Uniqueness of meromorphic functions and their differential-difference polynomials with shared small functions

Xinyu Zhuang, Minghui Zhang, Mingliang Fang*
Department of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 China
*Corresponding author, e-mail: mlfang@hdu.edu.cn

Received 6 Nov 2022, Accepted 22 May 2023
Available online 22 Nov 2023

Abstract

In this paper, we study the unicity of meromorphic functions and their differential-difference polynomials. Our results improve some results due to Chen-Yi [Results Math 63 (2013):557-565], Chen-Xu [Open Math 18 (2020):211-215], Banerjee-Maity [Bull Korean Math Soc 58 (2021):1175-1192], and Narasimha-Shilpa [Adv Pure Appl Math 13 (2022):53-61].

KEYWORDS: meromorphic functions, differential-difference polynomials, small functions, partially sharing
MSC2020: 30D35

INTRODUCTION AND MAIN RESULTS

In this paper, we assume that the reader is familiar with the basic notions of Nevanlinna's value distribution theory, see [1-4]. In the following, a meromorphic function always means meromorphic in the whole complex plane. By $S(r, f)$, we denote any quantity satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$ possible outside of an exceptional set E with finite measure. We say that two nonconstant meromorphic functions f and g share small function $a \mathrm{CM}(\mathrm{IM})$, if $f-a$ and $g-a$ have the same zeros counting multiplicities (ignoring multiplicities).

Denote the set of all zeros of $f-a$ by $E(a, f)$, where a zero with multiplicity m is counted m times. If $E(a, f) \subset E(a, g)(\bar{E}(a, f) \subset \bar{E}(a, g))$, then we say f and g partially share the value $a \operatorname{CM}(I M)$. Note that $E(a, f)=E(a, g)(\bar{E}(a, f)=\bar{E}(a, g))$ is equal to f and g share a CM(IM). Therefore, it is clear that the condition "partially shared value CM(IM)" is more general than the condition "shared value CM(IM)".

Let $f(z)$ be a nonconstant meromorphic function. Define

$$
\begin{aligned}
& \rho(f)=\varlimsup_{r \rightarrow \infty} \frac{\log ^{+} T(r, f)}{\log r}, \\
& \mu(f)=\varlimsup_{r \rightarrow \infty} \frac{\log ^{+} T(r, f)}{\log r}, \\
& \rho_{2}(f)=\varlimsup_{r \rightarrow \infty} \frac{\log ^{+} \log ^{+} T(r, f)}{\log r}, \\
& \lambda(f)=\varlimsup_{r \rightarrow \infty} \frac{\log ^{+} N\left(r, \frac{1}{f}\right)}{\log r},
\end{aligned}
$$

by the order, lower order, the hyper-order of $f(z)$, and the exponent of convergence of zeros for $f(z)$, respectively.

Let $f(z)$ be a meromorphic function satisfying $\rho(f)=\mu(f)$, then $f(z)$ is called a function with regular growth.

Let $f(z)$ be a nonconstant meromorphic function and let a be a complex number. We define

$$
\begin{aligned}
\delta(a, f)= & \lim _{r \rightarrow \infty} \frac{m\left(r, \frac{1}{f-a}\right)}{T(r, f)}=1-\varlimsup_{r \rightarrow \infty} \frac{N\left(r, \frac{1}{f-a}\right)}{T(r, f)}, \\
& \Theta(a, f)=1-\varlimsup_{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{f-a}\right)}{T(r, f)} .
\end{aligned}
$$

It is clear that $0 \leqslant \delta(a, f) \leqslant 1,0 \leqslant \Theta(a, f) \leqslant 1$. If $\delta(a, f)>0$, then a is called a deficient value of f or a Nevanlinna exceptional value of f.

Let $f(z)$ be a nonconstant meromorphic function. If

$$
\varlimsup_{r \rightarrow \infty} \frac{\log ^{+} N\left(r, \frac{1}{f-a}\right)}{\log r}<\rho(f),
$$

for $\rho(f)>0$; and $N\left(r, \frac{1}{f-a}\right)=O(\log r)$ for $\rho(f)=0$, then a is called a Borel exceptional function of f. If a is a constant, then a is called a Borel exceptional value of f.

We say that a is a small function of f if $T(r, a)=$ $S(r, f)$, and $\hat{S}(f)$ means $S(f) \cup\{\infty\}$, where $S(f)$ is the set of all small functions of f.

Let $f(z)$ be a meromorphic function, and let c be a nonzero finite complex number. We define the difference operators of $f(z)$ as $\Delta_{c} f(z)=f(z+c)-f(z)$ and $\Delta_{c}^{n} f(z)=\Delta_{c}\left(\Delta_{c}^{n-1} f(z)\right), n \geqslant 2$. In particular, for $c=1$, we denote $\Delta_{c}^{n} f(z)$ by $\Delta^{n} f(z)$.

We define the linear difference polynomial of f as follows:

$$
\begin{equation*}
L(f):=\sum_{i=1}^{n} m_{i}(z) f\left(z+c_{i}\right), \tag{1}
\end{equation*}
$$

where $m_{i}(z)(\not \equiv 0)(i=1,2, \ldots, n)$ are small functions of f, and $c_{i}(i=1,2, \ldots, n)$ are distinct finite values.

Let $H(f)=H\left(f(z), f\left(z+c_{1}\right), \ldots, f\left(z+c_{n}\right)\right)$ be a homogeneous difference polynomial of f with degree $m \geqslant 2$, where $c_{i}(i=1,2, \ldots, n)$ are distinct finite values, and coefficients $m_{i}(z)(i=1,2, \ldots, n)$ are small functions of f.

Define

$$
\begin{array}{r}
\psi(f):=\sum_{j_{1} \in J_{1}} A_{j_{1}}(z) f^{\left(k_{j_{1}}\right)}(z)+\sum_{j_{2} \in J_{2}} B_{j_{2}}(z) f^{\left(k_{j_{2}}\right)}\left(z+b_{j_{2}}\right) \\
+\sum_{j_{3} \in J_{3}} C_{j_{3}}(z) f\left(z+c_{j_{3}}\right), \tag{2}
\end{array}
$$

where $A_{j_{1}}(z), B_{j_{2}}(z), C_{j_{3}}(z)$ are entire small functions of $f(z),\left\{k_{j_{1}}, k_{j_{2}}\right\} \in \mathbb{Z}^{+}, b_{j_{2}}, c_{j_{3}}$ are complex constants and $j_{m} \in J_{m}, m=\{1,2,3\}$ are finite indexed sets.

We define the differential-difference polynomial of f as follows:

$$
\begin{equation*}
W(f):=\sum_{j \in J} A_{j}(z) f^{\left(k_{j}\right)}\left(z+a_{j}\right) \tag{3}
\end{equation*}
$$

where $A_{j}(z)$ are small functions of $f(z), k_{j}$ are nonnegative integers, a_{j} are complex constants which satisfying (a_{j}, k_{j}) are distinct for each $j \in J$, where J is a finite indexed set.

Nevanlinna [3] proved the following famous fivevalue theorem.

Theorem A Let f and g be two nonconstant meromorphic functions, and let $a_{j}(j=1,2,3,4,5)$ be five distinct values in the extended complex plane. If f and g share $a_{j}(j=1,2,3,4,5) I M$, then $f \equiv g$.

Li and Qiao [5] improved Theorem A as follows:
Theorem B Let f and g be two nonconstant meromorphic functions, and let $a_{j}(j=1,2,3,4,5)$ (one of them can be identically infinite) be five distinct small functions of both f and g. If f and g share $a_{j}(j=1,2,3,4,5)$ $I M$, then $f \equiv g$.

In 2013, Chen and Yi [6] proved the following result.

Theorem C Let f be a transcendental meromorphic function such that $\rho(f)$ is not an integer or infinite. If $\Delta f(\not \equiv 0)$ and f share three distinct values $a, b, \infty C M$, then $\Delta f \equiv f$.

In this paper, we extend Theorem C as follows:
Theorem 1 Let f be a nonconstant meromorphic function such that $\rho(f)$ is not an integer or infinite, let a, b be two distinct small functions related to f, and let $L(f)$ be a linear difference polynomial of the form (1). If f and $L(f)$ share $a, b, \infty C M$, then $f \equiv L(f)$.

In 2020, Chen [7] proved

Theorem D Let $f(z)$ be a transcendental entire function with $\rho_{2}(f)<1$, and let $c \in \mathbb{C} \backslash\{0\}$ such that $\Delta_{c}^{n} f(z) \not \equiv 0$. If $f(z)$ and $\Delta_{c}^{n} f(z)$ share 0 CM and 1 IM, then $\Delta_{c}^{n} f(z) \equiv$ $f(z)$.

We extend Theorem D and prove the following result.

Theorem 2 Let f be a nonconstant meromorphic function with $\rho_{2}(f)<1$ and $\bar{N}(r, f)=S(r, f)$, and let $a(\not \equiv 0)$ be a small function related to f. If f and $L(f)$ share a IM and $E(0, f) \subset E(0, L(f)), E(\infty, f) \supset$ $E(\infty, L(f))$, then $f \equiv L(f)$.

Corollary 1 Let f be a nonconstant meromorphic function with $\rho_{2}(f)<1$ and $\bar{N}(r, f)=S(r, f)$, and let $a(\not \equiv 0)$ be a small function related to f. If f^{m} and $H(f)$ share a IM and $E\left(0, f^{m}\right) \subset E(0, H(f)), E\left(\infty, f^{m}\right) \supset$ $E(\infty, H(f))$, then $f^{m} \equiv H(f)$.

In 2021, Banerjee and Maity [8] proved the following result.

Theorem E Let f be a nonconstant entire function with $\rho_{2}(f)<1$ and let $L_{c} f=\sum_{l=0}^{k} b_{l} f(z+l c)$, where $b_{l} \in \mathbb{C}$ and $b_{k} \neq 0$. For $c \in \mathbb{C} \backslash\{0\}$, let $a_{j} \in \widehat{S}_{f}(j=1,2,3)$ be three distinct nonzero periodic functions with period c. If $L_{c} f \not \equiv 0, \bar{E}\left(a_{j}, f\right) \subseteq \bar{E}\left(a_{j}, L_{c} f\right)(j=1,2,3)$ and $\delta(0, f)>0$, then $f \equiv L_{c} f$.

In this paper, we remove the condition " $a_{j}(j=$ $1,2,3$) are periodic functions" and extend $L_{c} f$ to $L(f)$.

Theorem 3 Let f be a nonconstant meromorphic function with $\rho_{2}(f)<1$, let $c \in \mathbb{C} \backslash\{0\}$, and let $a_{j} \in \widehat{S}_{f}$ ($j=1,2,3$) be three distinct nonzero small functions. If $L(f) \not \equiv 0, \bar{E}\left(a_{j}, f\right) \subseteq \bar{E}\left(a_{j}, L(f)\right)(j=1,2,3), \delta(0, f)>$ 0 and $\delta(\infty, f)=1$, then $f \equiv L(f)$.

In 2022, Narasimha and Shilpa [9] proved the following theorem.

Theorem \mathbf{F} Let f be a transcendental entire function of finite order and let $\psi(f)$ be defined as (2) such that $\sum_{j_{3} \in J_{3}} C_{j_{3}} \equiv 0$. Suppose that $\psi(f)$ and f share the finite value a CM and f has an exceptional value $\alpha(\neq a)$.
(i) If $a \neq 0$ and α is a Nevanlinna exceptional value of f, then

$$
\frac{\psi(f)-a}{f-a}=\tau(\neq 0)
$$

(ii) If α is a Borel exceptional value of f, then

$$
\frac{\psi(f)-a}{f-a}=\frac{a}{a-\alpha}
$$

In this paper, we extend Theorem F as follows:

Theorem 4 Let f be a nonconstant meromorphic function with $\rho_{2}(f)<1$, let a, α be two distinct small functions related to f, and let $W(f)$ be a differentialdifference polynomial with $a \not \equiv W(\alpha)$. If f and $W(f)$ share $a, \infty C M$, and α is a Nevanlinna exceptional small function of f, then

$$
\frac{W(f)-a}{f-a}=\tau(\neq 0)
$$

The following example shows that the conditions " $a \not \equiv \alpha$ " and " $a \not \equiv W(\alpha)$ " are necessary in Theorem 4.
Example 1 Let $f(z)=\frac{\mathrm{e}^{z^{2}}}{\mathrm{e}^{z}+1}+1$, and let $W(z, f)=$ $f(z+2 \pi \mathrm{i})=\frac{\mathrm{e}^{z^{2}+4 \pi \mathrm{i} z-4 \pi^{2}}}{\mathrm{e}^{z}+1}+1$. Then, we have f and $W(z, f)$ share $1, \infty$ CM, but

$$
\frac{W(f)-a}{f-a}=\frac{\frac{\mathrm{e}^{z^{2}+4 \pi \mathrm{i} z-4 \pi^{2}}}{\mathrm{e}^{z}+1}}{\frac{\mathrm{e}^{z^{2}}}{\mathrm{e}^{z}+1}}=\mathrm{e}^{4 \pi \mathrm{i} z-4 \pi^{2}}
$$

Theorem 5 Let f and $W(f)$ be two nonconstant meromorphic functions of finite order, and let a, α be two distinct small functions related to f. If f and $W(f)$ share a IM, and α, ∞ are two Borel exceptional functions of f, then

$$
\frac{f-\alpha}{a-\alpha} \equiv \frac{W(f)-W(\alpha)}{a-W(\alpha)} .
$$

By Theorem 5, we have the following corollary.
Corollary 2 Let f be a transcendental entire function of finite order and $\psi(f)$ be defined as (2) such that $\sum_{j_{3} \in J_{3}} C_{j_{3}} \equiv 0$. Suppose that $\psi(f)$ and f share the finite value a IM and $\alpha(\neq a)$ is a Borel exceptional value of f, then

$$
\frac{\psi(f)-a}{f-a}=\frac{a}{a-\alpha} .
$$

Remark 1 We change the condition "share a CM" of the second case in Theorem F to "share a IM".

LEMMAS

For the proof of our results, we need the following lemmas.

Lemma 1 ($[1,3,4]$) Let f be a nonconstant meromorphic function of finite order and let $c \in \mathbb{C} \backslash\{0\}$, then

$$
m\left(r, \frac{f(z+c)}{f(z)}\right)=S(r, f)
$$

If $\rho_{2}(f)=\rho_{2}<1$ and $\varepsilon>0$, then

$$
m\left(r, \frac{f(z+c)}{f(z)}\right)=o\left(\frac{T(r, f)}{r^{1-\rho_{2}-\varepsilon}}\right)
$$

Lemma 2 ([3]) Suppose f is a nonconstant meromorphic function. Then the value a such that $\Theta(a, f)>0$ are at most countable many and

$$
\sum_{a} \Theta(a, f) \leqslant 2
$$

Lemma 3 ([10]) Let f be a meromorphic function of finite order, and let a be a small function of f. If $\sum_{a \neq \infty} \delta(a, f)=1$ and $\delta(\infty, f)=1$, then f is of regular growth and $\rho(f)$ is a positive integer.

Lemma 4 ([11]) Let f be a nonconstant meromorphic function, and let $a_{i}(i=1,2,3)$ be three distinct small functions of f. Then for any $0<\varepsilon<1$, we have

$$
\begin{aligned}
& 2 T(r, f) \leqslant \bar{N}(r, f)+\sum_{i=1}^{3} \bar{N}\left(r, \frac{1}{f-a_{i}}\right) \\
&+\varepsilon T(r, f)+S(r, f)
\end{aligned}
$$

Lemma 5 ([3]) Let f be a transcendental meromorphic function of finite order. Then

$$
m\left(r, \frac{f^{(k)}}{f}\right)=S(r, f)
$$

Lemma 6 ([3]) Let f be a meromorphic function with a positive order. If f has two distinct Borel exceptional values a_{1} and a_{2}, then $\delta\left(a_{1}, f\right)=\delta\left(a_{2}, f\right)=1$.

Remark 2 Lemma 6 is also valid for $\rho(f)=0$.
Lemma 7 ([12]) Let f be a nonconstant meromorphic function of finite order. Then we have

$$
m\left(r, \frac{f^{(k)}}{f}\right)=O(\log r)
$$

and for each $\varepsilon>0$, we have

$$
m\left(r, \frac{f(z+c)}{f(z)}\right)=O\left(r^{\rho(f)-1+\varepsilon}\right)
$$

Lemma 8 ([13]) Let f and g be two distinct meromorphic functions satisfying

$$
\begin{aligned}
& N(r, f)+N\left(r, \frac{1}{f}\right)=S(r, f), \\
& N(r, g)+N\left(r, \frac{1}{g}\right)=S(r, g)
\end{aligned}
$$

If f and g share 1 IM almost, then $f \equiv g$ or $f g \equiv 1$.

PROOF OF Theorem 1

Since f and $L(f)$ share $a, b, \infty \mathrm{CM}$, we can find two meromorphic functions H_{1} and H_{2} such that

$$
\begin{equation*}
\frac{L(f)-a}{f-a}=H_{1}, \quad \frac{L(f)-b}{f-b}=H_{2} \tag{4}
\end{equation*}
$$

where $\delta\left(0, H_{1}\right)=\delta\left(\infty, H_{1}\right)=1$ and $\delta\left(0, H_{2}\right)=$ $\delta\left(\infty, H_{2}\right)=1$.

Obviously, by Lemma 3, we have $\rho\left(H_{1}\right)=k_{1}$ and $\rho\left(H_{2}\right)=k_{2}$, where k_{1} and k_{2} are positive integers.

By Lemma 3 and the definition of the order and the lower order of f, there exists a positive number ε_{0} such that

$$
\begin{array}{r}
r^{k_{1}-\varepsilon_{0}} \leqslant T\left(r, H_{1}\right) \leqslant r^{k_{1}+\varepsilon_{0}}, \\
T\left(r, H_{2}\right) \leqslant r^{k_{2}+\varepsilon_{0}} . \tag{6}
\end{array}
$$

Next we consider the following two cases.
Case 1: $H_{1} \equiv H_{2}$. From (4), we obtain the result of Theorem 1.
Case 2: $H_{1} \not \equiv H_{2}$. By (4), we get

$$
\begin{equation*}
f=\frac{a\left(H_{1}-1\right)+b\left(1-H_{2}\right)}{H_{1}-H_{2}} . \tag{7}
\end{equation*}
$$

Case 2.1: $k_{1}=k_{2}=k$.
From (5)-(7), we get

$$
\begin{align*}
T(r, f) & =T\left(r, \frac{a\left(H_{1}-1\right)+b\left(1-H_{2}\right)}{H_{1}-H_{2}}\right) \\
& \leqslant 2 T\left(r, H_{1}\right)+2 T\left(r, H_{2}\right)+S(r, f) \\
& \leqslant 2 r^{k+\varepsilon_{0}}+2 r^{k+\varepsilon_{0}}+S(r, f) \\
& =4 r^{k+\varepsilon_{0}}+S(r, f) . \tag{8}
\end{align*}
$$

By (4) and Lemma 1, we obtain

$$
\begin{align*}
T\left(r, H_{1}\right) & =T\left(r, \frac{L(f)-a}{f-a}\right) \\
& =m\left(r, \frac{L(f)-a}{f-a}\right)+N\left(r, \frac{L(f)-a}{f-a}\right) \\
& \leqslant m\left(r, \frac{1}{f-a}\right)+S(r, f) \\
& \leqslant T(r, f)+S(r, f) . \tag{9}
\end{align*}
$$

From (5), (8) and (9), we have

$$
r^{k-\varepsilon_{0}} \leqslant T(r, f) \leqslant 4 r^{k+\varepsilon_{0}}
$$

Obviously, $\rho(f)$ is an integer, a contradiction.
Case 2.2: $k_{1} \neq k_{2}$. Without loss of generality, we assume that $k_{1}>k_{2}$.

By Lemma 3, we obtain $T\left(r, H_{2}\right)=S\left(r, H_{1}\right)$.
From (5) and (7), we get

$$
\begin{align*}
T(r, f) & =T\left(r, \frac{a\left(H_{1}-1\right)+b\left(1-H_{2}\right)}{H_{1}-H_{2}}\right) \\
& \leqslant 2 T\left(r, H_{1}\right)+S(r, f) \\
& \leqslant 2 r^{k_{1}+\varepsilon_{0}}+S(r, f) . \tag{10}
\end{align*}
$$

Combing with (5), (9) and (10), we have

$$
r^{k_{1}-\varepsilon_{0}} \leqslant T(r, f) \leqslant 2 r^{k_{1}+\varepsilon_{0}} .
$$

Hence, $\rho(f)$ is an integer, a contradiction.
This completes the proof of Theorem 1.

PROOF OF Theorem 2

Firstly, we consider the case that f is a nonconstant rational function. Obviously, $a, m_{1}, m_{2}, \ldots m_{n}$ are constants. By

$$
\begin{aligned}
E(0, f) & \subset E(0, L(f)), \\
E(\infty, f) & \supset E(\infty, L(f)),
\end{aligned}
$$

we get

$$
\begin{equation*}
\frac{L(f)}{f}=h \tag{11}
\end{equation*}
$$

where h is an entire function.
From (11), we have

$$
\begin{aligned}
\lim _{z \rightarrow \infty} h(z) & =\lim _{z \rightarrow \infty} \frac{\sum_{i=1}^{n} m_{i}(z) f\left(z+c_{i}\right)}{f(z)} \\
& =m_{1}+m_{2}+\cdots+m_{n} .
\end{aligned}
$$

Let $A=m_{1}+m_{2}+\cdots+m_{n}$. So we have $L(f) \equiv A f$.
Next we consider two cases.
Case 1: $A=0$. So we have $L(f) \equiv 0$. Since a is a nonzero constant, f and $L(f)$ share a IM, so f can be written as $f=a+\frac{1}{P}$, where P is a polynomial with $\operatorname{deg}(P)=p_{1} \geqslant 1$. Hence, we have

$$
T(r, f)=p_{1} \log r+O(1)
$$

and

$$
\bar{N}(r, f) \geqslant \log r
$$

a contradiction.
Case 2: $A \neq 0$. We consider the following two subcases. Case 2.1: $A=1$. It follows that $f \equiv L(f)$.
Case 2.2: $A \neq 1$.
Since f and $L(f)$ share a IM, we have $f \neq a$ and $L(f) \neq a$. It follows that $f \neq \frac{a}{A}$, a contradiction.

Therefore, we deduce $f \equiv L(f)$ in this case.
Next, we consider the case that f is a transcendental meromorphic function.

Since h is an entire function and by Lemma 1, we have

$$
T(r, h)=m\left(r, \frac{\sum_{i=1}^{n} m_{i}(z) f\left(z+c_{i}\right)}{f(z)}\right)=S(r, f)
$$

From (11) and Nevanlinna's first fundamental theorem, we have

$$
\begin{aligned}
T(r, L(f)) & \leqslant T(r, h)+T(r, f) \\
& \leqslant T(r, f)+S(r, f) \\
T(r, f) & \leqslant T(r, L(f))+T\left(r, \frac{1}{h}\right) \\
& \leqslant T(r, L(f))+S(r, f)
\end{aligned}
$$

Thus, we obtain

$$
\begin{equation*}
S(r, f)=S(r, L(f)) \tag{12}
\end{equation*}
$$

If $h \equiv 1$, then by (11), we obtain the result of Theorem 2.

If $h \not \equiv 1$, then by f and $L(f)$ share a IM, we get

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{f-a}\right) & =\bar{N}\left(r, \frac{1}{L(f)-a}\right) \leqslant N\left(r, \frac{1}{h-1}\right) \\
& \leqslant T(r, h)+S(r, f)=S(r, f) \tag{13}
\end{align*}
$$

It follows that

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{f-\frac{a}{h}}\right)=\bar{N}\left(r, \frac{1}{L(f)-a}\right)=S(r, f) \tag{14}
\end{equation*}
$$

From (13), (14) and Nevanlinna's second fundamental theorem, we get

$$
\begin{align*}
T(r, f) & \leqslant \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}\left(r, \frac{1}{f-\frac{a}{h}}\right)+S(r, f) \\
& \leqslant S(r, f) \tag{15}
\end{align*}
$$

a contradiction.
Therefore, we have $f \equiv L(f)$. This completes the proof of Theorem 2.

PROOF OF Corollary 1

Under the assumptions of Corollary 1, f is transcendental. Since

$$
E\left(0, f^{m}\right) \subset E(0, H(f)), \quad E\left(\infty, f^{m}\right) \supset E(\infty, H(f))
$$

we get

$$
\begin{equation*}
\frac{H(f)}{f^{m}}=q \tag{16}
\end{equation*}
$$

where q is an entire function. By Lemma 1 , we have

$$
T(r, q)=m(r, q)+N(r, q)=m\left(r, \frac{H(f)}{f^{m}}\right)=S(r, f)
$$

From (16) and Nevanlinna's first fundamental theorem, we get

$$
\begin{aligned}
& T(r, H(f)) \leqslant T(r, q)+T\left(r, f^{m}\right) \leqslant T\left(r, f^{m}\right)+S(r, f), \\
& T\left(r, f^{m}\right) \leqslant T(r, H(f))+T\left(r, \frac{1}{q}\right) \leqslant T(r, H(f))+S(r, f) .
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
S\left(r, f^{m}\right)=S(r, H(f)) . \tag{17}
\end{equation*}
$$

If $q \equiv 1$, then by (16), we obtain the result of Corollary 1 . If $q \not \equiv 1$, then by f^{m} and $H(f)$ share $a \mathrm{IM}$, we get

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{f^{m}-a}\right) & =\bar{N}\left(r, \frac{1}{H(f)-a}\right) \leqslant N\left(r, \frac{1}{q-1}\right) \\
& \leqslant T(r, q)+S(r, f)=S(r, f)
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\Theta\left(a, f^{m}\right)=1, \quad \Theta(a, H(f))=1 \tag{18}
\end{equation*}
$$

So we have

$$
\begin{equation*}
\Theta\left(\frac{a}{q}, f^{m}\right)=1 \tag{19}
\end{equation*}
$$

Since $m \geqslant 2$, we get

$$
\begin{align*}
\Theta\left(\infty, f^{m}\right) & =1-\varlimsup_{r \rightarrow \infty} \frac{\bar{N}\left(r, f^{m}\right)}{T\left(r, f^{m}\right)} \\
& =1-\varlimsup_{r \rightarrow \infty} \frac{\bar{N}(r, f)}{m T(r, f)} \\
& \geqslant 1-\varlimsup_{r \rightarrow \infty} \frac{T(r, f)}{m T(r, f)} \\
& =1-\frac{1}{m}>0 . \tag{20}
\end{align*}
$$

Combing with (18)-(20) and Lemma 2, we have

$$
\Theta\left(a, f^{m}\right)+\Theta\left(\frac{a}{q}, f^{m}\right)+\Theta\left(\infty, f^{m}\right)=3-\frac{1}{m}>2
$$

a contradiction.
Therefore, we have $f^{m} \equiv H(f)$. This completes the proof of Corollary 1.

PROOF OF Theorem 3

Set $G=\frac{L(f)}{f}$. If $G \equiv 1$, then $f \equiv L(f)$. In the following, we assume $G \not \equiv 1$.

From $\delta(\infty, f)=1$, we have $\delta(\infty, L(f))=1$. Next we consider two cases.
Case 1: One of a_{1}, a_{2}, and a_{3} is infinity. Without loss of generality, we assume that $a_{3} \equiv \infty$.

By $\bar{E}\left(a_{j}, f\right) \subseteq \bar{E}\left(a_{j}, L(f)\right.$) (for $j=1,2,3$) and Lemma 4, for any $0<\varepsilon<1$, we have

$$
\begin{aligned}
& 2 T(r, f) \\
& \leqslant \sum_{j=1}^{2} \bar{N}\left(r, \frac{1}{f-a_{j}}\right)+\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)+\varepsilon T(r, f)+S(r, f) \\
& \leqslant \bar{N}\left(r, \frac{1}{f-L(f)}\right)+\bar{N}\left(r, \frac{1}{f}\right)+\varepsilon T(r, f)+S(r, f) \\
& \leqslant T(r, f-L(f))+\bar{N}\left(r, \frac{1}{f}\right)+\varepsilon T(r, f)+S(r, f) \\
& =m(r, f-L(f))+\bar{N}\left(r, \frac{1}{f}\right)+\varepsilon T(r, f)+S(r, f) \\
& \leqslant m(r, f)+\bar{N}\left(r, \frac{1}{f}\right)+\varepsilon T(r, f)+S(r, f) \\
& \leqslant T(r, f)+\bar{N}\left(r, \frac{1}{f}\right)+\varepsilon T(r, f)+S(r, f)
\end{aligned}
$$

So we obtain

$$
(1-\varepsilon) T(r, f) \leqslant \bar{N}\left(r, \frac{1}{f}\right)+S(r, f)
$$

Hence, we have $\delta(0, f)=0$, a contradiction.
Case 2: $a_{j} \not \equiv \infty,(j=1,2,3)$.

By $\bar{E}\left(a_{j}, f\right) \subseteq \bar{E}\left(a_{j}, L(f)\right) \quad$ (for $\quad j=1,2,3$), $\delta(\infty, f)=1$ and Lemma 4, we get

$$
\begin{aligned}
2 T(r, f) & \leqslant \sum_{j=1}^{3} \bar{N}\left(r, \frac{1}{f-a_{j}}\right)+\bar{N}\left(r, \frac{1}{f}\right)+\varepsilon T(r, f)+S(r, f) \\
& \leqslant N\left(r, \frac{1}{f-L(f)}\right)+N\left(r, \frac{1}{f}\right)+\varepsilon T(r, f)+S(r, f) \\
& \leqslant T(r, f-L(f))+N\left(r, \frac{1}{f}\right)+\varepsilon T(r, f)+S(r, f) \\
& =m(r, f-L(f))+N\left(r, \frac{1}{f}\right)+\varepsilon T(r, f)+S(r, f) \\
& \leqslant m(r, f)+N\left(r, \frac{1}{f}\right)+\varepsilon T(r, f)+S(r, f) \\
& \leqslant T(r, f)+N\left(r, \frac{1}{f}\right)+\varepsilon T(r, f)+S(r, f) .
\end{aligned}
$$

So we have

$$
(1-\varepsilon) T(r, f) \leqslant N\left(r, \frac{1}{f}\right)+S(r, f)
$$

Hence, we have $\delta(0, f)=0$, a contradiction.
Therefore, we have $f \equiv L(f)$. This completes the proof of Theorem 3.

PROOF OF Theorem 4

Set

$$
\begin{equation*}
\frac{W(f)-a}{f-a}=\varphi \tag{21}
\end{equation*}
$$

where φ is a meromorphic function. Since f and $W(f)$ share $a, \infty \mathrm{CM}$, we have

$$
N(r, \varphi)=S(r, f), \quad N\left(r, \frac{1}{\varphi}\right)=S(r, f) .
$$

It follows from (21) that

$$
\begin{equation*}
\frac{1}{a-W(\alpha)-(a-\alpha) \varphi}\left(\frac{W(f-\alpha)}{f-\alpha}-\varphi\right)=\frac{1}{f-\alpha} \tag{22}
\end{equation*}
$$

By Lemma 1, Lemma 5 and Nevanlinna's first fundamental theorem, we have

$$
\begin{aligned}
T(r, \varphi)= & m(r, \varphi)+N(r, \varphi) \\
= & m\left(r, \frac{W(f)-a}{f-a}\right)+S(r, f) \\
\leqslant & m\left(r, \frac{\sum_{j \in J} A_{j}(z) f^{\left(k_{j}\right)}\left(z+a_{j}\right)-a}{f-a}\right)+S(r, f) \\
\leqslant & m\left(r, \frac{\sum_{j \in J} A_{j}(z)\left[f^{\left(k_{j}\right)}\left(z+a_{j}\right)-a^{\left(k_{j}\right)}\left(z+a_{j}\right)\right]}{f-a}\right) \\
& +m\left(r, \frac{\sum_{j \in J} A_{j}(z) a^{\left(k_{j}\right)}\left(z+a_{j}\right)-a}{f-a}\right)+S(r, f) \\
\leqslant & \sum_{j \in J} m\left(r, A_{j}(z)\right)+m\left(r, \frac{1}{f-a}\right)+S(r, f) \\
& +\sum_{j \in J} m\left(r, \frac{f^{\left(k_{j}\right)}\left(z+a_{j}\right)-a^{\left(k_{j}\right)}\left(z+a_{j}\right)}{f-a}\right) \\
\leqslant & m\left(r, \frac{1}{f-a}\right)+S(r, f) \\
\leqslant & T(r, f)+S(r, f) .
\end{aligned}
$$

It follows

$$
\begin{equation*}
S(r, \varphi)=S(r, f) \tag{23}
\end{equation*}
$$

Since α is a Nevanlinna exceptional small function of f, we deduce that

$$
m\left(r, \frac{1}{f-\alpha}\right) \geqslant \gamma T(r, f)
$$

for sufficiently large r, where γ is some positive constant. Then, by (22), we have

$$
\begin{aligned}
T(r, f) & \leqslant \frac{1}{\gamma} m\left(r, \frac{1}{f-\alpha}\right) \\
& \leqslant \frac{1}{\gamma}\left[m\left(r, \frac{1}{a-W(\alpha)-(a-\alpha) \varphi}\right)+m(r, \varphi)\right]+S(r, f) \\
& \leqslant \frac{2}{\gamma} T(r, \varphi)+S(r, f)
\end{aligned}
$$

It follows

$$
\begin{equation*}
S(r, f)=S(r, \varphi) \tag{24}
\end{equation*}
$$

By (23), (24), $a \not \equiv W(\alpha)$ and Nevanlinna's second fundamental theorem, we have

$$
\begin{aligned}
& T(r, \varphi) \\
& \leqslant \bar{N}(r, \varphi)+\bar{N}\left(r, \frac{1}{\varphi}\right)+\bar{N}\left(r, \frac{1}{\varphi-\frac{a-W(\alpha)}{a-\alpha}}\right)+S(r, f) \\
& \leqslant \bar{N}\left(r, \frac{a-\alpha}{(a-\alpha) \varphi-a+W(\alpha)}\right)+S(r, f) \\
& \leqslant \bar{N}(r, a-\alpha)+\bar{N}\left(r, \frac{1}{(a-\alpha) \varphi-a+W(\alpha)}\right) \\
& \leqslant T(r, \varphi)+S(r, f)
\end{aligned}
$$

Thus, we have

$$
N\left(r, \frac{1}{a-W(\alpha)-(a-\alpha) \varphi}\right)=T(r, \varphi)+S(r, f)
$$

It follows

$$
\begin{equation*}
m\left(r, \frac{1}{a-W(\alpha)-(a-\alpha) \varphi}\right)=S(r, f) \tag{25}
\end{equation*}
$$

By (25), we have

$$
\begin{align*}
& m\left(r, \frac{\varphi}{a-W(\alpha)-(a-\alpha) \varphi}\right) \\
& \quad=m\left(r, \frac{1}{\alpha-a}+\frac{W(\alpha)-a}{\alpha-a} \cdot \frac{1}{a-W(\alpha)-(a-\alpha) \varphi}\right) \\
& \quad \leqslant m\left(r, \frac{1}{\alpha-a}\right)+m\left(r, \frac{W(\alpha)-a}{\alpha-a}\right) \\
& \quad+m\left(r, \frac{1}{a-W(\alpha)-(a-\alpha) \varphi}\right)+S(r, f) \\
& \quad=S(r, f) \tag{26}
\end{align*}
$$

It follows from (22), (25), (26), Lemma 1 and Lemma 5 that

$$
\begin{align*}
m(r, & \left.\frac{1}{f-\alpha}\right) \\
& =m\left(r, \frac{1}{a-W(\alpha)-(a-\alpha) \varphi}\left(\frac{W(f-\alpha)}{f-\alpha}-\varphi\right)\right) \\
& \leqslant m\left(r, \frac{1}{a-W(\alpha)-(a-\alpha) \varphi} \cdot \frac{W(f-\alpha)}{f-\alpha}\right) \\
& +m\left(r, \frac{\varphi}{a-W(\alpha)-(a-\alpha) \varphi}\right)+S(r, f) \\
\leqslant & m\left(r, \frac{1}{a-W(\alpha)-(a-\alpha) \varphi}\right)+S(r, f) \\
& =S(r, f) \tag{27}
\end{align*}
$$

which contradicts with α is a Nevanlinna exceptional small function of f. Hence, φ is a constant. That is,

$$
\frac{W(f)-a}{f-a}=\tau
$$

Obviously, $\tau=\varphi \neq 0$.
This completes the proof of Theorem 4.

PROOF OF Theorem 5

Set

$$
\begin{equation*}
F=\frac{f-\alpha}{a-\alpha}, G=\frac{W(f)-W(\alpha)}{a-W(\alpha)} . \tag{28}
\end{equation*}
$$

Obviously, we have

$$
\begin{align*}
T(r, F) & =T(r, f)+S(r, f) \tag{29}\\
T(r, G) & =T(r, W(f))+S(r, f) \tag{30}\\
N\left(r, \frac{1}{F}\right) & =N\left(r, \frac{1}{f-\alpha}\right)+S(r, f) \tag{31}\\
N\left(r, \frac{1}{G}\right) & =N\left(r, \frac{1}{W(f)-W(\alpha)}\right)+S(r, f) \tag{32}
\end{align*}
$$

Set

$$
\varlimsup_{r \rightarrow \infty} \frac{\log ^{+} N\left(r, \frac{1}{f-\alpha}\right)}{\log r}=\lambda_{1} .
$$

Since α is a Borel exceptional function of f, we get

$$
\begin{equation*}
N\left(r, \frac{1}{f-\alpha}\right) \leqslant r^{\frac{\lambda_{1}+\rho(f)}{2}} . \tag{33}
\end{equation*}
$$

Set $\varepsilon=\frac{1}{2}$. By Lemma 7, then we have

$$
\begin{equation*}
S(r, f)=O\left(r^{M_{1}}\right) \tag{34}
\end{equation*}
$$

where $M_{1}=\max \left\{\frac{\lambda_{1}+\rho(f)}{2}, \rho(f)-\frac{1}{2}\right\}$. From (31), (33) and (34), we obtain

$$
N\left(r, \frac{1}{F}\right) \leqslant r^{\frac{\lambda_{1}+\rho(f)}{2}}+O\left(r^{M_{1}}\right) \leqslant O\left(r^{M_{1}}\right) .
$$

It follows that

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty} \frac{\log ^{+} N\left(r, \frac{1}{F}\right)}{\log r} \leqslant M_{1}<\rho(f)=\rho(F) \tag{35}
\end{equation*}
$$

Thus, 0 is a Borel exceptional value of F. Similarly, we deduce that ∞ is also a Borel exceptional value of F. By Lemma 5, we have

$$
\begin{aligned}
& m\left(r, \frac{1}{f-\alpha}\right) \\
& \quad \leqslant m\left(r, \frac{W(f)-W(\alpha)}{f-\alpha}\right)+m\left(r, \frac{1}{W(f)-W(\alpha)}\right) \\
& \quad \leqslant m\left(r, \frac{1}{W(f)-W(\alpha)}\right)+S(r, f)
\end{aligned}
$$

Combing with Nevanlinna's first fundamental theorem, we get

$$
\begin{align*}
N(r, & \left.\frac{1}{W(f)-W(\alpha)}\right) \\
& \leqslant N\left(r, \frac{1}{f-\alpha}\right)+T(r, W(f))-T(r, f)+S(r, f) \\
& \leqslant N\left(r, \frac{1}{f-\alpha}\right)+N(r, W(f))-N(r, f)+S(r, f) \\
& =N\left(r, \frac{1}{f-\alpha}\right)+O(N(r, f))+S(r, f) \tag{36}
\end{align*}
$$

Set

$$
\varlimsup_{r \rightarrow \infty} \frac{\log ^{+} N(r, f)}{\log r}=\lambda_{2}
$$

Since ∞ is a Borel exceptional value of f, we get

$$
\begin{equation*}
N(r, f) \leqslant r^{\frac{\lambda_{2}+\rho(f)}{2}} . \tag{37}
\end{equation*}
$$

From (33), (34), (36) and (37), we obtain

$$
\begin{aligned}
& N\left(r, \frac{1}{W(f)-W(\alpha)}\right) \\
& \quad \leqslant r^{\frac{\lambda_{1}+\rho(f)}{2}}+O\left(r^{\frac{\lambda_{2}+\rho(f)}{2}}\right)+O\left(r^{M_{1}}\right) \leqslant O\left(r^{M_{2}}\right),
\end{aligned}
$$

where $M_{2}=\max \left\{\frac{\lambda_{1}+\rho(f)}{2}, \frac{\lambda_{2}+\rho(f)}{2}, \rho(f)-\frac{1}{2}\right\}$. It follows that

$$
\begin{align*}
& \varlimsup_{r \rightarrow \infty} \frac{\log ^{+} N\left(r, \frac{1}{W(f)-W(\alpha)}\right)}{\log r} \\
& \leqslant M_{2}<\rho(f)=\rho(W(f)) \tag{38}
\end{align*}
$$

Hence, $W(\alpha)$ is a Borel exceptional function of $W(f)$. Thus, we deduce that both 0 and ∞ are Borel exceptional values of G.

Since f and $W(f)$ share a IM, we know that F and G share 1 IM almost.

From Lemma 6 and Lemma 8, we get $F \equiv G$ or $F G \equiv 1$.

If $F \equiv G$, then we obtain the result of Theorem 5. If $F G \equiv 1$, then we have

$$
\begin{equation*}
\frac{f-\alpha}{a-\alpha} \cdot \frac{W(f)-W(\alpha)}{a-W(\alpha)} \equiv 1 . \tag{39}
\end{equation*}
$$

It follows that

$$
\frac{W(f)-W(\alpha)}{f-\alpha} \cdot \frac{1}{(a-\alpha)(a-W(\alpha))} \equiv \frac{1}{(f-\alpha)^{2}}
$$

Thus, we get

$$
m\left(r, \frac{1}{(f-\alpha)^{2}}\right)=S(r, f)
$$

Hence, we have

$$
\begin{equation*}
m\left(r, \frac{1}{f-\alpha}\right)=S(r, f) \tag{40}
\end{equation*}
$$

From (39), we have

$$
(f-\alpha)(W(f)-W(\alpha)) \equiv(a-\alpha)(a-W(\alpha))
$$

It follows that

$$
\begin{equation*}
N\left(r, \frac{1}{f-\alpha}\right)=S(r, f) \tag{41}
\end{equation*}
$$

By (40) and (41), we obtain $T(r, f)=S(r, f)$, a contradiction.

This completes the proof of Theorem 5.
Acknowledgements: This paper is supported by the NNSF of China (Grant No. 12171127) and the NSF of Zhejiang Province (Grant No. LY21A010012).

REFERENCES

1. Hayman WK (1964) Meromorphic Functions, Clarendon Press, Oxford.
2. Laine I (1993) Nevanlinna Theory and Complex Differential Equations, De Gruyter, Berlin.
3. Yang L (1993) Value Distribution Theory, SpringerVerlag, Berlin.
4. Yang CC, Yi HX (2003) Uniqueness Theory of Meromorphic Functions, Kluwer, Dordrecht.
5. Li YH, Qiao JY (2000) The uniqueness of meromorphic functions concerning small functions. Sci China Ser A 43, 581-590.
6. Chen ZX, Yi HX (2013) On sharing values of meromorphic functions and their differences. Results Math 63, 557-565.
7. Chen SJ, Xu AZ (2020) Uniqueness on entire functions and their nth order exact differences with two shared values. Open Math 18, 211-215.
8. Banerjee A, Maity S (2021) Meromorphic function partially shares small functions or values with its linear cshift operator. Bull Korean Math Soc 58, 1175-1192.
9. Narasimha RB, Shilpa NA (2022) A result on Bruck conjecture related to shift polynomials. Adv Pure Appl Math 13, 53-61.
10. Fang ML (1993) On the regular growth of meromorphic function. J Nanjing Normal Univ Nat Sci 16, 16-22.
11. Yamanoi K (2004) The second main theorem for small functions and related problems. Acta Math 192, 225-294.
12. Chiang YM, Feng SJ (2008) On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane. Ramanujan J 16, 105-129.
13. Fang ML (1995) Unicity theorem for meromorphic function and its differential polynomial. Adv Math 24, 244-249.
