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ABSTRACT: Let X be an infinite set and I(X) the symmetric inverse semigroup on X. For a nonempty subset Y of X
and an infinite cardinal g such that |X| > q, let PS(X,Y,q) = {a € I(X) : |X\Xa| =qand Xa C Y}. Then PS(X,Y,q) is
a generalization of the partial Baer-Levi semigroup PS(X,q) = {a € I(X) : |X\X a| = q} which has been studying since
1975. In this paper, we describe the Green’s relations and characterize the natural partial order on PS(X,Y,q). With
respect to this partial order, we determine when two elements are related, find all the maximum, minimum, maximal,
minimal, lower cover and upper cover elements. Also, we describe elements which are compatible and we investigate

the greatest lower bound and the least upper bound of two elements in PS(X, Y, q).
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INTRODUCTION

Let X be a nonempty set and let P(X) denote the set
of all partial transformations of X, i.e., all transfor-
mations a whose domain, dom a, and range, X a are
subsets of X. Let T(X) denote the subsemigroup of
P(X) consisting of all @ € P(X) with dom a = X, which
is called the full transformation semigroup. Also, let
I(X) denote the symmetric inverse semigroup on X:
that is, the set of all injective mappings in P(X). When
X is an infinite set and q is a fixed cardinal such that
|X| = q = X,, we write

BL(X,q)={aeTX)NI(X):d(a)=q},

where d(a) = |X\Xa| is called the defect of a. Then
BL(X,q) is called the Baer-Levi semigroup of type
(1X|,q). It is known that BL(X,q) is a right can-
cellative, right simple semigroup without idempotents.
Moreover, for any semigroup S satisfying these three
properties, S can be embedded in a Baer-Levi semi-
group of type (p,p), where p = |S| (see [1, Section
8.1]).

In 1975, Sullivan [2] introduced and studied a
semigroup containing BL(X, q), namely

PS(X,q) ={a€I(X):d(a)=q},

and call this the partial Baer-Levi semigroup on X.
He showed that, when p = g, every automorphism
of PS(X,q) is inner and the set of all automorphisms
of PS(X,q) is isomorphic to G(X), the permutation
group on X. Later, in 2004, Pinto and Sullivan [3]
showed that this is also true when p > q. Also, a
characterization of the Green’s relations, regular ele-
ments and ideals of PS(X,q) have been provided in

this paper. In contrast with BL(X,q), the semigroup
PS(X,q) is neither right simple nor right cancellative
(see [3, Example 1]). Moreover, this semigroup always
cantains idempotents (see [3, p 89)).

In this paper, we introduce a family of subsets of
PS(X,q) defined by

PS(X,Y,q)={acI(X):d(a)=q and Xa CY},

where Y is a fixed nonempty subset of X. Since
PS(X,q) is closed under composition of functions
and if Xa CY,Xp CY, then Xaff € XpB C Y, thus
PS(X,Y,q) is a subsemigroup of PS(X, q). We also ob-
serve that [X\Y| < [X\Xa| = q for any a € PS(X,Y,q),
therefore PS(X,Y,q) # @ only when |X\Y| < q. More-
over, when X = Y, we obtain that PS(X,Y,q) =
PS(X,q). Thus, we may regard PS(X,Y,q) as a gen-
eralization of PS(X, q).

The natural partial order on regular semigroups
was first defined in 1980 independently by Hartwig
[4] and Nambooripad [5]. The most recognized and
widely used definition is the following: a < b if and
only if a = eb = bf for some idempotents e, f € S.
Later, in 1986, Mitsch [6] generalized the definition
of the above partial order on regular semigroups to
arbitrary semigroup S by: a < b ifand onlyifa =xb =
by and a = ay for some x, y € S!, where the notation
S! means S itself if S contains the identity element,
otherwise S! denotes the semigroup obtained from S
by adjoining an extra identity element 1. However,
when S is regular the Mitsch’s order coincides with the
Hartwig-Nambooripad’s order. A significant amount of
research has been done studying the natural partial
order on various transformation semigroups on the
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nonempty set X. In [7], Kowol and Mitsch charac-
terized the natural partial order on T(X) in terms
of images and kernels. In 2003, Marques-Smith and
Sullivan [8] studied and compared various properties
of the natural partial order < and the another par-
tial order € on P(X), namely the containment order
defined by : a € 8 if and only ifdom a € dom 3 and
xa = xf3 for all x € dom a. Later, Singha, Sanwong
and Sullivan [9,10] investigated various properties
of < and C on I(X),PS(X,q) and its largest regular
subsemigroup. The natural partial order has also
been studied in many other recent papers on several
transformation semigroups, see for example [11-14].
For the description for the natural partial order on
BL(X,q), as far as we know, it were not characterized
before. But we observe that, if a <  in BL(X, q), then
by the definition of <, we have au = u for some u €
BL(X,q)!, so a = B since BL(X, q) is right cancellative.
Therefore, the natural partial order on BL(X, q) is just
the identity relation on BL(X, q). Although PS(X,Y,q)
is a generalization of PS(X,q), in general, when X #
Y the natural partial order on PS(X,Y,q) is not the
restriction of the natural partial order on PS(X,q) to
PS(X,Y,q). In other words, for a, 8 € PS(X,Y,q) such
that a < 8 in PS(X,q), it does not necessarily follow
that a < 8 in PS(X,Y,q). For example, let X =N be
the set of all positive integers, let Y be the set of all
positive even integers and let ¢ = X,. Let a, 3, A, u be
defined as follows:

(4 5 (4 5 6 7
a={y 4} P={2 4 6 s

_ (4 5 (2 4
A—(4 5) andpc—(z 4).

Then a, B, u € PS(X,Y,q) and A € PS(X,q)\
PS(X,Y,q). We see that a = A3 = Bu and a = ay, so
a < fBinPS(X,q). Butthereisno A’ € PS(X,Y,q) such
that a = A’B, so a £ B in PS(X,Y,q). It is therefore
of interest to characterize the natural partial order on
PS(X,Y,q).

The main objective of this paper is to study the
semigroup PS(X,Y, q). To achieve this aim, we first in-
vestigate some elementary results of PS(X,Y,q). In the
following section, we give descriptions of the Green’s
relations and describe the natural partial order on this
semigroup. The results for PS(X, Y, q) obtained in this
paper extend and generalize the corresponding results
for PS(X,q) obtained in [3, 9, 10].

PRELIMINARY NOTATION AND RESULTS

Throughout this paper, unless otherwise specified, we
suppose that X is an infinite set with |X| = p, g is an
infinite cardinal such that ¢ < p and Y is a nonempty
subset of X such that |[X\Y| < q. For each mapping
a € PS(X,Y,q), we write

G
a= s
Yi
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where the subscript i belongs to some unmentioned
index set I, the abbreviation {y;} denotes {y; :i €I},
Xa={y;} €Y, doma = {q;} and q;a = y;. We
also write g(a) = |X\dom «| and r(a) = |Xal, and
refer to these cardinals as the gap and the rank of a,
respectively. For a subset A of X, we denote by a|, the
restriction of a to A. Also, denote by id, the identity
function on A and we write A= B U C to denote A is
a disjoint union of B and C. As usual, @ denotes the
emptyset, but in some contexts, & is used to refer to the
empty (one-to-one) transformation which is the zero
element in P(X).

We begin with some basic results on PS(X,Y,q)
which analogous to those obtained for PS(X,q) in [3].

Proposition 1 The semigroup PS(X,Y,q) contains zero
element precisely when |X| = q. Moreover, PS(X,Y,q)
has no identity element.

Proof: Sine every mapping in PS(X,Y,q) has defect
q and d(@) = p, so @ € PS(X,Y,q) precisely when
p = q.Next, to show that PS(X,Y,q) has no identity
element, we first observe that if y is the identity
element in PS(X,Y,q), then for all a € PS(X,Y,q),
a=ya. Sodoma C domy and ¥|goma = iddgoma- If
|Y| = p, then we can write Y = AU B U C, where
|Al =p and |B| = |C| =q. As [X\Y| < g, we have
[AUBU(X\Y)| =]AUCU(X\Y)| = p. Thus, there exist
0 :AUBU(X\Y) > Aand ¢ : AUCU(X\Y) — A, where
0 and ¢ are bijections. We have X0 =Xe =ACY and
d(0) =d(e) = |B| +|C| + |X\Y| = q, whence 0,¢ €
PS(X,Y,q). As v is the identity, we have y|jome =
idausuexy) and Tliome = idaucuix\v)> that is y = idy,
contradicting the fact that |X\Xy| = q. On the other
hand, if |Y| < p, then p = |X\Y|<gand so p=q. In
this case, all mappings whose domain is a singleton and
range is a subset of Y belong to PS(X,Y,q). Fixy €Y

and for any x € X, we let a, = (;C/) € PS(X,Y,q).

Again, as y is the identity, we have a, = ya, and so
xy = x for all x € X. Then we obtain that y =idy and
this leads to a contradiction again. Hence PS(X,Y,q)
has no identity element. m|

Proposition 2 The semigroup PS(X,Y,q) is neither
right cancellative nor right simple.  Furthermore,
PS(X,Y,q) always contains idempotents and

E(PS(X,Y,q))={id,:ACY and |X\A|=q}
is the set of all idempotents in PS(X,Y,q).

Proof: If |X| =q,thenwelety € Y and t,u,v € X\{y},
where t,u and v are all distinct. We define

() 5=() ()

As |X\{y}| = q, we have that a, 8,y € PS(X,Y,q) and
ay =@ = By but a # . Therefore PS(X,Y,q) is not
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a right cancellative semigroup. Moreover, for any A €
PS(X,Y,q), we see that t ¢ dom BA. So a # A, that
is PS(X,Y,q) is not right simple. On the other hand,
suppose that |[X| = p > q. Since [X\Y| < q, we have
|Y| = p. We write Y =AU B, where A= {a;}, |A|=p
and |B| = q. Choose b, c € B with b # ¢ and define

_fa; b _f(a; ¢
a= (ai b) and f = (ai b)’
it is easy to see that a, 3,id, € PS(X,Y,q) and a-id, =
idy = B -id, but a # 3. Thus, PS(X,Y,q) is not a
right cancellative semigroup. Furthermore, for any

A € PS(X,Y,q), we see that b ¢ dom A. Then a #
B A, this again implies PS(X,Y,q) is not a right simple

semigroup.
Next, we characterize all idempotents in
PS(X,Y,q). It is clear that for any A C Y such

that [X\A] = ¢q, we have id, € PS(X,Y,q) and
idy - idy = id,, whence id, is an idempotent.
Conversely, if a is an idempotent in PS(X,Y,q),
then a® = a. So (xa)a = xa for all x € dom a. Since
a is injective, we have xa = x and thus a =id,, where
A=doma=Xa CY. Hence, |X\Al = |X\Xa| =q as
required. a

Proposition 3 The semigroup PS(X,Y,q) is not a reg-
ular semigroup.

Proof: If Y = X, then PS(X,Y,q) = PS(X,q) which
was shown in [3, Theorem 4], that it is not a regular
semigroup. Otherwise, if X\Y # @, then we let a €
PS(X,Y,q) be such that dom anN (X\Y) # @. Let x €
dom an(X\Y) and suppose that xa =y. If a is regular,
then there exists f € PS(X,Y,q) such that a = afa, so
ypB =x ¢ Y, this contradicts to that X3 C Y. Hence, a
is not a regular element in PS(X,Y,q). O

GREEN’S RELATIONS

In this section, we characterize the Green’s relations
on PS(X,Y,q) by using some ideas of the proof for
PS(X,q) in [3] with the idea of restricted range con-
cerned. For the definition of Green’s relations ., &,
s, 9, and £ on a semigroup, see [15, Chapter 2]. We
also recall from Proposition 1 that PS(X,Y,q) has no
the identity element, so PS(X,Y,q)' # PS(X,Y,q).

For comparison with what follows, we quote the
descriptions for Green’s relations on PS(X,q) from [3,
Theorems 7-10 and Remark 2].

Theorem 1 Let a,f3 € PS(X,q).

statements hold.

(@) ap if and only if dom a = dom f.

(b) a¥p if and only if Xa =XP and q < g(a) =
g(B)) or (a=p and g(a) <q).

(o) ax#fifandonly if Xa=Xp,dom a =dom f3 and
gs g(@)or(a=p and g(a) <q).

(A a2p if and only if (g(a) < g and dom a = dom f3)
or (r(a) =r(B) and g < g(a) = g(p)).

Then the following

(e) afp if and only if (max{g(a),g(B)} < q and
r(a) =r(p)) or (g < gla) = g(p)).

We begin by characterizing the relation #£ on
PS(X,Y,q). This finding appears to coincide with the
results in [3, Theorem 7], when aZ 3 in PS(X, q).

Theorem 2 Let a,§ € PS(X,Y,q). Then a = Bu for
some u € PS(X,Y,q) if and only if dom a € dom 8. In
other word, a3 in PS(X,Y,q) if and only if dom a =
dom .

Proof: It is clear that, if a = Bu for some u €
PS(X,Y,q), then dom a € dom f3. For the converse,
we suppose that dom a € dom 3. We can write

_ (% _ (% X
“= (bi) and = (Ci J’j)’
where dom a = {a;} € dom 3. We define u = (IC;)
Then Xu =Xa CY and d(u) = d(a) = q, whence u €
PS(X,Y,q) and a = Bu as required. O

In order to characterize the %-relation on
PS(X,Y,q), the following lemma is needed.

Lemma 1 Let a, € PS(X,Y,q). Then a = Af for
some A € PS(X,Y,q) if and only if the following con-
ditions hold.

(@) Xa CXp.

) Xa)p~lcy.

(9 q<max{g(p),Xp\Xal} < max{g(a),q}.

Proof: Suppose that a = Af3 for some A € PS(X,Y,q).
Then Xa € Xf3 and we may write

_ [ _ (X Xk
a—(bi) and ﬁ_(bi bk)’
where Xa = {b;} € X and {x;} = Xa)B~!. Thus

a;AB = a;a = b; = x; 3. Since f3 is injective, we have
that x; = q;A €Y, that is (Xa)3 ™ C Y. Observe that

X\XA =((X\XA)Nndom B) U ((X\XA)N(X\dom B)).
In addition, as f is injective, we have that

q=IX\XA|
=|(X\XA)Ndom B|+ |(X\XA) N (X\dom B)|
=|&X\XA)B|+ X \XA)N (X \dom )]
= |XB\Xal+[(X\XA) N (X\dom )
< |XB\Xal+|X\dom S|
= max{g(f), X \Xal}.

)

Next, we see that doma = domAf = (XA N
dom B)A7L. Then (XA N (X\dom B))A~! € X\dom a,
whence |[XAN(X\dom B)| = |(XAN(X\dom B))A7}| <
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|X\dom a|. This implies that

g(B) = |X\dom |
=|(X\dom B)NXA|+ |(X\dom ) N (X\XA)| )
< |X\dom a] + [X\XA| (
= max{g(a),q}.

)

As [XB\Xal| < |X\Xa| = q and from (1) and (2), we
have that ¢ < max{g(), |XB\Xa|} < max{g(a),q} as
required.

Conversely, suppose that the conditions (a), (b)
and (c) hold. From (a) and (b), we can write

«=(s) = = 5
where Xa = {b;} C X, {x;} = Xa)B™* CY and
XB\Xa = {b;}. We aim to define A € PS(X,Y,q) such
that a = A3. We consider two cases.
Case 1: g(a) <qor g(B)<q.

If g(a) < g then max{g(a),q} =q. So, the con-
dition (c) implies max{g(B),|XB\Xal} = ¢. On the
other hand, if g(f8) < g, then, as [Xf\Xa| < |[X\Xa| =
g, the condition (c) implies max{g(f), | Xp\Xa|} =q

again. Now, define A = (?cl) Thena=AB,XACY

and d(4) = g(B) + [{x; }| = max{g(B), [Xp\Xal} =q,
whence A € PS(X,Y,q).
Case 2: g(a) = q and g() >gq.

From (c), we have that g < g(8) < g(a). Then we
may write X \dom a = {u,,} U T, where g() = [{u,,}|
and g(a) = |T|. We see that

X\dom B = (Y\dom B) U ((X\dom B)N(X\Y)), (3)

where [X\dom | = g(8) > q and |(X\dom ) N
(X\Y)| < |X\Y| < q. Then, from (3), we have
|Y\dom S| = |X\dom S| > q. Now, write Y\dom 8 =
{v,} U U, where g(B) = |{v,,}| and |U| = q. In this
a; Upy

case, we define A = Then A is injec-

i m
tive, XA C Y and a = A. Moreover, since |{x;}| =
IXB\Xa| < [X\Xa| =g, |U| =q and |(X\dom ) N
(X\Y)| < |X\Y]| < ¢, we have

d(A) = IX\({x;} U {va DI
=[x} + U+ |(X\dom B) N (X\Y)[ =g,

so A € PS(X,Y,q) as required. ]
Now, we can present our description of the relation
% on PS(X,Y,q).

Theorem 3 Let a,f3 € PS(X,Y,q). Then a¥f if and
only if

a=f or Xa=XpB,domaC¥, dompB CY
and q<g(a)=_g(p)).
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Proof: Suppose that ¢ 3 in PS(X,Y,q). Thena=Af
and 8 = ua forsome A, u € PS(X,Y,q). If a # 3, then
A, u € PS(X,Y,q). Thus, Lemma 1 implies that

(a1) Xa CXp,
(a) Xa)B' C,

(a3) g <max{g(p),Xp\Xa|} < max{g(a),q},
(b1) XB CXa,

(by) (XBla~' CY,
(b3) g <max{g(a),|Xa\XB|} < max{g(B),q}.

Then (a;) and (b;) imply Xa = Xf3. Consequently,
[Xa\Xp| = 0 = |[XB\Xa|. Thus, (a3) implies q <
8(B) < max{g(a),q} and (bs) implies q < g(a) <
max{g(f),q}. As q < g(a) and g < g(p), we have
max{g(a),q} = g(a) and max{g(),q} = g(f), so we
obtain that q < g(f) < g(a) and q < g(a) < g(p),
whence g < g(a) = g(). Finally, as Xa = X 3, we see
that (a,) implies dom 8 = (XB)B! = Xa)B ™ C Y.
Similarly, (b,) implies dom a C Y as required.

Conversely, it is clear that if a = 8, then
a¥pB. We suppose that Xa = X3, doma C Y,
domf CY and q < g(a) = g(B). Then |XB\Xa| =
0, max{g(a),q} = g(a) and max{g(B),|Xp\Xal} =
g(B). Consequently, as q < g(a) = g(), we obtain
that ¢ < max{g(f), | Xp\Xa|} = max{g(a),q}. More-
over, the conditions Xa = X8 and dom 3 C Y imply
Xa)B'=(XB)B ' =dom B CY. Thus, by Lemma 1,
a = Af for some A € PS(X,Y,q). Analogously, we can
prove that f = uya for some u € PS(X,Y,q). Hence,
a¥f asrequired. m|

According to Theorem 2 and Theorem 3, we have
the following conclusion readily for ¢-relation on
PS(X,Y,q).

Corollary 1 Let o, € PS(X,Y,q).
PS(X,Y,q) if and only if

Then asf3 in

a=pf or (Xa=Xp, doma=domf CY andq < g(a)).
In what follows we describe the relation 2.

Theorem 4 Let a,f € PS(X,Y,q). Then a2p if and
only if

doma=dom f3 or (r(a)=r(B), domacCy,
dom 3 €Y and q < g(a) = g(B)).

Proof: Suppose that a2f3. Then there exists y €
PS(X,Y,q) such that a¥y and y%B. Then by The-
orem 2 and Theorem 3, domy =dom f8 and (a) a =y
or(b) Xa=Xy,domaCY,domyCYandqg<g(a)=
g(r).

If (a) holds, then dom a = dom y = dom f3. Other-
wise, if (b) holds, then dom 8 =domy €Y, dom a C
Y, g(B) = g(y) = gla) = q and |Xa| = |Xy| =
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|domy| = |dom | = |Xf|, that is r(a) = r(B) as
required.

Conversely, if doma = dom 3, then aZf in
PS(X,Y,q). As 9 is an equivalence relation containing
%, we have that a2f3 as required. Next, we assume
r(@)=r(f),domaCY,dompB CY and q < g(a) =
g(B). As r(a) = r(f), we may write

o= () e =)

G
b;
d(a) =g, whence y € PS(X,Y,q). Moreover, dom y =
domf €Y and g(y) = g(B) = g(a) = q. So, by
Theorem 2 and Theorem 3, a2y and yZ f3. It follows
that a2 in PS(X,Y,q). =]

In order to describe the Green’s relation ¢ on
PS(X,Y,q) when |X| = q, we need the following
lemma.

We define y = ) Then Xy =Xa CY and d(y) =

Lemma 2 Suppose that |X|=q. Let a, 8 € PS(X,Y,q).
Then 3 = Aau for some A, u € PS(X,Y,q) if and only if
|dom B| < |dom anY]|.

Proof: Suppose that B = Aau for some A,u €
PS(X,Y,q). Then

|XB|=[XAau| =|XAandom u| < |[XAa| = |XANdom a.

Since XA C Y, we have that [XANdom a| < |[YNdom a.
Thus, the above inequality implies that |dom 3| =
|XB| < |dom aNY]| as required.

Conversely, suppose that domanY = {q;},i €I

and = ((Cij'), j €J with [J| < |I|. If |I| is finite, then
j

|7] is also finite, and we can write {a;} = {x;} UA, for
some finite set A with |A| < |I|. We note that the set
A could be empty, and in the event that this occurs, it
results in |I| = |J| and {a;} = {x;}. We define

% — (X%
A_(Xj) and pr = ( d )
Then f = Aau. Since {x;} is finite, we have d(A) =
IX\{x;}| = q. Moreover, XA C Y, Xu=XBCY
and d(u) = d(B) = q, whence A,u € PS(X,Y,q). On

the other hand, if I is infinite, then we write {q;} =
{¥:} U{y;} and define

V= (Cj) and p’ = (}’ja).
Yi d;

Clearly, f = Mau’ , XA’ CY, Xy’ =XB CY and
d(u)=d(p)=gq, thatis, u’ € PS(X,Y,q). It remains to
verify that A’ € PS(X,Y,q). We see that [dom anY|=
H{a;} = {y;}l, so
d(A) = 1X\{y;}| = IX\(dom aNY)| + [{y;}|
= |X\(dom anY)|+|domanY|=|X|=q.

Therefore, A’ € PS(X,Y,q), which finishes the
proof. a

The following theorem is a consequence of the
above lemma.

Theorem 5 Suppose that |X| = q. Let a,p €
PS(X,Y,q). Then a ¢ if and only if dom o = dom f3
or [dom a| =|dom anNY|=|dom | =|dom fNY]|.

Proof: Suppose that a ¢ 8 in PS(X,Y,q). Then, there
exist 0,5,0’,8’ € PS(X,Y,q)! such that a = o35 and
p=c'ad’. fc=1=0',thena= 5 and § = ad’.
So a3, whence dom a = dom 3 by Theorem 2. If
6 =1=206', then a = of and 8 = o’a, which imply
a% 3. Then, by Theorem 3, we have a = f§ or (Xa =
XpB,domaCY,domB CY and q < g(a)=g(B)).

Here, if a = 8, then we obtain that doma =
dom . Otherwise, if the latter holds, then dom anY =
dom a and dom 3 NY = dom 3. Moreover, as Xa =
X3, we obtain that [domanY| = |doma| = [Xa| =
|XB| =|dom B| =|dom B NY]|.

In other cases, it is a routine to check that a = A u
and 8 = A au’ for some A, A/, u,u’ € PS(X,Y,q) (for
example, if o =1 and 6,6,0’ € PS(X,Y,q), then
a=f6and f =0oc’ad’. Soa=p6=(c'ad)s =
o’(B6)6'6 = o’B(66’5), where 666 € PS(X,Y,q)).
Thus, by Lemma 2, [dom | < |[dom anY| < |dom a| <
|dom BNY| < |dom f3|. Hence, |dom a| = |dom anY|=
|dom B| =|dom B NY]| as required.

Conversely, if dom a = dom 3, then a3 and so
a¢f in PS(X,Y,q). Now, we assume that |dom a| =
|[dom anNY|=|dom | =|dom S NY|. Then Lemma 2
implies a = ABu and B = A’ au’ for some A, A/, u, u’ €
PS(X,Y,q). Therefore, a_¢f3 and the proof is com-
plete. a

To finish the study of the Green’s relations in
PS(X,Y,q), we give the following description of the
Z- relation when |X| > q.

Theorem 6 Suppose that |X| =p > q. Let a,f €
PS(X,Y,q). Then, B = Aau for some A,u € PS(X,Y,q)
if and only if g(a) < q or g < g(a) < g(B). In other
word, a_¢ B if and only if max{g(a),g(B)} <qorg<
g(a)=g(p).

Proof: Suppose that f = Aau for some A,u €
PS(X,Y,q). Since p > q, we have r(a) = r(f8) = p.
If g(a) = t for some infinite cardinal t greater than
q, then we have t = |X\dom a| = |(X\dom a) NXA| +
|(X\dom a)N(X\XA)|, where |(X\dom a)N(X\XA)| <
[X\XA| = q¢ < t. So, the above equation implies
|(X\dom a)NXA| = t. Next, suppose that (X\dom a)n
XA ={v;}. Then, v; = u;A for some u; € dom A and
u;A ¢ dom a. So u;Aau is not defined. Consequently,
as 3 = Aau, we have that u; ¢ dom f for all i. There-
fore, {u;} € X\dom 3, where |{i;}| = t. It follows that
g(B) =t = g(a)> q as required.

Conversely, notice that, since p > q, we have
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|dom a| = |dom S| = p. We may write

e (i) mep= ()

where i € I and |I| = p. We also see that dom a =
(domanY)U (doma\Y) and |dom a\Y| < |X\Y]| <
q. Therefore, [domaNY|=p. We write dom an
Y = {x;} UA, where |A| = q and define u = (xéa)
Then Xy =Xp €Y and d(u) = d(B) = q, whence
u € PS(X,Y,q). Now, if g(a) < g, then we define
A= (;‘) Clearly, p = Aau and XA C Y. More-

1
over, since |[doma\Y| < q and |A|] = q, we have
IX\XA| = |X\{x;}| = |X\dom a| + |[dom a\Y| + |A| =
q, that is, A € PS(X,Y,q). Finally, if ¢ < g(a) =
t < g(3), then we consider X\dom a = ((X\dom a)n
Y) U ((X\dom a)\Y). Since |(X\dom a)\Y| < |X\Y| <
qg < t, we have |[(X\doma)NY| =t. We write
(X\doma)NY =B U C, where |B| =t and |C| = q.
Since q < g(a) =t < g(B), there exists a subset D
of X\dom 3 such that |[D| = t. Now, define ' =
(;l: g), where 1’|, is a bijection from D onto B. We
1

see that f = A’au and XA' = {x;} UB C Y. Moreover,
d(A) = |X\XA'| = |X\Y|+|A| +|C| = q, whence A" €
PS(X,Y,q). This completes the proof. |

It is known that 2 C ¢ on any semigroup and 9 =
# on some well known transformation semigroups, for
example, on P(X), T(X) and I(X) see [15, p. 63 and
p. 211]. However, this is not always true for PS(X,Y, q)
as shown in the following example.

Example 1 Let X = N denote the set of all positive
integers. Let Y be the set of all positive even integers
and let ¢ = X,. We define a = (22
f =idy. It can be verified that a, 8 € PS(X,Y,q). We
see that [domanY|=|{6n:n €N} =X, = |dom q|
and |[dom B NY|=|domfB| =|Y|=X,. So a¢f in
PS(X,Y,q) by Theorem 5. But a and 3 are not 2-
related in PS(X,Y,q) by Theorem 4 since dom a #
dom 3 and doma ¢ Y.

), where n € N, and

To close this section, it is worth noticing that,
unlike the & -relation, when X # Y the relations £, ¢,
92 and ¢ on PS(X,Y,q) are not the restriction of the
corresponding relations from PS(X,q) to PS(X,Y,q).
We provide some examples below.

Example 2 Let X, Y and q be as in Example 1.

(i) Define a= (; 2) and ff = (g i) We can verify

that a, 3 € PS(X,Y,q) € PS(X,q) and Xa = X3,
dom a =dom f and g(a) = g(B) =XR,. So asZp
in PS(X,q) by Theorem 1. Since 5 C ¥, we
obtain that a#f in PS(X,q). But a and 3 are
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not Z-related in PS(X,Y,q) by Theorem 3 since
a# f and dom a ¢ Y. Consequently, they are not
H¢-related in PS(X,Y,q).

5 6

. ) 3 4

(ii) Define y = (2 4) 5 4). Then
7,4 € PS(X,Y,q) € PS(X,q), r(y) =2 = r(u)
and g(y) = g(n) = Ry. So y2u in PS(X,q) by
Theorem 1. Since 9 C ¢, we obtain that y_fu
in PS(X,q). But y and u are not ¢-related in
PS(X,Y,q) by Theorem 5 since domy # dom u
and |dom y| = 2 whereas [domyNY| = 1. Con-
sequently, they are not Z-related in PS(X,Y,q).

andu=(

NATURAL PARTIAL ORDER

In this section, we investigate various properties of
the natural partial order on PS(X,Y,q). First, we
recall that by Proposition 3, PS(X,Y, q) is not a regular
semigroup, so the definition of the natural partial order
that is used in this paper is the Mitsch’s order, that is,
fora, € PS(X,Y,q),a<fifandonlyifa=Ap =fu
and a = au for some A, u € PS(X,Y,q)'.

We also notice that, for a,8 € PS(X,Y,q) with
a C B3, since they are injective, we obtain the following
results which will be used throughout this section.
(i) |dom B\dom a| = |XB\Xa|.
(i) Xa)al=Xa)p™ .
(iii)) If dom a =dom ff or Xa =Xf3, then a = f3.

We denote by a € f when a € 8 and a # .
Similarly, we write a < § when a < 8 and a # 3.

We begin with describing the conditions for a, f €
PS(X,Y,q) are related under the natural partial order.

Theorem 7 Let a,3 € PS(X,Y,q). Then a < B if
and only if a = f or (a € B,doma €Y and q <

max{g(B),|Xf\Xal}).

Proof: Suppose that a < 8 in PS(X,Y,q). Then a =
AB = Bu and a = ay for some A,u € PS(X,Y,q)?,
which imply Xa € X8 and dom a € dom . If a # j3,
then A,u € PS(X,Y,q). So, by Lemma 1, we have
g < max{g(B),|XB\Xa|} and Xa)p™! C Y. Next,
as a = Bu = au, we have that xau = xpu for all
x € dom a. Thus, xa = xf3 as u is injective. Therefore,
a C B and so doma = (Xa)a™! = (Xa)B! CY as
required.

For the converse, if a = f, then clearly, a <
pB. So we assume that o C ff, doma €Y and g <
max{g(B), |XB\Xa|}. We may write

al' _ ai a;
a= (Xi) and § = (Xi x;)

Let u = (;‘), clearly a = fu = au, where Xu =

1
Xa €Y and d(u) = d(a) = q, whence u €
PS(X,Y,q). We also see that the condition a C f8
implies Xa € X and doma € dom 3, so g(f8) <
g(a). In addition, since [XfB\Xa| < |X\Xa| = q,
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the condition q < max{g(f),|Xp\Xal} implies g <
max{g(B),|XB\Xal} < max{g(a),q}. Moreover, as
a C 3, we also obtain that (Xa)B™} = Xa)a™! =
doma C Y. Thus, by Lemma 1, a = A3 for some
A€ PS(X,Y,q). Hence, a < 3 as required. O
From Theorem 7, we see that the natural partial
order < is contained in € on PS(X,Y,q). We will
subsequently use this fact without further mention.

Theorem 8 PS(X,Y,q) has no maximum element with
respect to <.

Proof: For a contradiction, suppose y € PS(X,Y,q) is
the maximum under <. If |X| = g, then we choose
a,b e X and c € Y with a # b. Define

az(g) andﬁ:(f).

It can be verified that a, 8 € PS(X,Y,q). Then, a, <7y
and so a, 8 C y. This implies aa = ay and bf = by.
Since aa = ¢ = bf3, we have that ay = by and thus
a = b (as y is injective), a contradiction. On the other
hand, assume that |X| = p > q. In this case, we choose
u,v € domy with u # v (possible since |domy| = p
when p > q), then uy # vy. We define

_(domy\{u,v} u v)
S\ X \ur,vrl vy wr )

where xu = xy for all x € dom y\{u, v}, then Xu =
Xy €Y and d(u) = d(y) = g, whence u € PS(X,Y,q).
Since vy is the maximum, we have u < y, which implies
u € v and so up = uy. Thus, uy = vy, a contradiction
again. In all cases, we deduce that PS(X,Y,q) has no
the maximum element under <. |

Theorem 9 The following statements hold for the min-

imum element with respect to < in PS(X,Y, q).

(@) If |X| = q, then & is the minimum element in
PS(X,Y,q).

(b) If |X| > q, then PS(X,Y,q) has no minimum ele-
ment.

Proof: In order to prove (a), suppose that |[X| = q and
let a € PS(X,Y,q). Itis clear that @ € a and dom & =
@ CY. Ifq < g(a), then g < max{g(a), | Xa\X@|} and
so @ < a by Theorem 7. Otherwise, if g(a) < q, then
|Xa\X@| = |Xa| =q. Thus, ¢ < max{g(a), | Xa\XD|}
and so @ < a again. Hence, @ is the the minimum
element under <.

To prove (b), we suppose that |X| = p > q and
let @ € PS(X,Y,q). Then, |dom a| = p. We choose
a € dom a and define 8 € PS(X,Y,q) by dom 3 =
dom a\{a} and xf8 = xa for all x € dom a\{a}. Then,
XB CXaCY and d(B) =d(a)+ 1 =q, whence 3 €
PS(X,Y,q). We also see that 8 C a, so PS(X,Y,q) has
no the minimum element under C. As the relation
< implies € on PS(X,Y,q), it can be verified that
PS(X,Y,q) has no the minimum element under <, and
the proof is complete. O

Theorem 10 Let a € PS(X,Y,q). Then, a is a maximal
element in PS(X,Y,q) with respect to < if and only if

gla)<qor Xa=Y or doma V.

Proof: For the first part, we will prove the contrapos-
itive version. Suppose that g(a) = ¢, Xa £ Y and
doma CY. We choose a € X\dom a, b € Y\Xa and
define 8 : dom aU{a} - Y by

xa
xp = { b

It is clear that X3 C Y and d(B) =d(a)—1 =g,
whence 8 € PS(X,Y,q). In addition, @ C # and g(8) =
gla)—1 = q, so g < max{g(p),|Xp\Xa|}. Then, by
Theorem 7, a < f3. Hence, a is not a maximal element.
To prove the converse, assume that the conditions
hold and suppose a < 8, where § € PS(X,Y,q). We
aim to show that a = . Since a < 3, we have a C

p and so dom a € dom . It follows that X\dom a =
(X\dom ) U (dom f\dom a). Therefore,

g(a) =g(f)+|dom f\dom o = g(B)+|X\Xal. (4)

if x € dom a,
if x =a.

If g(a) < g, then the sum on the right of (4) is also less
than q, whence max{g(f3), |X8\Xa|} < q. Thus, as a <
B, we can deduce from Theorem 7 that it is possible
only when a = 3. Similarly, if doma ¢ Y, then a =
p by Theorem 7 again. Finally, by using the fact that
aCp,ifXa=Y,thenY =XaCXB CY andsoXa =
Xp, whence a = 3. In all cases, we deduce that a is
maximal under <. This completes the proof. O
In order to describe all minimal elements in
PS(X,Y,q), we need the following lemma.

Lemma 3 Suppose that |X| =q. Let a € PS(X,Y,q) be
such that a # @. If a is a minimal element with respect
to < in PS(X,Y,q), then either dom a CY or dom a C
X\Y.

Proof: Let a be a non-zero minimal element under < in
PS(X,Y,q) and suppose that dom a ¢ X\Y, so dom an
Y # @. First, if [dom anY| = g, then we write dom an
Y =AUB, where |A| = |B| = q. Let y = a,, clearly @ #
yCca, Xy CXaCV and d(y) =d(a)+ | Xa\Aa| =q,
whence v € PS(X,Y,q). Since B € dom a\dom y, we
obtain that [Xa\Xy| = |dom a\dom y| = ¢, and thus
max{g(a),|Xa\Xy|} = q. In addition, as domy =AC
Y, then @ # y < a by Theorem 7, this contradicts the
minimality of a. Therefore, |[dom aNY| < q. Next, let
B = algomany- It is clear that @ #  C a, dom f3 =
domanY CY, Xp=Yal XaCVY and d() =
d(a)+|Xa\Ya| =q, whence € PS(X,Y,q). Now, if
g(a) = q, then max{g(a), | Xa\XpB|} = q. In this case,
Theorem 7 implies @ # 8 < a, and so a = f3 since a is
minimal. It follows that dom a = dom a NY, whence
dom a C Y. Otherwise, if g(a) < q, then |dom a| =q.
As dom a is a disjoint union of dom a N (X\Y) and
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dom aNY, and we have shown that [domanY| <g,
hence, |[dom aN(X\Y)| = q. Consequently, |Xa\X | =
|dom a\dom | = |dom a N (X\Y)| = q, which implies
that max{g(a),|Xa\Xf|} = q. By Theorem 7 again,
we have @ # f8 < a, so the result that dom a € Y can
be derived like before. O

The next result characterizes all the minimal ele-
ments under < in PS(X,Y,q).

Theorem 11 Let a € PS(X,Y,q). Then the following

statements hold.

(a) If|X|=q, then a is a non-zero minimal element with
respect to < in PS(X,Y,q) ifand only if |dom a| =1
ordoma CX\Y.

(b) If|X|> q, then PS(X,Y,q) has no minimal element
with respect to <.

Proof: To show (a), suppose that |X| = q and let a be
a non-zero minimal element under <. By Lemma 3,
either dom a C Y or dom a € X\Y. If the latter holds,
then the proof is complete. So, we suppose dom a C
Y. In this case, if |[dom a| > 1, then we choose a €

dom a and let 6 = aa . It can be verified that 6 €

PS(X,Y,q) and, as |dom a| > 1, we have @ # 6 C a. If
q < g(a), then g < max{g(a),|Xa\X0O|}. On the other
hand, if g(a) < q, then |[Xa| = q and so [Xa\X6| =
|Xa\{aa}| =q. Thus, ¢ < max{g(a),|Xa\X0|} again.
Then, in both cases, @ # 6 < a by Theorem 7,
which contradicts to the minimality of a. Therefore,
|dom a| = 1.

Conversely, suppose the conditions hold and let
B €PS(X,Y,q)besuchthat @ # 3 < a. Then, Z# S C
a and so 0 < |dom 3| < |dom a|. If |dom a| =1 then
|dom | =1, whence dom a = dom f and so a = f3. If
dom a €CX\Y,thendom 3 Cdoma CX\Y. As 3 <a,
we obtain that a@ = 3 by Theorem 7. In both cases, we
deduce that a is non-zero minimal under <.

In order to prove (b), suppose that |[X|=p > q. In
this case, for any a € PS(X, Y, q), we see that [dom a| =
p. Asdom a = (dom anY) U (dom an (X\Y), where
|dom a N (X\Y)| < |X\Y]| < g < p, we have [dom a N
Y| = p. We may write domaNY = A U B, where
|A| =p,|B| =q. Let vy = al,, we have y C a, dom y C
Y, Xy CXaCY and d(y) =d(a)+|Ba|+|Cal =q,
where C = dom a N (X\Y), whence vy € PS(X,Y,q).
Moreover, |[Xa\Xy| = |[Xa\Aa| = |Ba| + |Cal| = g, so
q < max{g(a),|Xa\Xy|}. Then by Theorem 7, vy < a,
which means a is not a minimal element. a

Next, we examine the compatibility of the natural
partial order on PS(X,Y,q). To do this, we first recall
from [3, p. 104] that, the containment order C is both
left and right compatible on P(X), in other words, if
a C B, then ya C yB and ay € By for all a, B,y €
P(X). Therefore, it is also left and right compatible
on PS(X,Y,q) since PS(X,Y,q) is contained in P(X).

Theorem 12 The natural partial order is right compat-
ible on PS(X,Y,q).
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Proof: Let a,f,y € PS(X,Y,q) be such that a < .
Clearly, if a = f3, then ay = By, whence ay < By.
Similarly, if Xa Ndomy = @ , then ay = @ < By
(this occurs only when |X| = ¢). In both cases, y
is a right compatible element in PS(X,Y,q). Now,
we suppose that a #  and Xa Ndom y # &. Then
by Theorem 7, we have a € 3, doma C Y and
q < max{g(pB),IXp\Xal}. If Xp\Xa)Ndomy =g,
then, as a C 3, we have ay = By, whence 7y is right
compatible. Now, we assume (Xf\Xa)Ndomy # @.
Since C is right compatible on PS(X,Y,q), we have
ay € By. Moreover, dom ay € dom a € Y. To verify
that ay < By, by Theorem 7, it remains to prove that
g < max{g(fy),|XBy\Xay|}. We consider two cases.

Case 1: g < g(B). Since dom By € dom 3,
we get that g < g(B) < g(By). Therefore, q <
max{g(By), | XBy\Xay|} as required.

Case 2: g(B) < q. In this case, the
condition ¢q < max{g(B),|Xp\Xa|} implies
q < max{g(p),|Xp\Xal} = Xf\Xa| < |X\Xa| =q,
whence |[X f\X a| = q. Next, since

Xp\Xa=(XB\Xa)\domy) U ((XB\Xa)Ndomy), (5)

we have that at least one set on the right of (5)
has cardinality q. If |[(XB\Xa)\domy| = q, as
(Xp\Xa)\dom y € XS \dom y, then

q <|XB\dom y| = |(Xf\dom y)B~"|
= |dom f\dom By| < [X\dom fy| = g(By),

which implies that g < max{g(fy), |XBy\Xay|}. Oth-
erwise, if |(XB\Xa) N domy| = g, then we have
XBy\Xay| =|((Xp\Xa)ndom y)y| = q and so again
we obtain q < max{g(B7), | XBy\Xay|}.

Hence, by Theorem 7 we deduce that ay < fy.
Therefore, y is right compatible as required. a

Theorem 13 Let a € PS(X,Y,q). Then, a is left com-
patible with respect to < if and only if |dom a| =1 or
(g < g(a)and doma CY).

Proof: Suppose that a is left compatible under < and
|dom a| # 1. If |dom a| = 0, then a = @&, and this
situation arises only when |X| =gq. So g(a) = |X|=q
and doma = @ €Y. On the other hand, suppose
|dom a| > 1. For any x € dom a, we suppose xa =y €
Y and notice that dom a = | J, c4om o dom a\{x}. We
define y = idyq\(,} and u = idy,, then y C u, dom y €
Y, Xy, XuCY,d(y)=d(a)+1=qand g(u) =d(u) =
d(a) = q, whence y,u € PS(X,Y,q). Since g(u) =q,
we have ¢ < max{g(u), | Xu\Xy|}. Then by Theorem 7,
y < u. By the assumption that a is left compatible,
we have ay < au. We also see that ay # au = a,
then by Theorem 7 again, we get the following three
conditions:

ay Cau, domay CY
and ¢ < max{g(au), | Xap\Xarl}. (6)
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Since |Xau\Xay| = |{y}| = 1, we obtain by the last
condition of (6) that q < g(au) = g(a). Moreover,
the second condition of (6) implies dom a\{x} =
dom ay C Y, whence dom a = | J, .o o dom a\{x} €
Y as required.

Conversely, suppose that the conditions hold and
let a,y,u € PS(X,Y,q) be such that y < u, then y C u.
First, assume that |dom a| = 1, where dom a = {x}. If
xa ¢ dom vy, then ay = @ < au. Otherwise, if xa €
dom v, then, as y € u, we have (xa)y = (xa)u, where
dom ay = {x} = dom au, whence ay = au. Therefore,
a is left compatible. Finally, we assume that ¢ < g(a)
and doma €Y. Then, domay Cdoma CY and g <
g(a) < g(ap), soq < max{g(aw), (Xau\Xay|}. Asy ©
w and PS(X,Y,q) is left compatible under C, we have
that ay C au. By Theorem 7, we deduce that ay < au.
In all cases, we have shown that a is left compatible
with respect to <, and the proof is complete. O

Next, we consider the existence of the meet (or
the greatest lower bound) and the join (or the least
upper bound) under the natural partial order for any
subset {a, B} of PS(X,Y,q). Weleta AP and aV f
denote the meet and the join of {a, 3} respectively.
We also note that, when a and f3 are comparable,
the meet and the join always exists, that is, if a < 3,
then a A3 =a and aV f§ = 8. Therefore, in what
follows we suppose that a and f are incomparable
under <. For a, 8 € PS(X,Y,q), welet E(a,)={x €
dom andom 3 : xa = xB} and, for convenience, we
will denote E(a, ) by E. It is also clear that a|; = B|.

Lemma 4 Let a, 3 € PS(X,Y,q) which are incompara-
ble with respect to <. If y € PS(X,Y,q) is a lower bound
of {a, B}, thendomy CENY and v C a|gny = Bleny-

Proof: Suppose that y € PS(X,Y, q) is a lower bound of
{a, B} under <. If y = @, then it is clear that dom y =
@CENY and v C algay = Blgay- If ¥ # @, then we
let x € dom y and recall that y < @ and y < f imply
yCaandy Cp. Sod#domy € domandom 3 and
xa = xy = xf3 for all x € dom y, whence domy CE.
Moreover, since a and 3 are incomparable, we have
that a # y. Then, by Theorem 7, as y < a, we have
domy CY. Hence, domy CENY and v C a|gy =
Blgny as required. O

Theorem 14 Suppose that |X| = q. Let o, €

PS(X,Y,q) which are incomparable with respect to <.

Then the following statements hold.

(@) fENY =@, then a A} =@.

(b) IfENY # @, then aAp exists if and only if (g(a) =q
org(B)=q)or |Xa\(ENY)a|=q = |XL\(ENY)BI.

In this case, a A B = ad|gny = Bleny # D

Proof: To prove (a), suppose that ENY = &. Then by
Lemma4,ify <aandy < f§, thendomy CENY =@,
that is y = @. Thus, the only lower bound of {a, B} is
@, whence a AP = Q.

To prove (b), we suppose that ENY # @&. Let
y € PS(X,Y,q) be such that a A f = y and suppose
g(a) < q and g(B) < q. Then [Xa| =q = |Xp|. For
)= xxﬁ), then X2, C
Xa CY, d(A,)=|X\{xa}| =q, so A, € PS(X,Y,q).
Moreover, A, Ca,dom A, = {x} €Y and [Xa\XA,|=
[Xa\{xa}| = q, so max{g(a), | Xa\XA,|} =q. Then,
by Theorem 7, A, < a. Similarly, we can verify that
A, < B, whence A, is a lower bound under < of
{a, B}. By supposition that a A § =y, we have A, <y,
which implies A, C y and so {x} =dom A, € domy.
Therefore, ENY C domy. Consequently, Lemma 4
implies that domy = ENY and v = a|gny = Blgay-
Since a and f are incomparable, we have that a # v,
and as y < a, we obtain that max{g(a), | Xa\Xy|} =¢
by Theorem 7. Consequently, by the assumption that
g(a) < q, we have [Xa\(ENY)al = [Xa\Xy| = q.
Similarly, we may show that |XS\(ENY)B| =q.

Conversely, suppose that the conditions hold. We
claim that a A = a|gny = B|gny- For convenience, we
lety = algny = Blgay- Clearly, Xy =(ENY)a C Y, and
since | X\Xy| = |X\(ENY)a| = |[X\Xa| = q, we have
[X\Xv| = q, whence y € PS(X,Y,q). We also see that
Yy € a,y < B and dom y C Y. Next, our goal is to show
that y is a lower bound under < of {a, 8}, and finally,
we will show that for any u € PS(X,Y,q) such that u
is a lower bound under < of {a,f}, u <y. By the
assumptions, we have two possible cases.

Case 1: g(a)=q or g(B) =q. If both g(a) and
g(B) have the same cardinality g, then it is clear that
max{g(a), | Xa\Xy|} = g = max{g(p), | X\Xr|}. Oth-
erwise, without loss of generality, we suppose g(a) =q
and g(B) < q, then we have max{g(a), | Xa\Xy|} =q.
Next, we consider

any x € ENY, define A, = (

X\dom a = (dom S\dom «)
U ((X\dom a) N (X\dom ). (7)

As g(a) = q, we obtain that at least one term
on the right of (7) has carnality q. But we no-
tice that |(X\dom a) N (X\dom B)| < |[X\dom 3| < q,
so ¢ = |dom B\dom a| < |dom B\(E N Y)|, whence
|dom B\(E n Y)| = gq. Therefore, |XB\Xy| =
[XB\(ENY)B| = |dom B\(ENY)| = q, which implies
max{g(p),|Xp\Xy|} = q. Then, by Theorem 7, y is
a lower bound of {a, 8} under <. Let u € PS(X,Y,q)
with u < a and y < 8. Then, Lemma 4 implies that
domu CENY CY and u € a|gny =7. Since domy C
dom a and domy € dom f3, we have g(a) < g(y)
and g(B) < g(y). Consequently, by the assumption
g(a) =q or g(B) = q, we can deduce that g(y) = q.
Hence, max{g(y), |Xy\Xu|} = q. It follows that u <y
by Theorem 7 and so y = a A 3.

Case 2: [Xa\(ENY)a|=q=|XB\(ENY)p|. In this
case, as Xy =(ENY)a=(ENY)B, we have [Xa\Xy| =
q = |XB\Xy| which implies max{g(a), | Xa\Xy|} =q =
max{g(p),|Xp\Xy|}. Then, by Theorem 7, y is a lower
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bound of {a,} under <. Finally, let u € PS(X,Y,q)
with u < a and p < 8. Again, by Lemma 4, we have
thatdomu CENY CY and u € a|gny = y. Moreover,
by the assumption |Xa\(E NY)a| = q, we obtain that
g=|Xa\(ENnY)a|=|doma\(ENY)| < |X\(ENY)| =
g(y), whence max{g(y),Xy\Xul} = q. Again, by
Theorem 7, u < y and so aAf =y = algny = Blgay as
required. a

Theorem 15 Suppose that |X| =p > q. Let a,fp €

PS(X,Y,q) which are incomparable with respect to <.

Then, a A f3 exists if and only if the following conditions

hold.

(a) ENY #@.

(b) max{|Xa\(ENY)al, I XB\(ENY)P[} <q.

() q<max{g(a),|Xa\(ENY)a|} and q < max{g(pB),
IXB\(ENY)BI}.

In this case, a A B = ad|gny = Bleny-

Proof: Suppose that a A 8 =y, where y € PS(X,Y,q).
Since |X| > q, we have y # @. Then, by Lemma 4,
@ # domy CENY, so (a) holds. Moreover, y C
algny = Blgay, which implies Xy C(ENY)a € Xa. It
follows that ¢ = [X\Xa| < |[X\(ENY)a| < [X\Xy| =q,
whence [X\(ENY)a|l =q and so |[Xa\(E NY)a| <
IX\(ENY)a| =q. Similarly, as Xy C(ENY)B C X},
we can verify that [ XB\(E NY)B| < q. Therefore,
max{|Xa\(E N Y)a|,IXB\(ENY)B|} < g, that is (b)
holds. Next, we will prove (c). As |X|=p > q and
IX\(ENY)a| =g, we have p=|(ENY)a| =|ENY].
Then, we write ENY =AU B U C, where |A| =p
and [B| = |C| =q. Let A = alyp and u = aly¢-
Then, XA CXa CY, Xu CXaCVY, dA)=|X\(En
Y)a| + |Ca|l = q and d(u) = |X\(ENY)a|+ |Ba| =
g, whence A,u € PS(X,Y,q). It is also clear that
domACY,domuCY, A< aand uC a. Moreover,
Xa\XA| = [Xa\(ENY)a|+|Cal| =q and [Xa\Xu| =
Xa\(ENY)a|+|Ba| =g, so ¢ < max{g(a), |Xa\XA|}
and q < max{g(a), |Xa\Xu|}. Then, by Theorem 7, we
have A< aand u < a. As (ENY)a=(ENY)B, we can
show that A < § and u < f§ in a similar way, so A and
u are lower bounds of {a, 8}. By the supposition that
y is the greatest lower bound under < of {a, 3}, we
conclude that A < y and u < vy, which imply A € y and
@ Cvy. Then, ENY =dom AUdom u € dom y. Hence,
domy=ENY and so y = algny = Blgny. We recall
that a and f are incomparable, so a # y # 8. Then,
y < a and y < f3. Thus, Theorem 7 implies that, ¢ <
max{g(a),|Xa\Xy[} and q < max{g(p),|Xp\Xr|}.
Consequently, as Xy = (ENY)a = (ENY)B, we
obtain that ¢ < max{g(a),|Xa\(ENY)al} and g <
max{g(B), | XB\(ENY)p|} as required.

For the converse, suppose that the conditions (a),
(b), and (c) hold. Take y = a|gny = Blgny and let us
prove that a A B = y. It is clear that y C a,y C 3,
domyCYand Xy =(ENnY)a=(ENY)B CY. We
also see that

d(y) = IX\(ENY)a| = [X\Xa|+ |Xa\(ENY)al,
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where [X\Xa| = q and from (b), |[Xa\(ENY)a| < g,
so d(y) = q, that is y € PS(X,Y,q). Next, we take
(ENY)a=(ENY)B =Xy in (c), we get that ¢ <
max{g(a),|Xa\Xy|} and ¢ < max{g(p),|Xp\Xv|}.
So, by Theorem 7 we have y < @ and y < f3. Finally, let
u € PS(X,Y,q) bealower bound of {a, 8} under <. We
aim to show that u < y. As a and f are incomparable,
so a # u. Then, u < a and by Theorem 7, we have
domyu €Y. Moreover, Lemma 4 implies that u C
algny = 7. Now, if g(y) < g, then Theorem 10 implies
that y is maximal. Then, as y is a lower bound of
{a, B}, we have a =y = 3, which contradicts to our
assumption that a and f are incomparable. Thus,
q < g(y) and hence g < max{g(y),|Xy\Xu|}. Again,
by Theorem 7 we have u < y. Therefore, aAf =y =
algny = Blgny- This completes the proof. O

In what follows, for a, f € I(X), we denote by aUf
the mapping from dom a Udom f3 to Xa UX 3 defined
by

xa if x € dom a\dom §,
x(aupB)=1 xp if x € dom f\dom «a,
xa=xf if x €domandom f.

Clearly, a U 8 is well defined if and only if dom an
dom 8 =@ or xa = xf3 for all x € dom andom S, i.e.,
dom andom B =E. In this case, aUf is injective only
when the sets (dom a\dom f)a and (dom \dom a)f
are disjoint.

Next, we give the existence of the least upper
bound for a, f € PS(X,Y,q).

Theorem 16 Let a, f € PS(X,Y,q) which are incompa-

rable with respect to <. Then, aV 3 exists if and only if

the following conditions hold.

(a) domandom 3 =E.

(b) (dom a\dom B)an(dom B\dom a)f = @.

© X\XaUXxp)l=q.

(d) q <min{g(a),g(B)}, domaCY anddomf3 CY.

(e) g <|X\(dom aUdom )| or dom aUdom 3 =X or
XaUXB =Y.

In this case, aV ff = a U f.

Proof: Suppose that aV 8 =y, where y € PS(X, Y, q).
Asa <y, <vyandaand f3 are incomparable, we have
that a is not maximal under < (otherwise a < y implies
a=7vandso f3 < a, acontradiction). Similarly, f is not
maximal. Then, Theorem 10, implies that g < g(a),
q<g(f),domaC¥ and dom 8 CY, thatis (d) holds.
Moreover, by Theorem 7 we also have thata C v, 3 C v,
q <max{g(y),|Xy\Xa|} and ¢ < max{g(y), | Xy\X B[}
To show (a), it is clear that E € dom a Ndom f3. For
the equality, let x e domandomf3. AsaCvy,B Sy,
we have xa = xy = xf3, which implies x € E, whence
dom andom 3 = E, that is (a) holds. We also see that
XaUXp € Xy, which implies

q=X\Xy| < X\XaUXB)| < IX\Xa| =g,
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so [ X\(XaUXp)| =g, and this proves (c). To show
(b), suppose for a contradiction that there exists y €
(dom a\dom B)an(dom f\dom a)B. Then xa =y =
z3 for some x € dom a\dom f3, z € dom \dom a. As
a Cv,B €y, we have that xa = xy and zf8 = zy,
so xy =y = gy. It follows that x = z since y is
injective, a contradiction. Thus (dom a\dom f)a N
(dom B\dom a)f = @, and this proves (b). Next, we
define 6 = aUB. Then, X0 =XaUX P CY. Moreover,
the conditions (a) and (b) imply that 6 is an injective
mapping, where the condition (c) implies d(6) = g,
whence 6 € PS(X,Y,q). Next, to prove (e) by con-
tradiction we first assume that g(8) = |X\(dom a U
dom )| < q, domaUdomf3 € X and XaUXB C Y.
Let a € X\(dom aUdom ) and b € Y\(XaUXf) and

define u, , = GU(g). Then, Xu, , =X60U{b} CY and

d(ugp) =d(0)—1=q, whence u, , € PS(X,Y,q). Itis
also clear that a €0 S, and B SO Sy p. Asa C
6, we have X\dom a = (X\dom 0) U (dom 6\dom a).
Therefore,

q < g(a) =1[X\dom a|
= |X\dom 6|+ |dom 6\dom a|. (8)

As |X\dom 6| = |X\(dom a U dom )| < g, we ob-
tain from (8) that ¢ < |dom 6\dom a| = |[X0\Xa| =
IXB\Xa| < |X\Xa| = q, whence |[X\Xa| =q. Thus,
|Xuqp\Xa| = |XB\Xa|+[{b}| =q+1=q. It follows
that ¢ < max{g(u,),|Xug,\Xal}, and then Theo-
rem 7 implies a < u, ;. Similarly, we can verify that
B < ugp. Thus, as aV f =7y, we get that y < u, ;.
Since a €y and 8 € y, so dom 8 =dom aUdom 3 €
dom y, whence g(y) < g(0) < g, which implies that
y is maximal by Theorem 10. Therefore, y = g},
which implies dom y = dom u, , and Xy =X, j, for all
a€X\(dom audom ) and b € Y\(XaUXf). Then,
X\(dom auUdom ) € domy and Y\(XaUXp) € Xy.
As as a €y and 8 € y, we deduce that domy =X
and Xy =Y. Sincedoma CY anddom f3 CY,soq=
X\X7|=1X\Y| < |X\(dom aUdom B)| = g(6), which
contradicts to our assumption |X\(dom a Udom f)| <
g. Hence, (e) holds.

For the converse, suppose that all of the conditions
hold. Let y = a U f3, we aim to show that aV 3 =y.
We see that the conditions (a) and (b) imply that v is is
well defined injective mapping from dom aUdom f to
Y. In addition, the condition (c) implies that d(y) =q,
that is y € PS(X,Y,q). Firstly, we show that y is an
upper bound of {a, 8} under <. It is clear that a C y
and by the condition (d), we have that dom a €Y and
q < g(a), so

q < g(a) =|X\dom a| = |X\dom y| + |dom y\dom «|
=X\dom y|+ [Xv\Xal. (9

Thus, from (9), we get that ¢ < [X\domy| or q <
|Xy\X a|, whence q < max{g(y),|Xy\Xal}. Then, by
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Theorem 7, a < y. In a similar way, we can verify that
B <v. So v is an upper bound of {a,}. Finally, let
u € PS(X,Y,q) be an upper bound under < of {a, f},
we aim to show that y < u. As a < p and 8 < u, we
have a € wand B € u. Then, y =aU P C u. By the
condition (e), we consider three cases.

Case 1: q < [X\(dom aUdom f)|. In this case, we
have that g < g(y). Since y C u, we have that

q < g(y) =1[X\dom y| = [X\dom u| + [Xu\Xy|. (10)

Then, from (10), ¢ < |X\dom u| or q < |[Xu\Xy|,
that is, ¢ < max{g(u), |[Xu\Xy|}. From (d), we have
dom y =dom aUdom 3 CY, whence y < u by Theo-
rem 7.

Case 2: domaUdom f3 =X. As y C u, we have
X =dom audom f =domy Cdomu CX. Sodomy=
dom u, and hence y = u.

Case 3: XaUX =Y. This case implies Y =XaU
XB=XyCXucCY.SoXy=Xu. Asy C u, we obtain
that y = u.

In all cases, we deduce that aVf =y =aUf as
required. a

Let (X,<) be a partially ordered set. For any
distinct a, b € X, we call a a lower cover of b ifa < b
and there is no ¢ € S such that a < ¢ < b. When
this occurs, b is called an upper cover of a. The
following result describes the existence of upper covers
and lower covers of elements in PS(X,Y,q).

Theorem 17 Let a,3 € PS(X,Y,q) be such that a <
B. Then, B is an upper cover of a if and only if
|dom \dom a| = 1 or (dom f\dom a)NY =@. In
other words, in the event that this occurs, a is a lower
cover of 3.

Proof: Suppose that a < f3, where 8 is an upper
cover of a. We suppose that (dom f\dom a)NY # &,
we aim to show that |dom f\doma| = 1. Let a €

(dom B\dom a)NY and define y = a U (;}5). Then,

Xy=XaU{aB} CY and d(y) =d(a)—1 =q, whence
y € PS(X,Y,q). As a < f3, by Theorem 7 we have
doma €Y, q < max{g(f), Xp\Xa|} and a C B. It
follows that dom a € dom 8 and so

[X\dom a| = |X\dom S|+ |dom \dom «
=|X\dom S|+ |XB\Xal.
Clearly, a ¢ y € 3, so doma C domy and then

[X\dom a| = |X\dom 7| + |Xy\Xa|. Therefore, by the
last two equations, we obtain that

|X\dom B|+ |XB\Xa| = |X\dom v|+ | Xy\Xa|. (11)

Observe that the sum on the left of (11) is equal to
max{g (), |X\Xa|}, which has the carnality greater
than or equal to q. This implies that the sum on
the right of (11) which is max{g(y),|Xy\Xal} has
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the same cardinality, whence ¢ < max{g(y), |Xy\Xal}.
Thus, by Theorem 7, @ < y. Next, we aim to show that
q < max{g(B),|XB\Xyl|}. If ¢ < g(B), then we obtain
q < max{g(p),|Xp\Xy|} as required. Otherwise, if
g(B) < q, then by Theorem 7, as a < 3, we have
that ¢ < max{g(f), |XB\Xal|} = |XB\Xa|. Therefore,
g < |XB\Xal < |X\Xa| =g, whence [X\Xa| = q.
Consequently,

IXP\X7| = XB\(XaU{aB})l
=|&XBp\Xa)\{ap}| = |XB\Xa|=q.

This again implies ¢ < max{g(f),|XB\Xy|}. Finally,
as dom y = dom a U {a} C Y, then by Theorem 7 we
have that y < 8 and so a < y < 8. By the assumption
that 8 is an upper cover of a, we deduce that y = f3.
Therefore, dom § = dom y = dom a U {a}. Hence,
|dom B\dom a| = |{a}| =1 as required.

Conversely, suppose that the conditions hold and
there exists y € PS(X,Y, q) such that a <y < f3. Then,
aCy Cp and so dom a C dom y € dom f3. It follows
that

dom B\dom a = (dom \dom y) U (dom y\dom a). (12)

If |dom 3\dom a| = 1, then from (12), we obtain that
|dom f\dom y| = 0 and |dom y\dom a| = 1. This
implies domy = dom f3, and thus y = 8. Oth-
erwise, in the case that (dom f\doma)NY = @,
we have @ # domy\doma € dom \dom a. So
(dom y\dom a)NY € (dom fB\dom a)NY = @&, whence
(dom y\dom a) N Y = @&, and therefore, domy ¢ Y.
Then, by Theorem 10, y is maximal under <. Conse-
quently, the assumption y < 3 implies y = . In both
cases, we deduce that 3 is an upper cover of a, which
completes the proof. a

The descriptions of maximum, minimum, maxi-
mal, minimal, compatible elements, a meet a A 8 and
a join aV B in PS(X,Y,q) presented in this section
generalize the corresponding results for PS(X,q) in
[9, Theorems 3.3, 4.1, 4.3, 4.6, and 4.7] and [10,
Theorems 6 and 10]. In special, by taking X =Y in
Theorem 17, we obtain descriptions for a lower cover
and an upper cover in PS(X,q), which surprisingly
were not characterized before. We observe that, if a <
B, then a ¢ B and so dom $\dom a # @. Therefore,
the condition (dom $\dom a) NX = @ cannot occur.
Hence, the final result is an immediate consequence of
Theorem 17.
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Corollary 2 Let a,8 € PS(X,q) be such that a <
B. Then, B is an upper cover of a if and only if
|dom B\dom a| = 1. In other words, in the event that
this occurs, a is a lower cover of 3.
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