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ABSTRACT: A 2× 2 block matrix
�

A X
Y ∗ B

�

is accretive partial transpose (APT) if both
�

A X
Y ∗ B

�

and
�

A Y ∗

X B

�

are

accretive. This article presents some singular value inequalities related to this class of matrices. Our results complement
the presented inequality in [Oper Matrices 9 (2015):917–924].

KEYWORDS: accretive partial transpose matrices, positive semidefinite matrices, singular value inequalities

MSC2020: 47A63 15A45

INTRODUCTION

The space of m × n complex matrices is denoted by
Mm×n. If m = n, we write Mn instead of Mn×n. If the
matrix A∈Mn is positive semidefinite (resp., definite),
then we write A ⩾ 0 (resp., A > 0). We denote by
Mm(Mn) the set of block matrices of order m with
each block in Mn. We say that the matrix A ∈ Mn is
accretive if its real part Re A := A+A∗

2 is positive definite,
where A∗ means the conjugate transpose of A. Clearly,
the accretive matrices is a larger class of matrices
than positive definite matrices. Accretive matrices
have been the subject of a number of recent papers
[1, 2]. For any complex matrix A ⩾ 0, there exists
a unique matrix B ⩾ 0 such that B2 = A [3] and we
denote A1/2 = B. If all eigenvalues of A are real, then
they are arranged nonincreasingly λ1(A)⩾ · · ·⩾λn(A);
the singular values of A ∈ Mn, denoted by s j(X ), are
similarly arranged. Note that the singular values of
A are the eigenvalues of |A|, where |A| = (A∗A)

1
2 , i.e.,

s j(A) = λ j(|A|), j = 1, . . . , n. The geometric mean of
two positive definite matrices A, C ∈Mn is defined by

A♯C := A
1
2

�

A−
1
2 CA−

1
2

�
1
2 A

1
2 . (1)

It is known that the notion of geometric mean could
be extended to cover all positive semidefinite matrices;
see [4]. Recently, Drury [5] defined the geometric
mean of two accretive matrices via the following for-
mula

A♯C =
�

2
π

∫ ∞

0

(tA+ t−1C)−1 dt
t

�−1

,

and proved the relationship (1) holds for two accretive
matrices A, C ∈ Mn. The readers can consult [5] for
more properties.

For the 2×2 block matrix

M =
�

A B
B∗ C

�

∈M2(Mn)

with each block in Mn, its partial transpose is defined
by

Mτ :=
�

A B∗

B C

�

.

A matrix M is called partial positive transpose (PPT)
if M and Mτ are positive semidefinite; see [6, 7]. We
extend the notion to accretive matrices. If

M =
�

A X
Y ∗ C

�

∈M2(Mn)

and

Mτ :=
�

A Y ∗

X C

�

are both accretive, then we say that M is accretive
partial transpose (i.e., APT); see [1]. Clearly, the class
of APT matrices includes the class of PPT matrices.

Lin [6] obtained a singular value inequality in-
volving the off-diagonal block of a PPT matrix and the
geometric mean of its diagonal blocks.

Theorem 1 ([6]) Let
�

A B
B∗ C

�

∈ M2(Mn) be PPT.

Then

k
∏

j=1

s j(B)⩽
k
∏

j=1

s j(A♯C), k = 1, . . . , n. (2)

Fu et al [8] present an alternative proof of the above
singular value inequality.

Under the same condition as in Theorem 1, a
stronger level inequality

s j(B)⩽ s j(A♯C), k = 1, . . . , n,
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is not true. Even the weaker singular value inequality

s j(B)⩽ s j

�

A+ C
2

�

, k = 1, . . . , n,

also fails; see a counter-example in [6].
In this paper, we will present a singular value

inequality relation between the off-diagonal block of
an APT matrix and the geometric mean of its diagonal
blocks which includes the case of PPT matrices. This
complements the result in Theorem 1.

SINGULAR VALUE INEQUALITIES

Now we present our main results.

Theorem 2 Let
�

A X
Y ∗ C

�

∈M2(Mn) be APT. Then

s j

�

X + Y
2

�

⩽ s[ j+1
2 ] (Re A ♯ Re C) , j = 1, . . . , n,

where [a] is the greatest integer less than or equal to a.

Proof : Since
�

A X
Y ∗ C

�

and
�

A Y ∗

X C

�

are accretive,

Re
�

A X
Y ∗ C

�

=

�

Re A X+Y
2

X ∗+Y ∗

2 Re C

�

and

Re
�

A Y ∗

X C

�

=

�

Re A X ∗+Y ∗

2
X+Y

2 Re C

�

are positive definite. This means that
�

Re A X+Y
2

X ∗+Y ∗

2 Re C

�

is PPT.
With the help of unitary similarity transforma-

tions, we have

�

0 −In
In 0

�

�

Re A X+Y
2

X ∗+Y ∗

2 Re C

�

�

0 In
−In 0

�

=

�

Re C − X ∗+Y ∗

2
− X+Y

2 Re A

�

⩾ 0,

and

�

−In 0
0 In

�

�

Re A X ∗+Y ∗

2
X+Y

2 Re C

�

�

−In 0
0 In

�

=

�

Re A − X ∗+Y ∗

2
− X+Y

2 Re C

�

⩾ 0.

By [9],
�

Re A ♯ Re C − X ∗+Y ∗

2
− X+Y

2 Re A ♯ Re C

�

⩾ 0,

which is equivalent to

�

Re A ♯ Re C 0
0 Re A ♯ Re C

�

⩾
�

0 X ∗+Y ∗

2
X+Y

2 0

�

.

Suppose that the singular values of X+Y
2 are ar-

ranged nonincreasingly s1

�

X+Y
2

�

⩾ s2

�

X+Y
2

�

⩾ · · · ⩾
sn

�

X+Y
2

�

. Thus, by [10], the eigenvalues of

�

0 X ∗+Y ∗

2
X+Y

2 0

�

are

s1

�

X+Y
2

�

⩾ · · ·⩾ sn

�

X+Y
2

�

⩾ −sn

�

X+Y
2

�

⩾ · · ·⩾ −s1

�

X+Y
2

�

.

Using Weyl’s monotonicity principle [10], we have

s[ j+1
2 ]
(Re A ♯ Re C)⩾ s j

�

X+Y
2

�

, j = 1, . . . , n.

2

By Theorem 2, the following result becomes im-
mediate.

Remark 1 Inspired by the proof methods of [11, The-
orem 3.2] and [12, Theorem 2.3], we give the above
proof of our proposed results.

Corollary 1 Let
�

A X
X ∗ C

�

∈M2(Mn) be PPT. Then

s j (X )⩽ s[ j+1
2 ] (A♯C) , j = 1, . . . , n,

where [a] is the greatest integer less than or equal to a.

Remark 2 Obviously, our result complements Lin’s in-
equality (2).
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