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ABSTRACT: Logistic regression (LR) is one of the most popular classifiers. However, LR cannot perform effectively
on imbalanced data. There are two approaches to imbalanced data for LR, including resampling techniques and
modifications to the log-likelihood function. These approaches improve performance measures of LR in some cases,
but their effectiveness is not robust in general. In this paper, we propose a classifier called F-measure-oriented Lasso-
Logistic Regression (F-LLR) to deal with imbalanced data. The base learner of F-LLR is Lasso-Logistic regression (LLR)
which imposes the prior on the magnitude of parameters by a hyper-parameter λ. The optimal λ is determined by an
adjustment of the cross-validation procedure which aims for the highest F-measure instead of the highest accuracy. F-LLR
addresses imbalanced data by the combination of Under-sampling and Synthetic Minority Oversampling Technique
(SMOTE) selectively based on the scores of the training data. The empirical study shows that F-LLR increases F-measure
and KS as compared with LLR and the traditional balanced methods, such as the resampling techniques (Random Under-
sampling, Random Over-sampling, and SMOTE) and the modifications to log-likelihood function (Ridge and Weighted
likelihood estimation).

KEYWORDS: cross-validation, F-measure, ridge, smote

MSC2020: 62H30 68T10 91C20

INTRODUCTION

Recently, although machine learning and data-mining
algorithms are penetrating into several real applica-
tions of classification, Logistic regression (LR), a tra-
ditional model, is still in favor by several authors
[1–3]. There are two prominent reasons for that.
Firstly, the output of LR is the samples’ conditional
probabilities of belonging to the interest class, which
are reasonable references to classify the samples. Sec-
ondly, LR shows a transparent model for interpretation
while most machine learning and data-mining models
operate as a ‘black box’ process. However, LR has some
problems. The interpretive power of LR is based on
the statistically significant level of parameters which
is closely relevant to p-value. Nevertheless, p-value
has been recently criticized since its meaning is usu-
ally misunderstood [4]. Furthermore, in imbalanced
circumstances where the minority class is the interest
object, the parameter estimation of LR can be biased
and the conditional probability of belonging to the
interest class can be under-estimated [5, 6]. As a
consequence, LR usually misclassifies the interest class
on imbalanced data.

In the literature on LR with imbalanced data, there
were two main groups of methods, which were linked
to the algorithm-level approach. They were Weighted
Likelihood Estimation (WLE) [7–9] and Penalized Like-

lihood Regression (PLR) [10, 11]. Most of them were
designed to reduce the parameter estimation bias and
the predicted probability bias, especially in small sam-
ples. However, WLE needs the prior information of two
classes in the population which is usually unavailable.
Besides, some methods of PLR, such as FIR [6], FLIC,
and FLAC [10] are quite sensitive to initial values in
the computation process of maximum likelihood esti-
mation. Therefore, solving LR with imbalanced data
should consider both data-level and algorithm-level
approaches and not make the computation process
complex.

To deploy the ability of interpretation of LR and
solve the imbalanced issue, we propose a binary classi-
fier named F-measure-oriented Lasso-Logistic regression
(F-LLR). F-LLR utilizes Lasso Logistic regression (LLR)
as a base learner and integrates algorithm-level and
data-level approaches to deal with imbalanced data.
Lasso is a penalized shrinkage estimator and a fea-
ture selection method without p-value. In Lasso, the
hyper-parameter λ is set by a new procedure called
F-CV which is an adjustment of the ordinary cross-
validation procedure (CV). F-CV finds the optimal λ
by maximizing the cross-validation F-measure instead
of the cross-validation accuracy as the way of CV. The
proposed classifier F-LLR has two computation stages.
In the first stage, LLR based on F-CV is applied to get
the scores of all samples. In the second stage, accord-
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ing to the scores, under-sampling (US) and Synthetic
Minority Oversampling Technique (SMOTE) [12] are
respectively used to re-balance the data set. Next, LLR
based F-CV is applied again on the balanced data set
to get the final classification results. The proposed
classifier F-LLR experimented on nine real imbalanced
data sets and its performance measures (KS and F-
measure) are higher than the traditional approaches
to imbalanced data of LR.

The paper is organized as follows. The Related
Works section reviews the general background in-
volved with LR and imbalanced data. The Method-
ology section describes the proposed classifier, the
empirical data sets, the performance measures, and the
implementation protocol. The Results and Discussions
section presents the testing performance measures and
the results of a statistical test. The final section is the
Conclusion.

RELATED WORKS

The paper only focuses on the binary classification. In
an imbalanced data set, the label of the minority class
is denoted by “1”, which is also called positive class.
The label of the other is “0” and called negative one.

Imbalanced data in classification

Data for classification is considered imbalanced if there
is a class with much fewer quantities than the other. In
most of real applications, the minority class is always
the most crucial object due to heavy losses if mis-
classified. Meanwhile, common classifiers are usually
designed to get the predicted results if the accuracy
of the model is the greatest. That makes the biased
prediction toward the majority class [13]. Especially,
when an extreme imbalance occurs, the minority class
is thought about noise, so they are ignored for the high-
est accuracy. In short, it has failed in realizing patterns
of the crucial class and the accuracy is not a rational
metric to evaluate the performance of classifiers on
imbalanced data sets.

There are two popular approaches to imbalanced
data. They are algorithm-level and data-level [14–16].

The algorithm-level involves modifications of al-
gorithm classifiers, such as modifying the decision
thresholds to optimize a specific evaluation measure,
assigning weights to samples in training data, setting
loss matrix, or integrating cost-sensitive error func-
tions, and so on. This approach directly tackles the
consequences of imbalanced data and does not change
the distribution of training data. However, in some
circumstances, the algorithm-level approach was dis-
approved. For example, it was unreasonable for the
difference in the loss when miss-classifying positive
samples and the negative, or the weights of samples
in weighted methods [15].

In contrast, the data-level approach directly bal-
ances data sets by re-sampling techniques with over-

sampling and under-sampling as two typical repre-
sentatives. Most of them are non-heuristic, such
as random over-sampling (ROS) and random under-
sampling (RUS), so they are easy to apply and inde-
pendent from the classifier algorithms [17]. The most
popular techniques are RUS, ROS, and SMOTE which
have own drawbacks. For instance, RUS may waste
important information of the original data and ROS
often causes over-fitting [18, 19]. SMOTE balances
the quantities of the two classes by creating synthetic
positive samples [12]. Though SMOTE can prevent
an over-fitting model, SMOTE pushes the boundary
between two classes into the space of the majority
class or causes overlapping classes [20]. Furthermore,
empirical studies agreed that the combination of over
and under-sampling families could work better than
ones in only a family [12, 21, 22].

Logistic regression with imbalanced data

Logistic regression

Let Y ∈ {0, 1} be variable for labels and X =
�

X1, . . . , X p

�

∈ Rp be predictor variables. Logistic re-
gression (LR) model is described as follows.

π(x) = P(Y = 1|X = x) =
eβ0+β x T

1+ eβ0+β x T , (1)

where β = (β1, . . . ,βp) and β0 are the parameters
showing the effects of the predictors on the conditional
probability π(x) which is also called the score of x ∈
Rp.

Consider a sample data set of n independent ob-
servations:
�

(x i , yi) ∈ Rp+1, i = 1, n
	

, where x i ∈ Rp

is the vector expressing p features and yi ∈ {0,1} is
the label of observation i-th. Then, the parameters in
(1) can be estimated by maximizing the log-likelihood
function:

logL (P (Y |X ,β)) =
n
∑

i=1

[yi log (π (x i))+ (1− yi) log (1−π (x i))] . (2)

The solution for (2) is computed by an interactive
algorithm, such as Newton-Raphson method. A new
observation x∗ will be classified into the positive class
if and only if its score is greater than a given threshold.
We refer to [23] for a detailed discussion.

In imbalanced data, the parameter estimation of
LR from (2) can be biased and the scores can be
under-estimated [6]. Therefore, LR model usually mis-
classifies the positive samples.

Logistic regression with imbalanced data

There were two main groups of methods that focused
on the intrinsic computation process of LR to reduce
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the bias. They were Weighted Likelihood Estimation
(WLE) and Penalized Likelihood Regression (PLR).

Weighted Likelihood Estimation (WLE) considers
the weighted log-likelihood function:

logLW (P (Y |X ,β)) =
n
∑

i=1

wi [yi log (π (x i))+ (1− yi) log (1−π (x i))] . (3)

In (3), wi =
τ
ȳ yi +

1−τ
1−y (1− yi) is the weight of

the observation i-th in the sample data. Where τ
and y are the proportions of the positive class in the
population and in the sample, respectively. Details of
WLE and extensive studies can be found in [5, 9, 24].
The obstacle of WLE is that the population proportion
τ is unavailable.

Penalized Likelihood Regression (PLR) has the gen-
eral form as follows:

logL∗ (P (Y |X ,β)) = logL (P (Y |X ,β)) + A(β) . (4)

In (4), the term of A(β) could be:

• Ridge-type: A(β) = −λ
∑p

j=1 β
2
j , where λ > 0

(see [9, 11]).

• Lasso-type: A(β) = −λ
∑p

j=1

�

�β j

�

�, where λ > 0
(see [25, 26]).

• Firth-type: A(β) = 1
2 log(det(I(β))), where I(β)

is the Fisher information matrix (see [6]).

Regarding Firth-type (FIR), although the parame-
ter estimation bias can be reduced, it introduces the
bias in the scores. To overcome this drawback, FLIC
and FLAC, which are the modification of FIR, are
proposed. Although FLIC and FLAC perform better
than FIR, they cannot win Ridge on most empirical
and simulation data sets (see [10]). Besides, FIR,
FLIC, and FLAC were quite sensitive to initial values in
the computational process of the maximum likelihood
estimation.

Regarding Ridge and Lasso, the penalty param-
eter λ controls the magnitude of the estimations of
β j ( j ̸= 0) (denoted Òβ j ) which are found by Coordinate
descent algorithm [27]. The optimal λ can be usually
determined by cross-validation procedure (CV) based
on the default threshold of 0.5 and minimizing the
cross-validation Error rate (or maximizing the cross-
validation Accuracy). Ridge may lead to a dense
estimation of β , which has very few values zero of bβ .
In high dimension data, Ridge takes a large interval
of computation time. Analogous to Ridge, Lasso is a
penalized shrinkage estimator. Besides, Lasso is also
a feature selection method without any p-value. In
Lasso, the larger λ is, the more number of Òβ j are zero.
Thus, Lasso retains only the predictors closely relevant

to the response. The details of Lasso and Ridge can
be found in [28]. However, Lasso does not deal with
imbalanced data. Some studies applied SMOTE to re-
balance data before performing Lasso (see [29, 30]).
Despite the fact that, SMOTE causes the overlapping
classes which decreases the performance measures of
classifiers [20].

METHODOLOGY

Reviewing the literature on LR with imbalanced data
leads to some conclusions. LR can still employ the
ability of interpretation with the penalized version
of Lasso. With imbalanced data, it should be con-
sidered the hybrid of both intrinsic (algorithm-level)
and extrinsic (data-level) algorithms of Lasso Logistic
regression (LLR). Moreover, the data-level approach
should be examined to boost the advantages and re-
strict the disadvantages of the re-sampling techniques.
For example, SMOTE should be only applied to the safe
subset of the minority class which consists of samples
with typical characteristics of the interest class. In
addition, the algorithm-level approach can be used to
modify the computation process of LR and can support
the application of re-sampling techniques.

Inspired by the idea of the hybrid approach to LR
with imbalanced data, the paper proposed a modifi-
cation of LR named F-measure-oriented Lasso-Logistic
regression (F-LLR).

The proposed classifier

F-LLR utilizes Lasso Logistic regression (LLR) as a base
learner. Instead of using CV to find the optimal λ,
a modification of CV, called F-measure-oriented cross-
validation (F-CV), is proposed. In F-CV, the criterion to
evaluate the optimal λ is F-measure, a more suitable
metric than Accuracy on imbalanced data. The details
of CV-F are described in Table 1 and illustrated in
Fig. 1.

Under the notations Table 1, with every threshold
α j , the cross-validation F-measure, Fi j , is an estimate
of the testing F-measure of the classifier LLR(λi). When
the penalty parameter λ and the threshold α take all
values in the series {λi}h1 and {α j}l1, respectively, Fi0 j0
determined at Step 10 is an estimate of the highest test-
ing F-measure of LLR(λ) on data set T . Therefore, F-CV
indicates not only the optimal penalty parameter λi0
but also the optimal threshold α j0 which correspond
to Fi0 j0.

The proposed classifier F-LLR has two computation
stages. In the beginning, all of the samples of the
training data are scored by F-CV. Then, according to
the samples’ scores, Under sampling (US) and SMOTE
are respectively applied to balance the training data
set. Finally, on the balanced data set, LLR based F-CV
builds a classifier F-LLR. The computation process for
F-LLR is shown in Table 2.
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Table 1 F-measure-oriented cross-validation procedure.

Input: A training data set T , a series of {λi}
h
1, a series of threshold

�

α j

	l

1, and an integer K .

1. Randomly divide T into K equal- sized subsets: T1, . . . , TK .
2. For i ∈ {1,2, . . . , h}, do following:
3. For j ∈ {1,2, . . . , l} do following:
4. For k ∈ {1,2, . . . , K} do following:
5. On the T\Tk, apply LLR with λi to get a fitted model LLR(λi).
6. On the Tk, apply LLR(λi) to get the scores of the samples of Tk.
7. Compare the scores with the threshold α j to get the labels of Tk.
8. Calculate F-measure, denoted Fi jk.

9. Fi j =
1
K

K
∑

k=1
Fi jk.

10. Fi0 j0 =max
i, j
{Fi j}

Output: The classifier LLR(λi0 ), the optimal penalty λi0 , and the optimal threshold α j0 .

𝑇1 𝑇2 … 𝑇𝑘 … 𝑇𝐾 Original data set

𝑇1 𝑇2 … 𝑇𝑘 … 𝑇𝐾

𝑇1 𝑇2 … 𝑇𝑘 … 𝑇𝐾

Train LLR(𝜆𝑖)F-measure

𝐹𝑖𝑗1

F-measure

𝐹𝑖𝑗𝐾

Train LLR(𝜆𝑖)

… 𝐹𝑖𝑗 =
1

𝐾
෍

𝑘=1

𝐾

𝐹𝑖𝑗𝑘

With 𝜆 = 𝜆𝑖, 𝛼 = 𝛼𝑗 :

→

𝜶𝒋
𝝀𝒊

𝛼1 … 𝜶𝒋𝟎 … 𝛼𝑙

𝜆1 𝐹11 … 𝐹1𝑗0 … 𝐹1𝑙
… … … … … …

𝝀𝒊𝟎 𝐹𝑖01 … 𝑭𝒊𝟎𝒋𝟎 … 𝐹𝑖0𝑙
… … … … … …

𝜆ℎ 𝐹ℎ1 … 𝐹ℎ𝑗0 … 𝐹ℎ𝑙

𝐹𝑖0𝑗0= max{𝐹𝑖𝑗} → 𝜆𝑖0, 𝛼𝑗0

Fig. 1 Illustration for F-CV.

The combination of US and SMOTE aims to re-
move the useless samples and increase the useful ones.
The fact that the higher the score of negative samples
is, the greater the chance of being misclassified is.
Those may be noise, borderline, or overlapping sam-
ples which decrease the performance measures of the
classifiers [19]. Thus, US is utilized to eliminate a pro-
portion of the negative class which contains the upper

high-scored samples. Next, instead of applying SMOTE
to the whole minority class, SMOTE just performs
on the subset consisting of the positive samples with
high scores. The idea contrasts with the application
of US. The high-scored positive samples are usually
identified correctly across thresholds. This practice is
meant to emphasize the prominent characteristic of the
positive which is useful for the identification of the

Scores

+  
+  
+  
+
+

0

1

Negative class

𝑆0
−

0.5

- - - - -
- - - - -
- - - - -
- - - - -
- - - - -

Positive class

𝑆0
+

+  +  
+  +

Removed 

samples

Synthetic 

samples

Scores

+  
+  
+  
+
+

0

1

0.5 - - - - -
- - - - -
- - - - -
- - - - -

+  +  +  
+  +  +

Negative class

𝑆1
−

Positive class

𝑆1
+

After Step 3 After Step 8

Fig. 2 Illustration for F-LLR.
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minority class. Furthermore, the high-scored positive
samples are in the safe region that is usually far from
the borderline, so applying SMOTE here can prevent
overlapping classes. Fig. 2 shows the ideas under the
steps of F-LLR classifier.

Data for empirical study

Credit scoring is a typical example of imbalanced clas-
sification since the number of bad customers is always
far less than the number of good ones. Eight credit-
scoring data sets are used in the experimental study.
They are Australian data (AUS), German data (GER),
Taiwanese data (TAI), Credit risk data (Credit 1),
Credit default data (Credit 2), Credit Card data (Credit
3), Bank personal loan data (Credit 4), and Vietnamese
data (VN). Moreover, a data set of hepatitis patients
(Hepa), which is not only imbalanced but also has a
small size of the positive class, is also investigated.

All data sets suffer imbalanced status with dif-
ferent levels evaluated by the imbalanced ratio (IR),
which is the rate of the quantity of the negative and
positive classes. The details of the data sets are
presented in Table 3 in the order of IR (shown in the
column named ‘IR’) from the smallest to the highest.
The first group of data sets, including AUS, GER, TAI,
and Credit 1, are imbalanced data at a low level
(IR ⩽ 5). AUS, GER, and TAI data sets publicized
on the UCI machine learning repository are familiar
with credit scoring studies. Besides, Credit 1 is the
subset randomly drawn from the original data set at
the rate of 20% to save computation time. Credit 1
still maintains the same IR as the original data on the
Kaggle website. The second group consisting of Credit
2, 3, 4, and Hepa suffers average imbalanced status
(5 < IR ⩽ 10). Credit 3 is formed in a similar way
to Credit 1 but at the rate of 10%. The last group
is Vietnamese data collected from a commercial bank
in Vietnam in the period 2019 - 2020. This is the
most severely imbalanced data among experimental
data sets. Except for the last data set, eight others are
public data on the UCI library and Kaggle website with
transparent sources indicated in Table 3.

All observations with missing values of features are
omitted. Moreover, all numeric features of data sets
are standardized to have zero mean and unit deviation.

Performance measures

Accuracy is not a reasonable measure for classifiers on
imbalanced data [13]. Instead, AUC, KS, F-measure,
and G-mean are utilized to evaluate the performance
of classifiers considered in the paper. Among them,
AUC and KS are free-threshold measures that judge
the general effectiveness of classifiers. Meanwhile, F-
measure and G-mean depend on the threshold which
is a reference value to distinguish ‘positive’ and ‘nega-
tive’. Details of AUC, KS, F-measure, and G-mean can
be found in the documents [31, 32].

About F-measure, it is the harmonic mean of Preci-
sion and Recall as the formula (5). Precision is the ratio
of true positive samples among the predicted positive
and Recall is the proportion of the predicted positive
samples in the positive class. F-measure is high if
and only if both Precision and Recall are high. On
imbalanced data sets, LR and LLR usually give a high
Precision and low Recall. It means that few of the pos-
itive samples are classified correctly. On the contrary,
when boosting the Recall but ignoring the Precision of
imbalanced data, it leads to an extreme classifier that
cannot identify the negative. The bias toward Precision
or Recall can cause unnecessary losses, for example in
credit scoring or medical diagnosis field. Therefore, in
the procedure to find the optimal λ of LLR, the highest
F-measure is a more reasonable target than the highest
Accuracy.

F-measure= 2×
Precision×Recall
Precision+Recall

. (5)

In this paper, the F-measure and G-mean corre-
sponding to threshold α is denoted by F-measure(α)
and G-mean(α).

Implementation protocol

The performance of F-LLR is compared with popular
balanced methods of LLR, such as LLR with a resam-
pling technique (RUS, ROS, or SMOTE) and Ridge. Es-
pecially, on Vietnamese data set, F-LLR was compared
with WLE due to the available value of τ (τ= 1.7%)
which is the bad debt ratio in the Vietnamese bank-
ing system in the period 2019-2020. Ridge-LR and
WLE, the representative of LR with the algorithm-level
approach, are chosen to compare with F-LLR since
these methods worked better than others according to
previous studies [5, 10]. The optimal λs of the models,
including LLR, RUS-LLR, ROS-LLR, SMOTE-LLR, and
Ridge, are determined by the original version of CV.

The general implementation protocol is described
in Table 4. Furthermore, we set up the series of hyper-
parameters as follows:

• The series of lambdas {λi}100
i=1 consists of 100

equal-distanced values from 0.005 to 0.0001.

• The series of thresholds {α j}50
j=1 consists of 50

equal-distanced values from 0.01 to 0.7. We
choose 0.7 as the upper bound of the series of
thresholds because if the threshold for distin-
guishing two classes is too high, there are many
positive samples misclassified.

• The series of rates for under-sampling {rU}20
1

consists of 20 values from 0.05 to 0.5×(IR−1)/IR
and satisfying (1 − rU)|S−0 | > |S

+
0 |. If RUS is

applied, a number of negative samples which
account for (IR− 1)/IR of the negative class will
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Table 2 The procedure for F-LLR classifier.

Input: Training data set T0 = S+0 ∪ S−0 , where S+0 and S−0 are the positive and negative class.

Series of penalties {λi}
h
1, series of thresholds

�

α j

	l

1, and an integer K .
rU : a rate for US; and rS : a rate for SMOTE (satisfying (1− rU )|S−0 |> |S

+
0 |).

Stage 1
1. Apply F-CV on T0 to get the classifier LLR(λ0).
2. Apply LLR(λ0) to score all samples of T0.
Stage 2
3. Order the samples of S+0 and S−0 by their scores from the highest to the lowest.
4. On S−0 , remove (rU × |S−0 |) upper high-scored samples to get S−1 .
5. Determine the subset of S+0 consisting of (rS × |S+0 |) upper high-scored samples called S++0 .

6. m=
|S−1 | − |S

+
0 | × (1− rS)

|S+0 | × rS
7. Apply SMOTE on S++0 to create (m−1)rS × |S+0 | synthetic samples.
8. The new positive class S+1 .
9. Apply F-CV on the balanced training set T1 = S+1 ∪ S−1 .

Output: The classifier LLR(λ1) and the optimal threshold α1.

|A| denotes the quantity of the data set A.

Table 3 The description of the experimental data sets.

Data sets Size # positivea IR # featuresb # num featuresc Source

AUS 690 307 1.25 14 6
ics.uci.edu/ml/datasetsGER 1,000 300 2.33 19 7

TAI 30,000 6,636 3.52 23 14
Credit 1 5,752 1,237 3.65 11 7 (1)

Credit 2 9,709 1,283 6.57 18 5 (2)
Credit 3 12,600 1,525 7.26 11 5 (3)
Hepa 589 63 8.35 12 11 ics.uci.edu/ml/datasets/hepatitis
Credit 4 5,000 480 9.42 11 6 (4)

VN 10,889 602 17.09 12 0 Vietnam

a: the number of positive class; b: the number of features; c : the number of numeric features.
(1): https://www.kaggle.com/datasets/laotse/credit-risk-dataset.
(2): https://www.kaggle.com/datasets/gargvg/univai-dataset.
(3): https://www.kaggle.com/datasets/samuelcortinhas/credit-card-classification-clean-data.
(4): https://www.kaggle.com/datasets/teertha/personal-loan-modeling.

be removed randomly. However, in this employ-
ment, we do not eliminate too many negative
samples to restrict the loss of valuable informa-
tion from the majority class.

• The series of rates for SMOTE {rS}20
1 consists of

20 values from 0.05 to 0.75. Usually, SMOTE bal-
ances data by using 100% samples of the minority
class to generate synthetic samples in their neigh-
borhoods. In our way, the upper bound rate for
SMOTE is 0.75 since we focus on the top-scored
positive samples to restrict the overlapping issues,
a typical drawback of the standard SMOTE.

Note that on each data set, the considered classifiers
carry out 20 times and the performance measures of
20 times are averaged to get the robust results.

RESULTS AND DISCUSSION

Results

With F-LLR, a minor experiment on some values of
rU (the rate for US) and rS (the rate for SMOTE)
suggested that the optimal value of rU was in the range
[0.05;0.25] while the one of rS was in [0.20;0.75].
Where, the Hepa data set, which has a very small
positive class and suffers average imbalanced level,
performs at the rU = 0.07 and rS = 0.75. It can be
implied that SMOTE technique is prioritized to US in
the protocol of F-LLR on experimental data.

The average performance measures of considered
classifiers were recorded in Table 5. In comparison
to other classifiers, F-LLR showed better performance
on experimental data sets. On TAI, Credit 2, Credit
3, and Hepa, F-LLR was the most prominent classifier
since F-LLR won the other at least three performance
metrics. On other data sets (except Credit 4), F-LLR
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Table 4 The implemetation protocol.

Steps Contents

1. Set up the series: {λi}
100
1 ,
�

α j

	50

1 , {rUu}20
u=1, and {rSs}20

s=1.
2. Split randomly the data set into the training and testing set (70% : 30%).
On the training set:

3. For u ∈ {1, . . . , 20} do following:
4. For s ∈ {1, . . . , 20} do following:

5. Apply the Algorithm F-LLR
�

{λi}
100
1 ,
�

α j

	50

1 , rUu, rSs

�

to build the classifiers F-LLR.
6. Determine the optimal threshold α∗j of F-LLR.
7. Determine the optimal F-LLR based on the highest F-measure across rUs and rSs, where u, s ∈ 1,20.
8. Build the classifiers LLR, RUS-LLR, ROS-LLR, SMOTE-LLR, and Ridge, respectively.
9. For each classifier, determine the optimal threshold α∗j corresponding to the highest F-measure(α∗j ).

On the training set of Vietnamese data, run above ones and WLE.
On the testing set:

10. Apply the considered classifiers, respectively.
11. Calculate AUC, KS, F-measure(α∗j ), and G-mean(α∗j ) of all considered classifiers.
12. Repeat from Step 2 to Step 11 twenty times.
13. Average twenty values of AUC, KS, F-measure, and G-mean.

outperformed by two metrics.
Especially, on VN – the most imbalanced data, F-

LLR was the most prominent classifier. F-LLR displayed
the highest KS and F-measure. Besides, ROS-LLR won
against F-LLR in G-mean and WLE won in AUC. Despite
the fact that, the difference in G-mean between F-LLR
and ROS-LLR was not significant. It was similar to
the difference in AUC between F-LLR and WLE. Fur-
thermore, Ridge-LR worked worse than all considered
classifiers.

In general, F-LLR showed the highest KS and F-
measure across data sets. In contrast, data-level ap-
proach could not deal with imbalanced data on GER,
Credit 2, and Hepa. The techniques ROS, RUS, and
SMOTE even decreased the performance measures of
the LLR classifier. Besides, Ridge-LR seemed a competi-
tor with F-LLR in some cases, such as GER and Credit 4.

About the optimal thresholds of LLR, they are quite
higher than the ones of the other classifiers.

Statistical test

To have a confident conclusion on the effectiveness of
F-LLR, Sign test was utilized. This test does not assign
any assumption of the distribution of performance
measures. It just counts the number of data sets on
which the interest classifier wins the others. Details
of Sign test can be found in [33]. When comparing
multiple classifiers, it can be performed pairwise com-
parisons and record the results in a matrix. When
considering the interest and another classifier, there
are two possibilities: win or not. Thus, the number of
wins follows the binomial distribution Binorm(N , p).
Under the null hypothesis that is the two classifiers are
equivalent, the parameters of this distribution are:

• N : the number of the empirical data sets.

• p= 0.5: the probability of winning under the null

hypothesis.

With the Binorm(N , 0.5), the critical number of
wins can be calculated. For example, with N = 9,
the critical values at the significant level of α = 5%
(or 10%) is wα = 8 (or wα = 7) [34]. It means the
interest classifier is significantly better than another if
it performs better on at least wα data sets.

According to the results in Table 5, we organized
two tests which were overall and pairwise comparisons
to conclude the effectiveness of F-LLR. However, it
could not be compared the performance measures of
F-LLR and WLE since there was only one observation
of this comparison. The number of wins of F-LLR
were shown in Table 6. F-LLR won the others seven
times by KS and F-measure in overall comparison.
That implied the KS and F-measure of F-LLR were
significantly higher than the ones of others at the level
of 10% in overall comparison. In pairwise ones, there
were some notes:

• By AUC: F-LLR won LLR and RUS-LLR on all nine
data sets while it won ROS-LLR on five, SMOTE-
LLR on six, and Ridge-LLR on six data sets. There-
fore, F-LLR was only significantly better than LLR
and RUS-LLR.

• By G-mean: F-LLR won LLR on eight data sets.
Besides, F-LLR won RUS-LLR, SMOTE-LLR, and
Ridge-LLR on seven data sets but won ROS-LLR
on six ones. Thus, except for ROS-LLR, F-LLR
significantly won the others.

Discussion

According to the empirical study and statistical test,
the proposed classifier F-LLR with the combination
of US and SMOTE under the control of the samples’
scores completely beat RUS-LLR (by 4 performance
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Table 5 The average testing performance measures of classifiers.

Data sets Measures LLR RUS-LLR ROS-LLR SMOTE-LLR Ridge-LR WLE F-LLR

AUS

AUC .9221 .9238 .9246 .9236 .9276 ——– .9245
KS .7450 .7503 .7546 .7559 .7530 ——– .7525
F-measure .8464 .8483 .8516 .8527 .8534 ——– .8541
G-mean .8578 .8589 .8624 .8642 .8565 ——– .8645
Threshold∗ .4825 .4552 .4954 .4968 .3086 ——– .5066

GER

AUC .7722 .7646 .7634 .7623 .7845 ——– .7782
KS .4605 .4489 .4552 .4551 .4618 ——– .4627
F-measure .5948 .5643 .5723 .5708 .5968 ——– .5987
G-mean .7070 .6534 .6726 .6694 .7127 ——– .7097
Threshold∗ .3428 .3793 .3834 .3786 .2725 ——– .4337

TAI

AUC .6137 .7210 .7224 .7232 .6139 ——– .7221
KS .3229 .3798 .3804 .3802 .3230 ——– .3859
F-measure .4356 .3958 .4008 .4060 .4355 ——– .4966
G-mean .5628 .4624 .4756 .4884 .5622 ——– .6763
Threshold∗ .2750 .3173 .3266 .3322 .2750 ——– .4269

Credit
1

AUC .8523 .8528 .8532 .8529 .8524 ——– .8529
KS .5646 .5660 .5649 .5637 .5655 ——– .5662
F-measure .6262 .6166 .6156 6135 .6242 ——– .6293
G-mean .7582 .7767 .7754 .7742 .7754 ——– .7653
Threshold∗ .3259 .5500 .5500 .5500 .2741 ——– .5691

Credit
2

AUC .5758 .5741 .5743 .5752 .5309 ——– .5761
KS .1744 .1678 .1701 .1706 .1281 ——– .1748
F-measure .2832 .2677 .2703 .2712 .2632 ——– .2802
G-mean .5428 .2918 .2226 .3036 .4250 ——– .5838
Threshold∗ .1190 .3940 .4233 .4224 .1310 ——– .3414

Credit
3

AUC .5853 .5827 .5872 .5874 .5777 ——– .5876
KS .1542 .1519 .1600 .1596 .1463 ——– .1602
F-measure .2597 .2559 .2563 .2557 .2574 ——– .2603
G-mean .5039 .2291 .2045 .2457 .4989 ——– .5539
Threshold∗ .1110 .2712 .3822 .3539 .1148 ——– .3667

Hepa

AUC .9252 .8975 .9228 .9238 .9442 ——– .9480
KS .7967 .7570 .8325 .8166 .8620 ——– .8563
F-measure .7564 .6215 .7529 .7242 .7529 ——– .7717
G-mean .7913 .8224 .9052 .8554 .7900 ——– .9059
Threshold∗ .2622 .3442 .3968 .3757 .1959 ——– .2658

Credit
4

AUC .9409 .9435 .9436 .9405 .9560 ——– .9462
KS .8355 .8671 .8625 .8682 .8430 ——– .8691
F-measure .6418 .5224 .5295 .5254 .6428 ——– .5335
G-mean .7677 .8180 .8253 .8235 .7715 ——– .7923
Threshold∗ .3086 .3603 .3577 .3500 .2914 ——– .3416

VN

AUC .7885 .7946 .8019 .7996 .7883 .8065 .7956
KS .5429 .5462 .5496 .5505 .5042 .5510 .5584
F-measure .3111 .2594 .2661 .2793 .2754 .2756 .3406
G-mean .7252 .7633 .7657 .7106 .6290 .6306 .7653
Threshold∗ .1400 .4200 .4600 .3800 .1250 .0875 .4175

∗: The optimal threshold corresponding to the highest trained F-measure. The underlined values is the highest in each row.

measures) and SMOTE-LLR (by 3 ones). Furthermore,
on nine real data sets, F-LLR outperformed other con-
sidered classifiers in KS and F-measure. That meant
F-LLR could separate the true positive distribution and
the false positive distribution better than the others.
Moreover, F-LLR showed the best trade-off between

Precision and Recall. In credit scoring application,
Recall is more important than Precision since the bad
customers are always the crucial objects to identify in a
credit scoring process. However, if classifiers stress on
Recall and ignore Precision, a large number of good
customers are rejected. This is also an unpleasant
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Table 6 The number of wins of F-LLR on experimental data sets.

Performance
measures

Pairwise comparisons Overall
comparison

LLR RUS-LLR ROS-LLR SMOTE-LLR Ridge-LLR

AUC 9 9 5 6 6 3
KS 9 8 8 8 7 7
F-measure 7 9 9 9 8 7
G-mean 8 7 6 7 7 4

With N = 9, the critical values w0.05 = 8, w0.1 = 7.

scenario for the financial organizations which operate
for profit. Therefore, F-LLR with the remarkable ability
to boost F-measure is an effective classifier for credit
scoring.

CONCLUSION

LR is a very popular traditional classifier though there
are many modern models available today. Similar to
common classifiers, LR works ineffectively on imbal-
anced data sets. The algorithm-level and data-level
approaches cannot increase the performance measures
of LR in many imbalanced data sets. Consequently, the
application fields of LR can be narrowed in spite of its
strengths.

Taking advantage of the LLR, algorithm-level, and
data-level approach, the proposed classifier F-LLR pre-
pared a balanced training set by removing unnecessary
negative samples and increasing essential positive sam-
ples by targeted applying US and SMOTE. Besides, the
optimal penalty parameter λ and the optimal threshold
of LLR were determined by a new procedure called F-
CV, an adjustment of the ordinary CV. The modifications
to the intrinsic algorithm of LLR and the re-sampling
techniques made F-LLR more effective in KS and F-
measure than the original versions, such as LLR, RUS-
LLR, ROS-LLR, SMOTE-LLR, Ridge-LR, and WLE. This
opens up the possibility of applying LLR on fields
with severely imbalanced data while it is necessary to
identify the input features which affects significantly
on the classification results, for example credit fraud
detection or cancer diagnosis. However, the best val-
ues of the hyper-parameters rU and rS of F-LLR should
be investigated deeply by experiments. Besides, F-LLR
should be applied to more real data sets of other fields
to have a robust conclusion of its effectiveness.
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