [20].

Although the anti-oxidant and anti-inflammatory
properties of C. asiatica are likely to contribute to
its anti-AD effects [6], whether it can also inter-
fere with βAPP processing via the regulation of
βAPP-cleaving secretases remained unexplored to this
day. Here we show that the non-toxic [21] and
well-characterized [22] standardized C. asiatica ex-
tract ECa 233 stimulates α-secretase and inhibits β-
secretase catalytic activities without modifying the
expression of the involved proteins. These results
thus established ECa 233 as a beneficial regulator of
both the non-amyloidogenic and the amyloidogenic
processing of βAPP, altogether making it a possible anti-
AD preventive compound.

MATERIALS AND METHODS

Materials

DMEM, fetal bovine serum (FBS) and penicillin-
streptomycin mix (Pen/Strep) were from Invitrogen
(Carlsbad, CA, USA). Tris buffer and glycine were
from VWR Amresco lifesciences (Solon, CA, USA).
Polyclonal anti-βAPP antibody (A8717), monoclonal
anti-β-actin (A2228), dimethyl sulfoxide (DMSO), SDS
and sodium bicarbonate were from Sigma (St. Louis,
MO, USA). Polyclonal anti-ADAM10 (AB19026) and
polyclonal anti-ADAM17 (AB19027) were from Mil-
lipore (Bedford, MA, USA). Monoclonal anti-BACE1
(ab108394) was from Abcam (Cambridge, UK). Skim
milk powder was from Bio Basic (Singapore). Mono-
clonal anti-β-amyloid antibody (2B3), which was used
to specifically detect sAPPα was from IBL (Minneapo-
lis, MN, USA). ECL reagent and ammonium persul-
phate were from GE Health care (Pisataway, NJ, USA).
O-Phenanthroline was from Calbiochem (San Diego,
CA, USA). Goat anti-mouse (polyclonal 7076) and goat
anti-rabbit (polyclonal 7074) peroxidase-conjugated
secondary antibodies were from Cell Signaling (Bev-
erly, MA, USA).

Cell lines and treatments

Human HEK293 cells were cultured at 37 °C, 5% CO2
in DMEM supplemented with 10% FBS, penicillin
(100 U/ml) and streptomycin (50 mg/ml). Human
SH-SY5Y neuroblastoma cells were grown at 37 °C,
5% CO2 in high glucose-DMEM supplemented with
10% FBS, penicillin (100 U/ml) and streptomycin
(50 mg/ml). The standardized ECa 233 extract was
obtained as previously described by a patent-pending
method [23] and contains 53.1% madecassoside and
32.3% asiaticoside as determined by quantification by
HPLC and liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) as previously reported [24].
A 100 mg/ml stock solution (in 100% DMSO) was
first prepared from which serial dilutions were per-
formed in order to get four 100× intermediate solu-
tions (10 mg/ml, 1 mg/ml, 100 µg/ml and 10 µg/ml)
in 10% DMSO. Cells (80% confluence) were treated for
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24 h with 10 µl of 100× concentrations in a total vol-
ume of 1 ml of complete media (final concentrations:
0.1 µg/ml, 1 µg/ml, 10 µg/ml, 100 µg/ml; 0.1%
DMSO) before being processed for sAPPα secretion
and western blot analysis. For non-treated controls,
DMSO was also adjusted to 0.1%.

sAPPα secretion and detection

Secretion and detection of sAPPα in HEK293 and SH-
SY5Y cells with the human-specific monoclonal anti-
sAPPα antibody (2B3). Briefly, following treatments
in complete media, media was removed and cells were
incubated with fresh DMEM (1 ml) and allowed to se-
crete for 5 h. Then, 10% TCA precipitation of the whole
medium was performed and the precipitate was sub-
jected to electrophoresis through 10% SDS-PAGE gels,
transferred onto nitrocellulose membranes (100 min,
90 volts), incubated in 5% non-fat milk blocking solu-
tion for 30 min and incubated overnight at 4 °C with
2B3 (1 µg/ml). After three washes with PBST (PBS
containing 0.05% Tween 20), membranes were then
incubated with a HRP-conjugated anti-mouse IgG anti-
body (dilution 1/3000), rinsed three times with PBST
incubated with ECL reagent and signals were detected
using an Azure c400 (Azure Biosystems, Dublin, CA,
USA). Band densities were measured with the Image J
software (http://imagej.nih.gov/ij).

Western blot analyses

Cells were collected with phosphate-buffered saline
(PBS)-EDTA and resuspended in 70 to 100 µl of lysis
buffer (10 mM Tris/HCl, pH 7.5, 150 mM NaCl, 0.5%
triton X-100, 0.5% deoxycholate, 5 mM EDTA). Pro-
tein concentrations were determined by the Bradford
method and 20–40 µg proteins were loaded onto 10%
of SDS-PAGE gels, which were run at 100 volts for
2–2.5 h. Proteins were then transferred onto nitro-
cellulose membranes for 60–120 min at 90 V. Protein
transfer was verified by Ponceau red staining, and ni-
trocellulose membranes were subsequently incubated
in 5% non-fat milk blocking solution for 45 min. Mem-
branes were then incubated with primary antibodies
directed against βAPP (dilution 1/2000), ADAM10
(dilution 1/500), BACE1 (dilution 1/1000) or β-actin
(dilution 1/5000) on a platform shaker overnight at
4 °C. Bound antibodies were detected using goat anti-
mouse (dilution 1/3000, polyclonal 7076, Cell Sig-
naling) or goat anti-rabbit peroxidase-conjugated an-
tibody (dilution 1/3000, polyclonal 7074, Cell Signal-
ing). After 3 washes with PBST, membranes were in-
cubated with a HRP-conjugated anti-rabbit (ADAM10,
βAPP and BACE1) or anti-mouse (β-actin) secondary
antibody (1/3000) for 2 h, rinsed 3 times with PBST
and processed as described above. All protein levels
were normalized using β-actin as an internal standard.

α-secretase fluorimetric assay on intact cells

The α-secretase catalytic activity was measured fol-
lowing a procedure previously described [25]. Briefly,
SH-SY5Y cells were treated in duplicate without (con-
trol) or with ECa 233 for 24 h at 37 °C in 1 ml
of DMEM containing 1% FBS. Cells were then incu-
bated for 30 min at 37 °C in the absence or in the
presence of the general metalloprotease inhibitor o-
phenanthroline (100 µM) in 1.5 ml of PBS. Then,
the α-secretase-specific JMV2770 substrate (10 µM)
was directly added into the media and cells were kept
at 37 °C. Every 15 min, 100 µl of media were col-
lected and the α-secretase-specific activity correspond-
ing to the o-phenanthroline-sensitive fluorescence was
recorded in black 96-well plates at 320 nm and 420 nm
excitation and emission wavelengths respectively.

β-secretase fluorimetric assay on cell homogenates

SH-SY5Y cells were cultured in 35 mm-dishes until
they reach 80% confluence, treated without (con-
trol) or with ECa 233 for 24 h at 37 °C in DMEM
containing 1% FBS and assayed for their β-secretase
activity. Briefly, cells were collected, lysed with Tris
10 mM pH 7.5, homogenized and kept on ice. Sam-
ples were assayed for their protein contents with the
Bradford method and adjusted to a 3 µg/µl concen-
tration. Thirty µg of each samples (10 µl) diluted
in 10 mM sodium acetate buffer pH 4.5 were in-
cubated for 30 min at 37 °C in black 96-well plates
(in a final volume of 100 µl) in the absence (tripli-
cate) or in the presence (triplicate) of the β-secretase
specific inhibitor JMV1197. Then, the β-secretase-
specific JMV2236 substrate (10 µM) was added to all
samples and plates were maintained at 37 °C. Every
15 min, the β-secretase-specific activity corresponding
to the JMV1197-sensitive fluorescence was recorded
at 320 nm and 420 nm excitation and emission wave-
lengths respectively.

Statistical analysis

Statistical analyses were performed with the Prism
software (GraphPad, San Diego, USA) using an un-
paired t-test for pairwise comparisons. All results were
expressed as means±SEM and the p values equal to or
less than 0.05 were considered significant.

RESULTS

Effects of ECa 233 on sAPPα production and βAPP,
ADAM10, ADAM17 and BACE1 protein levels in
cultured human SH-SY5Y cells

We first examined the effect of 24 h-treatments with
four different doses of ECa 233 (0.1, 1, 10 and
100 µg/ml) for their ability to promote the secretion
of the βAPP-derived sAPPα metabolite produced by
α-secretase in cultured SH-SY5Y human neuroblas-
toma cells. The results showed no significant differ-
ences whatever the dose considered when compared
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Fig. 1 Effect of ECa 233 on sAPPα secretion, βAPP, ADAM10, ADAM17, BACE1 protein levels and the ratio sAPPα/βAPP in
human SH-SY5Y cells. (A) Representative gels of western blot analysis of sAPPα production in media (a) as well as βAPP (b),
ADAM10 (c), ADAM17 (d) and BACE1 (e) and their respective β-actin in lysates following treatment of cultured SH-SY5Y
cells without (CT) or with the indicated concentrations of ECa 233 for 24 h. (B) Statistical analysis of the data for sAPPα (a),
βAPP (b), ADAM10 (c), ADAM17 (d), BACE1 (e) and the ratio sAPPα/βAPP (f). Bars correspond to the densitometric analyses
(βAPP, the ratio sAPPα/βAPP, ADAM10, ADAM17 and BACE1 being normalized with β-actin), are expressed as a percent of
control taken as 100, and are the means±SE of the indicated number of independent determinations (n); ns, no statistical
difference.

to controls (Fig. 1A(a) and B(a)) although a slight
upward trend was observed (Fig. 1B(a)). We then
wanted to determine whether ECa 233 could mod-
ify the protein levels of βAPP, the two α-secretases
ADAM10 and ADAM17 and of the β-secretase BACE1.
No significant variation in the immunoreactivities of
these proteins could be demonstrated by western blot
analysis (Fig. 1A(b-e) and B(b-e)), thus showing that
there is no impact of ECa 233 on the expression of key
proteins of βAPP metabolism. Because the secretion
of sAPPα is dependent both on the hydrolysis of βAPP
by α-secretase activity and on the expression of βAPP
itself, and in order to increase the stringency of our
measurements, we also measured the effect of ECa 233
on the sAPPα/βAPP ratio under the same conditions.
Despite the fact that it seems that ECa 233 increases
this ratio in a dose-dependent manner, the statistical
analysis of the results did not allow us to highlight any
significant differences (Fig. 1B(f)).

Effects of ECa 233 on sAPPα production and βAPP,
ADAM10, ADAM17 and BACE1 protein levels in
cultured human HEK293 cells

In order to test the same parameters in a different
cell line, we conducted the same experimental pro-
tocols with human HEK293 cells. The results show,
as observed in SH-SY5Y cells, that ECa 233 did not
modify the protein levels of βAPP, ADAM10, ADAM17
and BACE1 (Fig. 2A(b-e) and B(b-e)) and appeared
to increase, although not significantly, the produc-
tion of sAPPα (Fig. 2A(a) and B(a)). Nevertheless,
we could establish that treatment with ECa 233 at
100 µg/ml significantly increases the sAPPα/βAPP
ratio (Fig. 2B(f)).

Based on these results, we then wanted to de-
termine whether ECa 233 was able to modulate the
catalytic activity of α secretase and β-secretase, which
compete for βAPP processing and thus control the
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Fig. 2 Effect of ECa 233 on sAPPα secretion, βAPP, ADAM10, ADAM17, BACE1 protein levels and the ratio sAPPα/βAPP in
human HEK293 cells. (A) Representative gels of western blot analysis of sAPPα production in media (a) as well as βAPP (b),
ADAM10 (c), ADAM17 (d) and BACE1 (e) and their respective β-actin in lysates following treatment of cultured HEK293
cells without (CT) or with the indicated concentrations of ECa 233 for 24 h. (B) Statistical analysis of the data for sAPPα (a),
βAPP (b), ADAM10 (c), ADAM17 (d), BACE1 (e) and the ratio sAPPα/βAPP (f). Bars correspond to the densitometric analyses
(βAPP, the ratio sAPPα/βAPP, ADAM10, ADAM17 and BACE1 being normalized with β-actin), are expressed as a percent of
control taken as 100, and are the means±SE of the indicated number of independent determinations (n); ∗ p < 0.05; ns, no
statistical difference.

balancing between the amyloidogenic and the non-
amyloidogenic pathways.

Effects of ECa 233 on the α-secretase catalytic
activity in cultured human SH-SY5Y
neuroblastoma cells

In a first set of experiments, we examined the impact
of increasing concentrations (0.1 up to 100 µg/ml) of
ECa 233 on the α-secretase activity by measuring the
phenanthroline-sensitive hydrolysis of the fluorimetric
JMV2770 substrate by cultured SH-SY5Y cells. Despite
an increasing trend, no significant difference was noted
at 0.1 µg/ml concentration (Fig. 3A(a)). However,
our results indicated that ECa 233 dose-dependently
enhances the JMV2770-hydrolyzing activity as shown
by an increased significance (p value) from 1 to

100 µg/ml concentrations (Fig. 3A(b-d) and B).

Effects of ECa 233 on the β-secretase catalytic
activity in cultured human SH-SY5Y
neuroblastoma cells

Finally, we undertook to determine if ECa 233 could
behave as an inhibitor of the amyloidogenic β-
secretase catalytic activity. Taking advantage of a
well-characterized BACE1-selective fluorimetric assay,
we have measured the impact of the treatment of
SH-SY5Y cells with the extract for 24 h at the four
previously used concentrations. Indeed, the JMV1197-
sensitive hydrolysis of the fluorimetric JMV2236 sub-
strate measured in SH-SY5Y cell extracts at acidic
pH was gradually reduced as the concentrations of
ECa 233 increased (Fig. 4A and B), thereby evidencing
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Fig. 3 Effects of ECa 233 on the α-secretase catalytic activity in SH-SY5Y intact cells. (A) The α-secretase catalytic
activity (phenanthroline-sensitive hydrolysis of the fluorimetric substrate JMV2770) was measured on cultured SH-SY5Y
cells incubated in the absence (control, white circle) or in the presence of 0.1 µg/ml (a), 1 µg/ml (b), 10 µg/ml (c) and
100 µg/ml (d) of ECa 233 for 24 h. The curves represent the mean specific fluorescence±SE from 2 independent experiments
including two controls each. (B) Statistical analysis of the data. Bars are expressed as a percentage of control (white bars,
non-treated cells) calculated from the linear parts of the curves (initial velocity, light grey area) and are the means±SE of 11
independent determinations; ∗ p < 0.02; ∗ ∗ p < 0.0003; ∗ ∗ ∗ p < 0.0002; ns, no statistical difference.

a dose-dependent effect of the extract on the limiting
factor of the amyloidogenic processing of βAPP with
more than 50% inhibition observed at 100 µg/ml when
compared to control untreated cells (Fig. 4A(d) and B).

DISCUSSION

AD is a yet incurable neurodegenerative disorder char-
acterized by a progressive severe loss of memory and
cognitive functions. The reason why available med-
ical treatments are still incapable to cure AD symp-

toms efficiently mostly resides in the fact that AD is
a complex and multifactorial disease with multiple
pathological processes. Over the past decades, a huge
effort, although in vain, has been made to develop
novel synthetic drugs with disease-modifying proper-
ties and few side effects [26]. As a consequence,
compounds extracted from natural sources logically
gained popularity and the notion of a preventive rather
than a curative approach aimed at combating AD is
increasingly taken into account.
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Fig. 4 Effects of ECa 233 on the β-secretase catalytic activity in homogenates of SH-SY5Ycells. (A) The β-secretase catalytic
activity (JMV1197-sensitive hydrolysis of the fluorimetric substrate JMV2236) was measured in the homogenates of SH-
SY5Y cells beforehand incubated in the absence (control, white circle) or in the presence of 0.1 µg/ml (a), 1 µg/ml (b),
10 µg/ml (c) and 100 µg/ml (d) of ECa 233 for 24 h. The curves represent the mean specific fluorescence±SE from 5
independent experiments including two controls each. (B) Statistical analysis of the data. Bars are expressed as a percentage
of control (white bars, non-treated cells) calculated from the linear parts of the curves (initial velocity, light grey area) and
are the means±SE of 24 independent determinations; ∗ p < 0.05; ∗ ∗ p < 0.0002; ∗ ∗ ∗ p < 0.0001.

The possible use of C. asiatica extracts to counter-
act the development of AD is based on the observation
of its beneficial effects on certain pathogenic processes
associated with the disease. Firstly, they have been
largely reported as antioxidant factors in vitro [27] as
well as in vivo [7, 15] with asiaticoside most likely sup-
porting this function as evidenced by its ability to in-
crease enzymatic and non-enzymatic antioxidants [9].
Secondly, C. asiatica extracts were shown to convey
anti-inflammatory effects in vitro in macrophages [28]
and in vivo in rats [29], a property shared by the main
components asiatic acid, asiaticoside, madecassic acid
and madecassoside as evidenced in vivo [28]. Thirdly,
its widely described neuroprotective properties are

arguably based on its ability to promote dendritic
arborization of hippocampal neurons [30] and to stim-
ulate nerve regeneration [31]. Finally, some possible
underlying molecular mechanisms explaining its posi-
tive impact on AD, were evidenced such as an increased
phosphorylation of CREB in neuroblastoma cells ex-
pressing Aβ42 [32] and the anti-acetylcholinesterase
activity of asiatic acid [33]. In the end, all of these
data strongly argue in favor of a protective action of
C. asiatica against AD pathogenesis.

Because there exists a fluctuation in the amounts
of the biological active constituents in differently pre-
pared crude extracts of C. asiatica, well-controlled
methods were established to prepare ECa 233 as a
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standardized extract of the plant that consistently con-
tains at least 80% of the two triterpenoid glycosides
madecassoside and asiaticoside with a ratio between
them maintained at 1.5±0.5:1 [23]. Importantly,
ECa 233 has been previously shown to trigger a certain
number of beneficial effects, both at the periphery
on osteoarthritis [34] and in the central nervous sys-
tem as illustrated by an anxiolytic activity in stressed
mice [24], most likely via a fine tuning of neuronal ac-
tivity [35], as well as a propensity to reduce ischemia-
induced neuronal damage and cognitive dysfunction
in rodents [36, 37]. Beyond these protective effects
under pathological conditions, it is interesting to note
that ECa 233 also shows some memory-enhancing
properties under physiological conditions in rats that
is accompanied by an increase in synaptic plasticity,
thereby suggesting that the extract provides memory
tonic [38], a function which may be based on the fact
that ECa 233 is able to stimulate neurites outgrowth as
demonstrated in human neuroblastoma cells [39].

Last but not least, ECa 233 was reported to con-
vey neuroprotection under conditions closely associ-
ated with AD pathogenesis. Hence, the extract al-
leviates neuroinflammation processes in LPS-treated
macrophages [40] and reduces memory and learning
deficits as well as hippocampal cell loss provoked by
intracerebroventricular injection of Aβ in mice [41].
However, whether it could control the metabolism
of βAPP via the modulation of βAPP-cleaving secre-
tases remained until this day without answer. The
present demonstration that ECa 233 can influence the
metabolism of βAPP in two ways, by activating its non-
amyloidogenic cleavage byα-secretase and at the same
time inhibiting its hydrolysis by the amyloidogenic
β-secretase activity, unveil new mechanisms through
which the extract can operate and adds additional
weight as to its neuroprotective properties with respect
to AD.

The fact that we did not evidence some statisti-
cally significant differences in sAPPα production under
ECa 233 treatment, despite an observed upward trend,
is most likely due to a certain lack of sensitivity of
the western blot technique that is reflecting sAPPα
steady state. Nevertheless, the more stringent α-
and β-secretase fluorimetric assays, which specifically
measure one single parameter without interfering with
off-side biological processes, clearly evidenced some
positive effects of the extract as shown by our find-
ings that it displays both pro-α-secretase and anti-β-
secretase properties.

It is important to underline here that ECa 233 in
the concentrations that modulate secretase activities
were previously shown to have no effect on cell vi-
ability in human neuroblastoma cells following 24 h
treatment [39], thereby indicating harmlessness of this
extract under our experimental conditions. Finally,
C. asiatica is largely consumed as food while ECa 233

ECa 233

ADNormal conditions

sAPPαα Aββ
sAPPαα Aββ

ββ-secretaseαα-secretase

Fig. 5 Schematic outline of the doubly beneficial action of
ECa 233 regarding βAPP processing. Alzheimer’s disease is
characterized by an imbalance of βAPP metabolism in favor
of the amyloidogenic pathway leading to an increased Aβ
production and a decrease in sAPPα levels. Our results
suggest that ECa 233 extract-based treatment could restore
this balance by doubly modulating, in an opposite way, the
α-secretase activity (activation) and the β-secretase activity
(inhibition).

capsules does not trigger adverse effects in humans
after single and multiple ingestion of 250 or 500 mg
of the extract [21]. As a whole and in light of our
results, the very favorable safety profile of ECa 233
opens the way to the possible use of this extract in
order to prevent the development of AD by intervening
on the early mechanisms of the pathology.

CONCLUSION

Overall, our work described original findings demon-
strated that the standardized C. asiatica extract
ECa 233 conveys both pro-α-secretase and anti-β-
secretase effects (Fig. 5). This indeed paves the way
for the possible development, so far sparingly explored,
of compounds of natural origin able to control in a
doubly beneficial manner the metabolism of βAPP by
both decreasing the production of Aβ and increasing
the production of the neurotrophic, neuroprotective
and neurogenic sAPPα metabolite. Thus, ECa 233 is
representing a new class of factors to be developed
as natural therapeutic tool aimed at preventing the
development of Alzheimer’s disease.
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