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ABSTRACT: In this paper, we study unicity of meromorphic functions whose lower order is finite and noninteger and
mainly prove: Let f and g be two nonconstant meromorphic functions, let n ⩾ 6 be an integer, S = {z | (n−1)(n−2)

4 zn −
n(n−2)

2 zn−1 + n(n−1)
4 zn−2 − 1 = 0}. If f and g share S,∞ CM, and the lower order of f is finite and noninteger, then

f ≡ g. This answers a question posed by Gross for meromorphic functions whose lower order is finite and noninteger.
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INTRODUCTION AND MAIN RESULTS

In this paper, a meromorphic function means mero-
morphic in the complex plane. We use the following
standard notations in value distribution theory, such
as T (r, f ), N(r, f ), m(r, f ), . . . , see [1–3].

We denote by S(r, f ) any quantity satisfying
S(r, f ) = o(T (r, f )), r →∞, r /∈ E, where E is a set
of finite linear measure. A meromorphic function α is
said to be a small function of f if it satisfies T (r,α) =
S(r, f ).

Let f be a nonconstant meromorphic function, let
k be a positive integer, and let α be a small function
of f , we denote the counting function for the zeros of
f −α with multiplicities ⩽ k (ignoring multiplicity) as
Nk)

�

r, 1
f −α

� �

N k)

�

r, 1
f −α

��

, and denote the set of zeros
of f −α with multiplicities ⩽ k (ignoring multiplicity)
as Ek)(α, f )
�

Ek)(α, f )
�

.
We define the order λ( f ) of f and the lower order

µ( f ) of f by

λ( f ) = lim
r→∞

log+ T (r, f )
log r

,

µ( f ) = lim
r→∞

log+ T (r, f )
log r

.

δ(α, f ) = 1− lim
r→∞

N
�

r, 1
f −α

�

T (r, f )
,

Θ(α, f ) = 1− lim
r→∞

N
�

r, 1
f −α

�

T (r, f )
.

Let α be a small function of both f and g. If f −α
and g −α have the same zeros counting multiplicities
(ignoring multiplicity), then we call that f and g share
α CM(IM).

Let S = {a1, a2, . . . , an} be a set of finite complex
numbers. If
∏n

i=1 ( f − ai) and
∏n

i=1 (g − ai) have the
same zeros counting multiplicities (ignoring multiplic-
ity), then we call that f and g share the set S CM(IM).

In 1926, Nevanlinna (see [3]) proved the famous
five-value theorem.

Theorem A Let f and g be two nonconstant meromor-
phic functions, and let ai (i = 1,2, . . . , 5) be five distinct
values (one may be ∞). If f and g share ai (i =
1,2, . . . , 5) IM, then f ≡ g.

In 1977, Gross [4] proposed the following ques-
tion. Whether there exist two (even one) finite sets
S j ( j = 1, 2) such that any two nonconstant entire
functions f and g share two sets S j ( j = 1,2) CM can
imply f ≡ g?

In 1994, Yi [5] gave an affirmative answer to the
question and proved

Theorem B Let f and g be two nonconstant entire
functions, let n ⩾ 5 be an integer, S = {z | zn − 1 = 0},
and let a be a nonzero constant with a2n ̸= 1. If f and
g share S, a CM, then f ≡ g.

In 1996–1998, Fang and Xu [6], Yi [7] proved

Theorem C Let f and g be two nonconstant entire
functions, and let S = {z | z3 − z2 − 1 = 0}. If f and
g share S, 0 CM, then f ≡ g.

In 1995, Yi [8] proved

Theorem D Let f and g be two nonconstant entire
functions, let n and m be two positive integers such that
n and m have no common factor with n ⩾ 2m + 5,
and let S = {z | zn+ azn−m+ b = 0}, where a and b are
two nonzero constants such that the algebraic equation
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zn + azn−m + b = 0 has no multiple roots. If f and g
share S CM, then f ≡ g.

In 1998, Frank and Reinders [9] proved

Theorem E Let f and g be two nonconstant meromor-
phic functions, let n ⩾ 11 be an integer, and let S = {z |
(n−1)(n−2)

2 zn− n(n−2)zn−1+ n(n−1)
2 zn−2− c = 0}, where

(n−1)(n−2)
2 zn − n(n− 2)zn−1 + n(n−1)

2 zn−2 − c = 0 has no
multiple roots and c(̸= 0, 1) is a complex number. If f
and g share S CM, then f ≡ g.

In 1926, Nevanlinna (see [3]) proved

Theorem F Let f and g be two nonconstant meromor-
phic functions, and let a1, a2, a3 be three distinct complex
numbers. If f and g share a1, a2, a3 CM, and the lower
order of f is finite and noninteger, then f ≡ g.

There are several papers (see [10–15]) dealing
with the problems of unique range sets of meromorphic
function whose order is finite and noninteger.

In this paper, we study unicity of meromorphic
functions whose lower order is finite and noninteger,
we prove the following results.

Theorem 1 Let f and g be two nonconstant meromor-
phic functions, let n ⩾ 6 be an integer, and let S = {z |
(n−1)(n−2)

4 zn− n(n−2)
2 zn−1+ n(n−1)

4 zn−2−1= 0}. If f and
g share S,∞ CM, and the lower order of f is finite and
noninteger, then f ≡ g.

Theorem 2 Let f and g be two nonconstant meromor-
phic functions having finitely many poles, let n ⩾ 5 be
an integer, and let S =

�

z|zn− zn−1−1= 0
	

. If f and
g share S CM, and the lower order of f is finite and
noninteger, then f ≡ g.

In 2000, Li and Qiao [16] improved Theorem A
and proved

Theorem G Let f and g be two nonconstant meromor-
phic functions, and let αi (i = 1,2, . . . , 5) be five distinct
small functions of both f and g (one may be∞). If f
and g share αi (i = 1, 2, . . . , 5) IM, then f ≡ g.

Yi (see [3]) proved

Theorem H Let f and g be two nonconstant entire func-
tions, let a1, a2 be two distinct finite nonzero complex
numbers such that E1)(ai , f ) = E1)(ai , g) (i = 1, 2) and
max{Θ(0, f ), δ (a1, f ), δ (a2, f )}> 0. If f and g share
0 CM and the lower order of f is finite and noninteger,
then f ≡ g.

Theorem I Let f and g be two nonconstant entire
functions, let k1(⩾ 1), k2(⩾ 2) be two integers, and let
a1, a2 be two distinct finite nonzero complex numbers
such that Eki) (ai , f ) = Eki) (ai , g) (i = 1, 2). If f and
g share 0 CM, and the lower order of f is finite and
noninteger, then f ≡ g.

By above four theorems, we naturally pose the
following question.

Question Whether Theorems H and I are valid or
not if 0, a1, a2 are replaced by three distinct small
functions of both f and g?

In this paper, we give a positive answer to this
question.

Theorem 3 Let f and g be two nonconstant entire func-
tions, and let α1, α2, α3 be three distinct small functions
of both f and g such that E1) (αi , f ) = E1) (αi , g) (i =
1,2) and max{δ (α1, f ), δ (α2, f ), Θ (α3, f )} > 0. If f
and g share α3 CM, and the lower order of f is finite and
noninteger, then f ≡ g.

Theorem 4 Let f and g be two nonconstant entire
functions, let k1, k2 be two positive integers with k1+k2 ⩾
3, and let α1, α2, α3 be three distinct small functions of
both f and g such that Eki) (αi , f ) = Eki) (αi , g) (i =
1,2). If f and g share α3 CM, and the lower order of f
is finite and noninteger, then f ≡ g.

By the proof of Theorem in [17, p. 293], it follows
the following result.

Theorem J Let f be a nonconstant entire function. If
the lower order of f is finite and noninteger, then f
assumes every finite value infinitely often.

In this paper we obtain the following result.

Theorem 5 Let f be a nonconstant entire function
whose lower order is finite and noninteger, and let α
(̸≡∞) be an entire small function of f . Then f − α
has infinitely many zeros.

LEMMAS

For the proof of our results, we need the following
lemmas.

Lemma 1 ([18]) Let f be a nonconstant meromorphic
function, let n be a positive integer, and let P( f ) = a0 f n+
a1 f n−1+· · ·+an (a0 ̸= 0), where ai (i = 0,1, 2, . . . , n) are
constants. Then

T (r, P( f )) = nT (r, f )+ S(r, f ).

Lemma 2 ([3, 19]) Let T1(r) and T2(r) be two nonneg-
ative, nondecreasing real functions defined in r > r0 > 0.
If T1(r) = O (T2(r)), r →∞, r /∈ E, where E is a set of
finite measure, then

lim
r→∞

log+ T1(r)
log r

⩽ lim
r→∞

log+ T2(r)
log r

,

lim
r→∞

log+ T1(r)
log r

⩽ lim
r→∞

log+ T2(r)
log r

.
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Lemma 3 ([3]) Let f be a nonconstant meromorphic
function. If f ̸= 0,∞, then f = eh, where h is an entire
function.

Lemma 4 ([3]) Let f = eh, where h is a nonconstant
entire function. Thenλ( f ) =µ( f ) andµ( f ) is an integer
or infinite.

Lemma 5 ([20]) Let f and g be two nonconstant mero-
morphic functions and let n(⩾ 6) be an integer. If

�

(n−1)(n−2)
2 f 2− n(n−2) f + n(n−1)

2

�

f n−2

≡
�

(n−1)(n−2)
2 g2− n(n−2)g + n(n−1)

2

�

gn−2,

then f ≡ g.

Lemma 6 ([3]) Let f be a nonconstant meromorphic
function, and let a1, a2, . . . , aq be q(⩾ 3) distinct values
in the extended complex plane. Then

(q−2)T (r, f )⩽
q
∑

i=1

N
�

r, 1
f −ai

�

+ S(r, f ).

Lemma 7 ([21]) Let f be a nonconstant meromorphic
function, and let α1, α2, . . . , αq be q(⩾ 3) distinct small
functions of f . Then, for any ϵ > 0, we have

(q−2)T (r, f )⩽
q
∑

i=1

N
�

r, 1
f −αi

�

+ ϵT (r, f )+ S(r, f ).

It follows from [22–24] that the following result.

Lemma 8 Let n ⩾ 4 be an integer, and let h and g be
two nonconstant meromorphic functions satisfying

g(hn−1)− (hn−1−1)≡ 0, (1)

where g have finitely many poles. Then g is a rational
function.

Proof : From (1) and h is not constant, we obtain

g =
(h−η)(h−η2) · · · (h−ηn−2)
(h− v)(h− v2) · · · (h− vn−1)

,

where η= cos 2π
n−1 + i sin 2π

n−1 and v = cos 2π
n + i sin 2π

n .
Obviously, η, η2, . . . ,ηn−2, v, v2, · · · , vn−1 are

distinct. Thus, by Lemma 6, we have

(n−3) T (r, h)⩽
n−1
∑

i=1

N
�

r,
1

h− v i

�

+ S(r, h)

⩽ N(r, g)+ S(r, h)
= O(log r)+ S(r, h).

By n ⩾ 4, we know that h is a rational function. It
follows from (1) that g is a rational function. 2

PROOF OF Theorem 1

Proof : Set

F =
(n−1)(n−2)

4
f n−

n(n−2)
2

f n−1+
n(n−1)

4
f n−2,

G =
(n−1)(n−2)

4
gn−

n(n−2)
2

gn−1+
n(n−1)

4
gn−2.

Since f and g share S,∞ CM, we know that F and G
share 1,∞ CM. By Lemma 3, we have

F −1
G−1

= eh, (2)

where h is an entire function.
By F and G share 1 CM, Lemma 1, Lemma 6 and

Nevanlinna’s first fundamental theorem, we have

nT (r, f ) = T (r, F)+ S (r, f )

⩽ N(r, F)+N
�

r, 1
F

�

+N
�

r, 1
F−1

�

+ S(r, f )

⩽ N(r, f )+N
�

r,
1

f n−2
� (n−1)(n−2)

4 f 2 − n(n−2)
2 f + n(n−1)

4

�

�

+N
�

r,
1

(n−1)(n−2)
4 gn− n(n−2)

2 gn−1+ n(n−1)
4 gn−2−1

�

+S(r, f )

⩽ N(r, f )+N
�

r, 1
f

�

+N
�

r,
1

(n−1)(n−2)
4 f 2− n(n−2)

2 f + n(n−1)
4

�

+ T (r,
1

(n−1)(n−2)
4 gn− n(n−2)

2 gn−1+ n(n−1)
4 gn−2−1

)+S(r, f )

⩽ 4T (r, f )+ nT (r, g)+ S(r, f ).

It follows from n⩾ 5 that

T (r, f ) = O(T (r, g)).

Similarly,

T (r, g) = O(T (r, f )). (3)

By Nevanlinna’s first fundamental theorem,
Lemma 1, (2) and (3), we have

T
�

r, eh
�

= T

�

r,
(n−1)(n−2)

4 f n− n(n−2)
2 f n−1+ n(n−1)

4 f n−2−1
(n−1)(n−2)

4 gn− n(n−2)
2 gn−1+ n(n−1)

4 gn−2−1

�

⩽ nT (r, f )+ nT (r, g)+ S(r, f )

⩽ O(T (r, f ))+ S(r, f )+ S(r, g). (4)

From Lemma 2, Lemma 4 and (4), we obtain
λ
�

eh
�

= µ
�

eh
�

⩽ µ( f ). Noting that µ( f ) is finite and
noninteger and λ

�

eh
� �

= µ
�

eh
��

is an integer, we have
λ
�

eh
�

< µ( f ). Hence,

T
�

r, eh
�

= S(r, f ). (5)

It follows from (2) that

F = ehG− eh+1. (6)
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By Nevanlinna’s first fundamental theorem, (2)
and (5), we get

nT (r, f ) = T (r, F)+ S(r, f )
= T (r, F −1)+ S(r, f )

= T
�

r, (G−1)eh
�

+ S(r, f )

⩽ T (r, G−1)+ T
�

r, eh
�

+ S(r, f )

⩽ T (r, G)+ S(r, f ) = nT (r, g)+ S(r, f ).

Hence, we have

T (r, f )⩽ T (r, g)+ S(r, f ). (7)

Similarly,

T (r, g)⩽ T (r, f )+ S(r, g). (8)

Now, we consider two cases.
Case 1: eh ≡ 1. By (2), we have (n−1)(n−2)

2 f n − n(n−
2) f n−1 + n(n−1)

2 f n−2 ≡ (n−1)(n−2)
2 gn − n(n − 2)gn−1 +

n(n−1)
2 gn−2. It follows from n ⩾ 6 and Lemma 5 that

f ≡ g.
Case 2: eh ̸≡ 1. In this case, we consider two subcases.
Case 2.1: eh ≡ 1

2 . From (6), we obtain

F ≡ 1
2 G+ 1

2 . (9)

By (7), (9), Lemma 1 and Lemma 7 (q = 4,ϵ = 1
7 ),

we get

2nT (r, g) = 2T (r, G)+ S(r, g)

⩽ N(r, G)+N
�

r, 1
G

�

+N
�

r, 1
G+1

�

+N
�

r, 1
G− 1

2

�

+ 1
7 T (r, G)+ S(r, g)

⩽ N(r, G)+N
�

r, 1
G

�

+N
�

r, 1
F

�

+N
�

r, 1
G− 1

2

�

+ 1
7 T (r, G)+ S(r, g)

⩽ N(r, g)+N
�

r, 1
g

�

+2T (r, g)

+N
�

r, 1
f

�

+2T (r, f )+N
�

r, 1
g−1

�

+(n−3)T (r, g)+ n
7 T (r, g)+ S(r, g)

⩽ (n+ n
7 +5)T (r, g)+ S(r, g).

It follows from n ⩾ 6 that T (r, g) ⩽ S(r, g), a contra-
diction.
Case 2.2: eh ̸≡ 1

2 . By (6), (8), Lemma 1 and Lemma 7

(q = 4,ϵ = 1
7 ), we get

2nT (r, f ) = 2T (r, F)+ S(r, f )

⩽ N(r, F)+N
�

r, 1
F

�

+N
�

r, 1
F+eh−1

�

+N
�

r, 1
F− 1

2

�

+ 1
7 T (r, F)+ S(r, f )

⩽ N(r, F)+N
�

r, 1
F

�

+N
�

r, 1
G

�

+N
�

r, 1
F− 1

2

�

+ 1
7 T (r, F)+ S(r, f )

⩽ N(r, f )+N
�

r, 1
f

�

+2T (r, f )

+N
�

r, 1
g

�

+2T (r, g)+N
�

r, 1
f −1

�

+(n−3)T (r, f )+ n
7 T (r, f )+ S(r, f )

⩽ (n+ n
7 +5)T (r, f )+ S(r, f ).

It follows from n ⩾ 6 that T (r, f ) ⩽ S(r, f ), a contra-
diction.

This completes the proof of Theorem 1. 2

PROOF OF Theorem 2

Proof : Set

F = f n− f n−1, G = gn− gn−1. (10)

Since f and g have finitely many poles, we know that

N(r, f ) = O(log r), N(r, F) = O(log r),
N(r, g) = O(log r), N(r, G) = O(log r).

By (10) and Lemma 1, we have

T (r, F) = nT (r, f )+ S(r, f ),
T (r, G) = nT (r, g)+ S(r, g).

Since f and g share S CM, we know that F and G
share 1 CM. By Lemma 3, we obtain

F −1
G−1

=Q eh, (11)

where Q is a rational function and h is an entire
function.

By f and g share S CM, Lemma 1, Lemma 6 and
Nevanlinna’s first fundamental theorem, we have

nT (r, f ) = T
�

r, f n− f n−1
�

+ S (r, f )

⩽ N
�

r, f n− f n−1
�

+N
�

r, 1
f n− f n−1

�

+N
�

r, 1
f n− f n−1−1

�

+ S(r, f )

⩽ N (r, f )+N
�

r, 1
f n−1( f −1)

�

+N
�

r, 1
gn−gn−1−1

�

+ S(r, f )

⩽ N (r, f )+N
�

r, 1
f

�

+N
�

r, 1
f −1

�

+ T (r, gn− gn−1−1)+ S(r, f )
⩽ 2T (r, f )+ nT (r, g)+O(log r)+ S(r, f ).
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It follows from n⩾ 3 that

T (r, f ) = O(T (r, g)).

Similarly,

T (r, g) = O(T (r, f )). (12)

From Nevanlinna’s first fundamental theorem,
(11) and (12), we have

T
�

r,Q eh
�

= T

�

r,
f n− f n−1−1
gn− gn−1−1

�

⩽ T
�

r, f n− f n−1−1
�

+T
�

r, gn−gn−1−1
�

+ S(r, f )

⩽ O (T (r, f ))+ S(r, f )+ S(r, g). (13)

By Lemma 2, Lemma 4 and (13), we obtain
λ
�

eh
�

= µ
�

eh
�

⩽ µ( f ). Noting that µ( f ) is finite and
noninteger and λ

�

eh
� �

= µ
�

eh
��

is an integer, we have
λ
�

eh
�

< µ( f ). Hence,

T
�

r,Qeh
�

= S(r, f ). (14)

It follows from Nevanlinna’s first fundamental theo-
rem, (11) and (14) that

nT (r, f ) = T (r, F)+ S(r, f )
= T (r, F −1)+ S(r, f )

= T
�

r, (G−1)Q eh
�

+ S(r, f )

⩽ T (r, G−1)+ T
�

r,Q eh
�

+ S(r, f )

⩽ T (r, G)+ S(r, f ) = nT (r, g)+ S(r, f ).

Hence, we have

T (r, f )⩽ T (r, g)+ S(r, f ).

Similarly,

T (r, g)⩽ T (r, f )+ S(r, g). (15)

Now, we consider two cases.
Case 1: Q eh ≡ 1. By (11), we have

( f n− gn)−
�

f n−1− gn−1
�

≡ 0.

Set h= f
g . Then we have

g(hn−1)− (hn−1−1)≡ 0. (16)

Next, we consider two subcases.
Case 1.1: h is constant. By (16) and g is a nonconstant
meromorphic function, we deduce that hi −1≡ 0 (i =
n, n−1). Thus h≡ 1, that is f ≡ g.
Case 1.2: h is not constant. It follows Lemma 8 that
µ(g) = 0, a contradiction.

Case 2: Q eh ̸≡ 1. From (11), we get

f n− f n−1 =Q eh(gn− gn−1)+1−Q eh. (17)

By (15), (17), Lemma 6 and Nevanlinna’s first
fundamental theorem and Lemma 1, we get

nT (r, f ) = T
�

r, f n− f n−1
�

+ S (r, f )

⩽ N
�

r, f n− f n−1
�

+N
�

r, 1
f n− f n−1

�

+N
�

r, 1
f n− f n−1+Q eh−1

�

+ S(r, f )

⩽ N (r, f )+N
�

r, 1
f n−1( f −1)

�

+N
�

r, 1
gn−1(g−1)

�

+ S(r, f )

⩽ N (r, f )+N
�

r, 1
f

�

+N
�

r, 1
f −1

�

+N
�

r, 1
g

�

+N
�

r, 1
g−1

�

+ S(r, f )

⩽ 2T (r, f )+2T (r, g)+O(log r)+ S(r, f )
⩽ 4T (r, f )+ S(r, f ).

It follows from n ⩾ 5 that T (r, f ) ⩽ S(r, f ), a contra-
diction.

This completes the proof of Theorem 2. 2

PROOF OF Theorem 3

Proof : Since f and g share α3 CM, by Lemma 3, we
have

f −α3

g −α3
= eh, (18)

where h is a polynomial.
From Lemma 7 (q = 4) and Nevanlinna’s first

fundamental theorem, we obtain

2T (r, f )⩽ N(r, f )+N
�

r, 1
f −α1

�

+N
�

r, 1
f −α2

�

+N
�

r, 1
f −α3

�

+ ϵT (r, f )+ S(r, f )

⩽ 1
2 N1)

�

r, 1
f −α1

�

+ 1
2 N
�

r, 1
f −α1

�

+ 1
2 N1)

�

r, 1
f −α2

�

+ 1
2 N
�

r, 1
f −α2

�

+N
�

r, 1
f −α3

�

+ ϵT (r, f )+ S(r, f ).

(19)

Since E1) (αi , f ) = E1) (αi , g) (i = 1, 2), by f and
g share α3 CM, (19), we have

(1− ϵ) T (r, f )⩽ 1
2 N1)

�

r, 1
g−α1

�

+ 1
2 N1)

�

r, 1
g−α2

�

+N
�

r, 1
g−α3

�

+S(r, f )

⩽ 2T (r, g)+ S(r, f ).

That is T (r, f ) ⩽ O (T (r, g)) + S(r, f ). It follows from
Lemma 2 that µ( f )⩽ µ(g).

Similarly,

T (r, g)⩽ O (T (r, f ))+ S(r, g), (20)
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and it follows from Lemma 2 that µ(g)⩽ µ( f ). Hence,
µ(g) = µ( f ).

By (18), (20) and Nevanlinna’s first fundamental
theorem, we have

T
�

r, eh
�

= T
�

r, f −α3
g−α3

�

⩽ T (r, f )+ T (r, g)+ S(r, f )
⩽ O(T (r, f ))+ S(r, f ). (21)

By Lemma 2, Lemma 4 and (21), we obtain
λ
�

eh
�

= µ
�

eh
�

⩽ µ( f ). Noting that µ( f ) is finite and
noninteger and λ

�

eh
� �

= µ
�

eh
��

is an integer, we have
λ
�

eh
�

< µ( f ). Hence, eh is a small function of both f
and g.

Now, we consider two cases.
Case 1: eh ≡ 1. In this case, by (18), we have f ≡ g.
Case 2: eh ̸≡ 1. By E1) (ai , f ) = E1) (ai , g) (i = 1, 2),
(18) and Nevanlinna’s first fundamental theorem, we
have

N1)

�

r, 1
f −α1

�

⩽ N
�

r, 1
eh−1

�

⩽ T
�

r, eh
�

+O(1)⩽ S(r, f ). (22)

Similarly,

N1)

�

r, 1
f −α2

�

⩽ S(r, f ). (23)

From (19), (22) and (23), we get

2T (r, f )⩽ 1
2 N1)

�

r, 1
f −α1

�

+ 1
2 N
�

r, 1
f −α1

�

+ 1
2 N1)

�

r, 1
f −α2

�

+ 1
2 N
�

r, 1
f −α2

�

+N
�

r, 1
f −α3

�

+ ϵT (r, f )+ S(r, f )

⩽ 1
2 N
�

r, 1
f −α1

�

+ 1
2 N
�

r, 1
f −α2

�

+N
�

r, 1
f −α3

�

+ ϵT (r, f )+ S(r, f ).

(24)

Then we have

(2− ϵ)T (r, f )⩽ 1
2 N
�

r, 1
f −α1

�

+ 1
2 N
�

r, 1
f −α2

�

+N
�

r, 1
f −α3

�

+ S(r, f ),

lim
r→∞

(2− ϵ)⩽ lim
r→∞

�N
�

r, 1
f −α1

�

2T (r, f )

+
N
�

r, 1
f −α2

�

2T (r, f )
+

N
�

r, 1
f −α3

�

T (r, f )
+

S(r, f )
T (r, f )

�

,

2− ϵ ⩽ lim
r→∞

�N
�

r, 1
f −α1

�

2T (r, f )
+

N
�

r, 1
f −α2

�

2T (r, f )

+
N
�

r, 1
f −α3

�

T (r, f )

�

+ lim
r→∞

S(r, f )
T (r, f )

2− ϵ ⩽
1
2
(1−δ(α, f ))+

1
2
(1−δ (α2, f ))

+ (1−Θ (α3, f )) .

Let ϵ → 0, it follows that 1
2δ (α1, f ) + 1

2δ (α2, f ) +
Θ (α3, f )⩽ 0, a contradiction.

This completes the proof of Theorem 3. 2

PROOF OF Theorem 4

Proof : By Lemma 7
�

q = 4,ϵ = 1
7

�

, it is easy to prove
Theorem 4 by imitating the proof of Theorem 3 and
replacing (24) with the following formula.

2T (r, f )⩽ N(r, f )+N
�

r, 1
f −α1

�

+N
�

r, 1
f −α2

�

+N
�

r, 1
f −α3

�

+ 1
7 T (r, f )+ S(r, f )

⩽ k1
k1+1 N k1)

�

r, 1
f −α1

�

+ 1
k1+1 N
�

r, 1
f −α1

�

+ k2
k2+1 N k2)

�

r, 1
f −α2

�

+ 1
k2+1 N
�

r, 1
f −α2

�

+N
�

r, 1
f −α3

�

+ 1
7 T (r, f )+ S(r, f )

⩽ 1
k1+1 N
�

r, 1
f −α1

�

+ 1
k2+1 N
�

r, 1
f −α2

�

+N
�

r, 1
f −α3

�

+ 1
7 T (r, f )+ S(r, f )

⩽
�

1
k1+1 +

1
k2+1 +1+ 1

7

�

T (r, f )+ S(r, f ).

It follows that T (r, f )⩽ S(r, f ), a contradiction.
This completes the proof of Theorem 4. 2

PROOF OF Theorem 5

Proof : We prove Theorem 5 by contradiction. Suppose
that there exists an entire small function α(̸≡∞) of f
such that f −α has finitely many zeros.

Obviously,
f −α=Q eh, (25)

where Q is a polynomial and h is an entire function.
It follows from (25) thatµ( f ) =µ ( f −α) =µ

�

eh
�

.
Noting that µ( f ) is finite and noninteger and µ

�

eh
�

is
an integer, a contradiction.

This completes the proof of Theorem 5. 2
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