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ABSTRACT: The reaction of silver(I) halide with triphenylphosphine (PPh3) and 1,3-diisopropyl-2-thiourea (DSPTU)
gave mononuclear complexes of formula [AgX(DSPTU)(PPh3)], [where X = Br (1) and Cl (2)]. Complexes (1) and (2)
were characterized by infrared (IR) spectroscopy and their structures determined by single crystal X-ray diffraction. The
two complexes are isostructural and isomorphous, with the Ag(I) ion exhibiting a distorted trigonal planar coordination
with one P atom from the PPh3 ligand, one terminal S atom from the DSPTU ligand, and a halide ion. Intramolecular
N−H · · ·X hydrogen bonds are observed in both complexes (graph set motif S(6)). In the crystal, the amine and halide
group are linked into a 1D zigzag chain along the b axis by N−H · · ·X hydrogen bonds.

KEYWORDS: silver(I) bromide, silver(I) chloride, triphenylphosphane, 1,3-diisopropyl-2-thiourea, crystal structure,
hydrogen bonding

INTRODUCTION

Thiourea and its derivatives belong to a class
of N,S-donor ligands with the general formula
(R1R2N)(R3R4N)C−−S. The molecules readily act as
ligands towards a wide number of metal ions and
literally thousands of metal complexes of thiourea
and its derivatives have been reported, with over 500
entries in the Cambridge Structural Database (CSD)
[1] for unsubstituted thiourea (H2N)C−−S alone. This
versatility of thiourea as ligand is in part facilitated
by the presence of both soft sulfur and hard nitrogen
donor atoms as defined by the HSAB (hard and soft
acids and bases) concept, which allows them to easily
coordinate to both soft as well as hard metals ions. A
variety of chelating and bridging coordination modes
have been observed such as chelating coordination
via the S and one N atom (a very common motif),
bridging coordination via the S and at least one N
atom (this mode is relatively rare) [2], or also chelating
via both N atoms (usually double deprotonated, not
common) [3]. End-on coordination via one N atom
(usually deprotonated) has also been described [4].
The by far most common end-on coordination of the
thione S atom as a neutral soft ligand, usually to
a soft transition metal [5–8]. Thiourea derivative
complexes containing transition metals have played
a considerable role as compounds that display an-
timicrobial, antiviral, antitumor, antimalarial, antifun-
gal, and anticancer activities [9–13]. For example,
two thiourea derivatives of methyl anthranilate with
nickel(II) and platinum(II) exhibit antifungal activity
against the major pathogens responsible for important

plant diseases [14]. Some Cu(II) complexes had been
found to show higher activity against primary tumor
cell lines than towards metastatic cell lines and also
showed a significantly lower activity against normal
cell lines [15]. Silver(I) ions are a typical soft metal
ion that coordinates with thiourea predominantly via
the thione sulfur atom in either an end-on or bridging
mode (over 300 entries in the CSD). Coordination via
a thiourea N atom towards a silver ion is exceedingly
rare (just five entries in the CSD). The large size of
the silver ion and the usually end-on coordination of
the thiourea allow for more than one thiourea ligand
or other additional ligands to be bound to the metal
ion. Complexes are predominantly two-, three-, and
four-coordinated and well known for their ability to
readily form complexes with phosphane ligands and,
like all thiourea complexes, adopt diversified coordi-
nation geometries in mononuclear, polynuclear and
cluster complexes [16–18]. Ag(I) complexes showed
selective cytotoxicity toward various types of cells,
and this is dependent on the type of ligand linked
to the silver(I) ions [19]. Silver(I) complexes with
phosphane ligands were investigated as a highly ef-
fective positive apoptosis control for use in anticancer
studies [20]. Silver(I) complexes with phosphorus
and sulfur donor ligands have attracted consider-
able interest in antimicrobial activities. For example,
[(PPh3)1Ag(Metu)2]NO3 shows a wide range of ac-
tivity against two gram-negative bacteria (Escherichia
coli, Pseudomonas aeruginosa) and molds (Aspergillus
niger, Penicillium citrinum) [21]. In this context we
report herein the synthesis and crystal structures of
silver(I) halide complexes containing triphenylphos-
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Scheme 1: Synthesis of compounds (1) and (2).

phine (PPh3) and 1,3-diisopropyl-2-thiourea (DSPTU)
ligands (Scheme 1).

MATERIALS AND METHODS

Materials

Reagents and solvents used in the synthesis were
obtained from commercial suppliers and used di-
rectly without further purification. Silver(I) bromide
(AgBr), silver(I) chloride (AgCl), triphenylphosphine
(PPh3) and 1,3-diisopropyl-2-thiourea (DSPTU) were
purchased from Sigma Aldrich (USA). Infrared spectra
were measured in the region 4000–400 cm−1 on a
Perkin-Elmer infrared spectrophotometer (Spectrum
BX, England) using potassium bromide pellets.

Synthesis of [AgBr(DSPTU)(PPh3)] (1)

PPh3 (0.14 g, 0.53 mmol), was dissolved in 30 ml of
acetonitrile at 336.15 K, and AgBr (0.10 g, 0.53 mmol),
was added. The mixture was stirred for 3 h, and
then DSPTU (0.09 g, 0.56 mmol), was added. The
resulting reaction mixture was heated under reflux
for 7 h during which the precipitate gradually disap-
peared. The resulting clear solution was filtered and
left to evaporate for several days at room temperature,
leaving a crystalline complex, which was filtered off
and dried in vacuo (0.27 g, 81% yield) M.p. 429.15–
430.15 K.

Synthesis of [AgCl(DSPTU)(PPh3)] (2)

Triphenylphosphine (0.18 g, 0.69 mmol) was dissolved
in 30 ml of acetonitrile at room temperature and then
silver(I) chloride (0.10 g, 0.70 mmol) was added. The
mixture was stirred for 3 h and then 1,3-diisopropyl-2-
thiourea (0.11 g, 0.69 mmol) was added. The resulting
reaction mixture was heated under reflux for 7 h
during which the precipitate gradually disappeared.
The resulting clear solution was filtered and left to
evaporate at room temperature. The crystalline com-
plex, which was deposited upon standing for a day, was
filtered off and dried in vacuo (0.30 g, 77% yield). M.p.
443–447 K.

X-ray crystallographic analysis

X-ray diffraction data for 1 and 2 were obtained
on a Bruker Quest diffractometer with Mo-Kα (λ =
0.71073 Å) radiation at 150 K. Data were collected,
and reflections were indexed and processed using
APEX3 [20]. The space groups were assigned using
XPREP within the SHELXTL suite of programs, the
structures were solved by dual space methods using
ShelXT and refined using ShelXl and ShelXle [21–24]
(Table 1). Refinement for 1 and 2: crystal data, data
collection and structure refinement details are summa-
rized in Table 1. All H atoms attached to carbon atoms
were positioned geometrically and constrained to ride
on their parent atoms, with C−H = 0.95 Å. Positions
of nitrogen bound H atoms were refined and N−H
distances refined to 0.806 (16)–0.854 (18) Å. Uiso(H)
values were set to 1.2 or 1.5 Ueq(C/N). Reflections
−1 0 2, −1 0 2 for 1 and 0 0 2, 0 1 1, −1 0 2, 10 0 0
for 2 were affected by the beam stop and were omitted
from the refinement.

CCDC 2225733 (for 1) and 2225734 (for 2) con-
tain the supplementary crystallographic data for this
paper. These data can be obtained free of charge from
The Cambridge Crystallographic Data Center (https:
//www.ccdc.cam.ac.uk).

RESULTS AND DISCUSSION

The two [AgX(DSPTU)(PPh3)], [X = Br (1) and Cl
(2)] complexes were prepared by reacting the sil-
ver(I) halide with DSPTU, followed by addition of
PPh3, in acetonitrile in 1:1:1 molar ratios (Scheme 1).
The complexes are isostructural and crystallize in the
monoclinic system with space group P21/c with four
formula units (Z = 4) in a crystallographic unit cell.

In 1 and 2, the DSPTU ligand coordinates in a
monodentate manner to the Ag via the terminal S
donor, and no coordination of the silver with amine
moiety was observed. The second and third coor-
dination positions at the silver ion are taken up by
the P atom from the PPh3 ligand and by the halide
atom, respectively, leading to a distorted trigonal pla-
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Table 1 Crystal data and structure refinement details for 1 and 2.

Crystal data
Chemical formula C25H31AgBrN2PS C25H31AgClN2PS
Mr 610.33 565.87
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 150 150
a, b, c (Å) 16.1556 (7), 8.7609 (4), 18.3325 (8) 16.0838 (7), 8.7047 (3), 18.2118 (7)
β (°) 93.140 (2) 93.386 (2)
V (Å3) 2590.8 (2) 2545.29 (17)
Z 4 4
Radiation type Mo Kα Mo Kα
µ (mm−1) 2.48 1.06
Crystal size (mm) 0.52×0.42×0.29 0.44×0.42×0.29

Data collection
Diffractometer Bruker AXS D8 Quest diffractometer Bruker AXS D8 Quest diffractometer

with PhotonII charge-integrating with PhotonII charge-integrating
pixel array detector (CPAD) pixel array detector (CPAD)

Absorption correction Multi-scan Multi-scan
No. of measured, independent and 97572, 9895, 8574 68105, 9710, 8872
observed [I > 2σ(I)] reflections
Rint 0.039 0.031
(sinθ/λ)max (Å−1) 0.770 0.770

Refinement
R[F2> 2σ(F2)], wR(F2), S 0.021, 0.052, 1.06 0.020, 0.050, 1.08
No. of reflections 9895 9710
No. of parameters 291 291
H-atom treatment H atoms treated by a mixture of H atoms treated by a mixture of

independent and constrained refinement independent and constrained refinement
∆ρmax, ∆ρmin (e Å−3) 0.69, −0.72 0.45, −0.54

Computer programs: Apex4 v2021.10-RC6, SAINT V8.40B [22], SHELXT [25], SHELXL2018/3 [23, 26], SHELXLE
Rev1275 [27], Mercury [28] and publCIF [29].

Fig. 1 Molecular structure of [AgBr(DSPTU)(PPh3)] (1),
with ellipsoid displacement drawn at the 50% probability
level.

nar AgXSP environment (Fig. 1 and Fig. 2). The Ag−S
bond length in (1) and (2) are similar to the values of
2.482 (2) Å for Ag(Tu)2SCN [30]. The Ag1–P1 bond

Fig. 2 Molecular structure of [AgCl(DSPTU)(PPh3)] (2), with
ellipsoid displacement drawn at the 50% probability level.

lengths of 2.4198 (3) Å for 1 and 2.4128 (3) Å for
2 are close to the values of 2.4703 (3)–2.4750 (4) Å
found in [AgCl(4-PTSC)(PPh3)2] [31]. The angle at
the Ag(I) ion in 1 and 2 varies from 106.949 (9) °
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Table 2 Selected bond lengths and angles for (Å, °)
[AgBr(DSPTU)(PPh3)] (1) and [AgCl(DSPTU)(PPh3)] (2).

Bond length (Å) Bond angle (°)

Compound (1)
Ag1—P1 2.4198 (3) P1—Ag1—S1 138.425 (10)
Ag1—S1 2.4452 (3) P1—Ag1—Br1 106.949 (9)
Ag1—Br1 2.6562 (2) S1—Ag1—Br1 114.623 (8)

Compound (2)
Ag1—P1 2.4128 (3) P1—Ag1—S1 140.524 (9)
Ag1—S1 2.4457 (3) P1—Ag1—Cl1 107.057 (9)
Ag1—Br1 2.5626 (3) S1—Ag1—Cl1 112.418 (9)

Fig. 3 Part of the crystal structure of [AgCl(DSPTU)(PPh3)]
(2), showing intramolecular N−H· · ·Cl hydrogen bonds
(shown as dashed lines).

to 140.524 (9) °. Other bond angles and lengths of
structural importance are summarized in Table 2.

The molecular structures are stabilized by in-
tramolecular N2—H2NN · · ·Br1 (for 1) and N1—
H1N · · ·Cl1 (for 2) hydrogen bonds between the DSPTU
and halide atom with a graph set motif of S(6) (Fig. 3)
[32]. In the crystals of (1) and (2), the amine NH
moieties of DSPTU and halide atom of neighboring
molecules are linked through intermolecular N1—
H1NN · · ·Br1i (for 1) and N2—H2B · · ·Cl1ii (for 2)
hydrogen bonds, leading to the formation of 1D chains
along [010] (Fig. 4, Table 3).

In the IR spectra of complexes 1 and 2, bands
at 3287 and 3199 cm−1 regions, respectively are due
to the stretching frequency for different types of NH
groups. The band from the SH group is not present
between 2600–2800 cm−1 indicating the absence of
thiol form of the ligands. The characteristic peak
of ν(C−−S) of both complexes is at a lower energy
compared to the stretching absorption observed in
the free DSPTU ligand (878 cm−1) supporting the
coordination of the thione sulfur to the metal center.

Fig. 4 Part of the crystal structure of [AgX(DSPTU)(PPh3)],
[where X=Br (1) and Cl (2)], showing the 1D zigzag chain
formed by intermolecular N−H· · ·X bond (shown as dashed
lines).

The bands in the range 1309–1069 cm−1 are charac-
teristics for the skeletal vibrations of v(P-Cph) which
confirmed the presence of the phosphane ligand in
both complexes. The results from IR spectroscopy are
corresponding to the X-ray crystallographic data. IR
bands for 1 (KBr, cm−1): 3287(w), 2501(m), 2362(m),
2338(m), 2258(m), 1699(m), 1684(m), 1652(m),
1541(s), 1478(s), 1309(m), 1094(s), 1069(m),
1027(m), 982(m), 929(m), 877(m), 846(s), 738(s)
(see Fig. 5). IR bands for 2 (KBr, cm−1): 3199(w),
2360(m), 1981(m), 1904(m), 1829(m), 1699(m),
1683(m), 1653(m), 1560(s), 1477(s), 1433(s),
1307(s), 1268(s), 1157(m), 1095(s), 1069(m),
1026(m), 996(m), 972(m), 950 (m), 846(m), 740(s)
(see Fig. 6).

CONCLUSION

Two isostructural [AgX(DSPTU)(PPh3)], [X= Br (1)
and Cl (2)] were prepared from AgX:DSPTU:PPh3 in
1:1:1 molar ratios in acetonitrile. The structure of
complexes were characterized by IR spectroscopy and
X-ray single crystal analysis methods. The geometry of
both complexes is a distorted trigonal planar compris-
ing Ag(I) as a center linked with one P atom of PPh3
ligand, one S atom of DSPTU ligand and one halide
ion. In the crystals, there are intra and inter-molecular
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Table 3 Hydrogen-bond geometry (Å, °) for [AgBr(DSPTU)(PPh3)] (1) and [AgCl(DSPTU)(PPh3)] (2).

D—H· · ·A D—H H· · ·A D· · ·A D—H· · ·A
Compound (1)
N1—H1NN· · ·Br1i 0.852 (19) 2.711 (19) 3.5327 (10) 162.3 (16)
N2—H2NN· · ·Br1 0.854 (18) 2.552 (18) 3.3925 (10) 168.3 (16)

Compound (2)
N1—H1N· · ·Cl1 0.806 (16) 2.444 (16) 3.2378 (9) 168.4 (15)
N2—H2B· · ·Cl1ii 0.822 (17) 2.613 (17) 3.4195 (9) 167.3 (15)

Symmetry codes: (i) −x , y −1/2, −z+1/2, (ii) −x , y +1/2, −z+1/2.

Fig. 5 IR spectra of [AgBr(DSPTU)(PPh3)] (1).

Fig. 6 IR spectra of [AgCl(DSPTU)(PPh3)] (2).
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hydrogen bonds leading to a 1D zigzag chain.
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