| Home  | About ScienceAsia  | Publication charge  | Advertise with us  | Subscription for printed version  | Contact us  
Editorial Board
Journal Policy
Instructions for Authors
Online submission
Author Login
Reviewer Login
Volume 50 Number 1
Volume 49 Number 6
Volume 49 Number 5
Volume 49S Number 1
Volume 49 Number 4
Volume 49 Number 3
Earlier issues
Volume  Number 

previous article next article

Research articles

ScienceAsia 35 (2009): 247-254 |doi: 10.2306/scienceasia1513-1874.2009.35.247


Properties of β-glycerol phosphate/collagen/chitosan blend scaffolds for application in skin tissue engineering


Atchariya Faikruaa, Rattima Jeenapongsab, Monnipha Sila-asnac, Jarupa Viyochd,*

 
ABSTRACT:     The aim of this study was to determine the properties of β-glycerol phosphate (GP)/collagen/chitosan blended films for the potential application to skin tissue engineering. Various ratios of collagen to chitosan (8:2 and 7:3) and amounts of GP (0.5, 1, and 1.5% w/w) of total polymers were blended in solution form and cast into films. According to SEM images, the casted films showed a non-porous surface. For the mechanical properties, the prepared scaffolds exhibited the maximum elongation ranging from 15–23%, which is lower than those found by other researchers. However, the maximum tensile strength values of the scaffolds made from the collagen/chitosan (ratios 7:3) crosslinked with 0.5 or 1% w/w GP were in the range of 8–10 MPa which achieve the recommended values for application in skin tissue engineering. The scaffolds showed ability to retain their structure after immersion in phosphate buffer saline solution (pH 7.4) for 1 h, and their volume increased about 20%. After incubation in collagenase solution (200 U of collagenase/5 g of collagen) at 37 °C, the scaffolds were degraded within 24 to 26 days which coincides very well with the healing time of acute wounds (about 25 days). FT-IR studies revealed the possibility of an interaction of GP with collagen/chitosan via ionic interaction that enhances the strength and stability of the prepared scaffold. The results from an in vitro culture study showed that the keratinocyte HaCaT culture could adhere well and grow on the selected scaffold with a typical morphology at 98.1±1.8% of the control (cells growth on tissue culture plate) after cultivation for 5 days. The results suggest the potential of the GP/collagen/chitosan blended films for use as skin scaffolds.

Download PDF

25 Downloads 1219 Views


a School of Medical Sciences, Naresuan University, Phayao 56000, Thailand
b Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
c Cell Engineering and Tissue Growth Laboratory, Institute of Science and Technology for Research and Development, Mahidol University, Nakhon Pathom 73170, Thailand
d Department of Pharmaceutical Technology and Centre for Innovation in Chemistry, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand

* Corresponding author, E-mail: jarupaviyoch4@yahoo.com

Received 27 Jul 2008, Accepted 9 Sep 2009