

On existence of meromorphic solutions for certain *q*-difference equation

Changwen Peng^a, Zongxuan Chen^b, Huawei Huang^{c,*}, Lei Tao^c

^a School of Mathematics and Information Science, Guiyang University, Guiyang 550005 China

^b School of Mathematical Sciences, South China Normal University, Guangzhou 510631 China

^c School of Mathematical Sciences, Guizhou Normal University, Guiyang 550001 China

*Corresponding author, e-mail: hwhuang7809@163.com

Received 10 Jan 2022, Accepted 7 Jun 2022 Available online 1 Sep 2022

ABSTRACT: We consider the existence of transcendental meromorphic solutions of q-difference equation

$$\sum_{j=1}^n c_j(z)f(q^jz) = \frac{P(z,f(z))}{Q(z,f(z))},$$

where P(z, f(z)) and Q(z, f(z)) are polynomials in f having rational coefficients and no common roots, $c_j(z)$ are rational functions, $q \in \mathbb{C}$ and $0 < |q| \le 1$. We obtain that such equation has no transcendental meromorphic solutions for the case $m = \deg_f P - \deg_f Q \ge 2$.

KEYWORDS: q-difference equation, difference equation, existence of transcendental meromorphic solution

MSC2020: 30D35 39B32

INTRODUCTION AND RESULTS

A function f(z) is called meromorphic if it is analytic in the complex plane \mathbb{C} except at isolated poles. In what follows, we use standard notations in the Nevanlinna's value distribution theory, see [1,2]. Let f(z) be a meromorphic function. We also use notations $\sigma(f)$, $\mu(f)$ for the order and the lower order, respectively.

Recently, there are some papers focusing on the existence and the growth of meromorphic solutions of q-difference equations, see [3–6].

Zhang and Korhonen [7] studied the existence of zero-order transcendental meromorphic solutions of the certain q-difference equation, and showed the following theorem.

Theorem 1 ([7]) Let $q_1, \ldots, q_n \in \mathbb{C} \setminus \{0\}$, and let $a_0(z), \ldots, a_p(z), b_0(z), \ldots, b_d(z)$ be rational functions. If the q-difference equation

$$\sum_{j=1}^{n} f(q_j z) = \frac{P(z, f(z))}{Q(z, f(z))}$$
$$= \frac{a_0(z) + a_1(z)f(z) + \dots + a_p(z)f(z)^p}{b_0(z) + b_1(z)f(z) + \dots + b_d(z)f(z)^d}, \quad (1)$$

where P(z, f(z)) and Q(z, f(z)) do not have any common factors in f(z), admits a transcendental meromorphic solution of zero order, then max{p,d} $\leq n$.

Zheng and Chen [8] considered the growth problem for transcendental meromorphic solutions of complex *q*-difference equation, and obtained the following result. **Theorem 2 ([8])** Suppose that *f* is a transcendental meromorphic solution of equation

$$\sum_{j=1}^{n} c_j(z) f(q^j z) = R(z, f(z)) = \frac{P(z, f(z))}{Q(z, f(z))},$$
 (2)

where $q \in \mathbb{C}$, |q| > 1, the coefficients $c_j(z)$ are rational functions and P,Q are relatively prime polynomials in f over the field of rational functions satisfying $p = \deg_f P$, $d = \deg_f Q$, $m = p - d \ge 2$. If f has infinitely many poles, then for sufficiently large r, $n(r, f) \ge Km^{\log r/n \log |q|}$ holds for some constant K > 0. Thus, the lower order of f, which has infinitely many poles, satisfies $\mu(f) \ge \frac{\log m}{\log |q|}$.

In Theorem 2, condition |q| > 1 is necessary. It is natural to ask if $0 < |q| \le 1$, what do we get? In the following, we will answer the above question, and obtain Theorem 3 as show below.

Theorem 3 Let $c_j(z)$, j = 1, ..., n, $a_i(z)$, i = 0, 1, ..., pand $b_k(z)$, k = 0, 1, ..., d be rational functions with $a_p(z)b_d(z) \neq 0$. Consider q-difference equation

$$\sum_{j=1}^{n} c_j(z) f(q^j z) = \frac{P(z, f(z))}{Q(z, f(z))}$$
$$= \frac{a_0(z) + a_1(z) f(z) + \dots + a_p(z) f(z)^p}{b_0(z) + b_1(z) f(z) + \dots + b_d(z) f(z)^d}, \quad (3)$$

where P(z, f(z)) and Q(z, f(z)) do not have any common factors in f(z), $q \in \mathbb{C}$ and $m = p - d \ge 2$. If $0 < |q| \le 1$, then equation (3) has no transcendental meromorphic solution.

From Theorem 1 and Theorem 3, we can get the following Corollary 1.

Corollary 1 Suppose that the q-difference equation (1) satisfies the hypothesis of Theorem 1. If $p - d \ge 2$ and $0 < |q_j| \le 1$ (j = 1, ..., n), then equation (1) does not possess transcendental meromorphic solution with finitely many poles.

Remark 1 ([9]) We shall also use the observation that

$$M(r, f(qz)) = M(|q|r, f),$$

$$N(r, f(qz)) = N(|q|r, f) + O(1),$$

and
$$T(r, f(qz)) = T(|q|r, f) + O(1)$$

hold for any meromorphic function f and any non-zero constant q.

PROOF OF Theorem 3

Without loss of generality, suppose that the coefficients $c_j(z)$, $a_i(z)$ (i = 0, 1, ..., p) and $b_k(z)$ (k = 0, 1, ..., d) in (3) are polynomials.

On the contrary, suppose that equation (3) has a transcendental meromorphic solution f. Our conclusion holds for the cases.

Case 1: Suppose that f, the solution of (3), is transcendental entire.

Denote $p_j = \deg c_j$, $l_k = \deg b_k$, $t = \deg a_p$. Note that M(r, f(qz)) = M(|q|r, f) for z satisfying |z| = r. Set $h = 1 + \max\{p_1, \dots, p_n\}$ and $v = 1 + \max\{l_0, l_1, \dots, l_d\}$. It follows that

$$M\left(r, \frac{P(z, f(z))}{Q(z, f(z))}\right) = M\left(r, \sum_{j=1}^{n} c_j(z)f(q^j z)\right)$$
$$\leq nr^h M(r, f(z)), \tag{4}$$

when *r* is large enough and $0 < |q| \le 1$. Furthermore

$$\begin{split} \left| \sum_{i=0}^{p} a_{i}(z) f(z)^{i} \right| \\ & \ge |a_{p}(z) f(z)^{p}| - (|a_{p-1}(z) f(z)^{p-1}| + \dots + |a_{0}(z)|) \\ & \ge \frac{1}{2} |a_{p}(z) f(z)^{p}| = \frac{1}{2} r^{t} |f(z)|^{p} (1 + o(1)), \end{split}$$

when r is sufficiently large. And

$$\begin{split} \left| \sum_{k=0}^{d} b_{k}(z) f(z)^{k} \right| &\leq \sum_{k=0}^{d} |b_{k}(z) f(z)^{k}| \\ &\leq \sum_{k=0}^{d} r^{\nu} |f(z)|^{d} = (d+1) r^{\nu} |f(z)|^{d}, \end{split}$$

when r is large enough. Hence

—*n*

$$\begin{aligned} \frac{P(z,f(z))}{Q(z,f(z))} &= \left| \frac{\sum_{i=0}^{p} a_{i}(z)f(z)^{i}}{\sum_{k=0}^{d} b_{k}(z)f(z)^{k}} \right| \\ &\geqslant \frac{|a_{p}(z)f(z)^{p}| - (|a_{p-1}(z)f(z)^{p-1}| + \dots + |a_{0}(z)|)}{|b_{d}(z)f(z)^{d}| + \dots + |b_{1}(z)f(z)| + |b_{0}(z)|} \\ &\geqslant \frac{\frac{1}{2}r^{t}|f(z)|^{p}(1+o(1))}{(d+1)r^{\nu}|f(z)|^{d}} \\ &= \frac{1}{2(d+1)}r^{(t-\nu)}|f(z)|^{(p-d)}(1+o(1)), \end{aligned}$$

when r is sufficiently large. Thus

$$M\left(r, \frac{P(z, f(z))}{Q(z, f(z))}\right) \ge \frac{r^{(t-\nu)}M(r, f(z))^m}{2(d+1)}, \quad (5)$$

when r is sufficiently large. We have by (4) and (5) that

 $\log M(r, f(z)) \ge m \log M(r, f(z)) + g(r), \quad (6)$

where $|g(r)| < K \log r$ for some K > 0, when r is large enough, and (6) is a contradiction since $m \ge 2$.

Case 2: Suppose that f, the solution of (3), is transcendental meromorphic with finitely many poles. Then there exists a polynomial H(z) such that F(z) = H(z)f(z) is transcendental entire. Substituting f(z) = F(z)/H(z) into (3) and multiplying away the denominators, we will obtain an equation similar to (3). Applying the same reasoning above to F(z), we obtain that for sufficiently large r

$$\log M(r, f) = \log M(r, F) + O(1) \ge m \log M(r, F) + g(r)$$

It is a contradiction since $m \ge 2$.

Case 3: Suppose that *f*, the solution of (3), is meromorphic with infinitely many poles. Since $a_i(z)$ (i = 0, 1, ..., p), $b_k(z)$ (k = 0, 1, ..., d) and $c_j(z)$ are polynomials, there are two constants R > 0 and M > 0 such that all nonzero zeros of $a_i(z)$ (i = 0, 1, ..., p), $b_k(z)$ (k = 0, 1, ..., d) and $c_j(z)$ are in $D_1 = \{z : M \le |z| \le R\}$.

Since f(z) has infinitely many poles, there exists a pole $z_0 (\in D)$ of f(z) having multiplicity $\tau \ge 1$. Then the right-hand side of (3) has a pole of multiplicity $m\tau$ at z_0 . Thus, there exists at least one index $j_1 \in \{1, 2, ..., n\}$ such that $q^{j_1}z_0$ is a pole of f(z) of multiplicity $\tau_1 = m\tau$.

We need to discuss the following two subcases. **Subcase 1**: |q| = 1. Replacing *z* by $q^{j_1}z_0$ in (3), we have

$$\sum_{j=1}^{n} c_{j}(q^{j_{1}}z_{0})f(q^{j+j_{1}}z_{0})$$

$$= \frac{a_{0}(q^{j_{1}}z_{0}) + \dots + a_{p}(q^{j_{1}}z_{0})f^{p}(q^{j_{1}}z_{0})}{b_{0}(q^{j_{1}}z_{0}) + \dots + b_{d}(q^{j_{1}}z_{0})f^{d}(q^{j_{1}}z_{0})}.$$
 (7)

Since $|q^{j_1}z_0| = |z_0|$, the coefficients of (3) cannot have a zero at $q^{j_1}z_0$, thus the right side of (7) has a pole of multiplicity $m\tau_1$ at $q^{j_1}z_0$. Hence, there exists at least one index $j_2 \in \{1, 2, ..., n\}$ such that $q^{j_1+j_2}z_0$ is a pole of f(z) of multiplicity $\tau_2 = m\tau_1 = m^2\tau$.

We proceed to follow the step above. Since the coefficients of (3) have no zeros in *D* and *f* has infinitely many poles again, we may construct poles $\xi_l = q^{j_1 + \dots + j_l} z_0$ $(j_1, \dots, j_l \in \{1, 2, \dots, n\})$ of f(z) of multiplicity τ_l for all $l \in \mathbb{N}$, satisfying $\tau_l = m^l \tau \to \infty$ as $l \to \infty$, and $|\xi_l| = |z_0|$ since |q| = 1. Thus, f(z) is not a meromorphic function. It is a contradiction.

Subcase 2: 0 < |q| < 1. Set deg $a_p = A (\ge 0)$. Since $z_0 \in D$, we know that $q^{j_1}z_0$ has two possibilities:

(*a*): If $q^{j_1}z_0 \in D_1$, this process will be terminated and we have to choose another pole z_0 of f(z) in the way we did above.

(b): If $q^{j_1}z_0 \notin D_1$, then $q^{j_1}z_0$ is a pole of f(z) of multiplicity $\tau_1 = m\tau$, since the right-hand side of (3) has a pole of multiplicity $m\tau$ at z_0 .

If $q^{j_1}z_0 \notin D \cup D_1$, that is $0 < |q^{j_1}z_0| < M$, then we choose pole z_0 of f(z) and substitute $q^{j_1}z_0$ for z in (3).

If $q^{j_1}z_0 \in D$, that is $|q^{j_1}z_0| > R$, then we substitute $q^{j_1}z_0$ for z in (3) to obtain (7). Similarly as above, there exists at least one index $j_2 \in \{1, 2, ..., n\}$ such that $q^{j_1+j_2}z_0$ is a pole of f(z) of multiplicity $\tau_2 = m\tau_1 = m^2\tau$.

We proceed to follow the steps (*a*) and (*b*) as above. Since there are infinitely many poles of f(z)in *D*, we will find a pole $z_0 (\in D)$ of f(z) such that $q^{j_1+\dots+j_{n_1}}z_0 (\in D)$ is a pole of f(z) of multiplicity $\tau_{n_1} = m^{n_1}\tau$. And z_0 satisfies $q^{j_1+\dots+j_{n_1}+j_{n_1+1}}z_0 \in D_1$. By (3) and $m = p - d \ge 2$, we conclude that $q^{j_1+\dots+j_{n_1}+j_{n_1+1}}z_0$ is a pole of f(z) of multiplicity $\tau_{(n_1+1)} = m\tau_{n_1} = m^{n_1+1}\tau$.

Substitute $\hat{z} := q^{j_1 + \dots + j_{n_1+1}} z_0$ for z in (3) to obtain

$$\sum_{j=1}^{n} c_j(\hat{z}) f(q^j \hat{z}) = \frac{a_0(\hat{z}) + \dots + a_p(\hat{z}) f^p(\hat{z})}{b_0(\hat{z}) + \dots + b_d(\hat{z}) f^d(\hat{z})}.$$
 (8)

We see that the right-hand side of (8) has a pole of multiplicity at least $p\tau_{(n_1+1)} - A - d\tau_{(n_1+1)} = m\tau_{(n_1+1)} - A$ at $q^{j_1+\dots+j_{n_1+1}}z_0$. Without loss of generality, suppose that the right-hand side of (8) has a pole of multiplicity $m\tau_{(n_1+1)} - A$ at $q^{j_1+\dots+j_{n_1+1}}z_0$.

By $m \ge 2$, when $n_1 > \max\left\{\frac{\log A - \log(m^2 - 1)\tau}{\log m}, 1\right\}$, we have $m\tau_{(n_1+1)} - A = m^{n_1+2}\tau - A > m^{n_1}\tau$. Thus $m\tau_{(n_1+1)} - A > \tau_{n_1}$.

We proceed to follow the step as above. We will find that $q^{j_1+\dots+j_{n_1}+\dots+j_{n_1+n_2}}z_0$ is a pole of f(z) of multiplicity $\tau_{(n_1+n_2)} = m^{n_1+n_2}\tau - A(m^{n_2-2}+\dots+m+1)$ such that $0 < |q^{j_1+\dots+j_{n_1+n_2}}z_0| < M$, that is $q^{j_1+\dots+j_{n_1+n_2}}z_0 \notin D \cup D_1$.

Set $s := \tau_{(n_1+n_2)} = m^{n_1+n_2} \tau - A(m^{n_2-2} + \dots + m + 1)$. Then

$$s = m^{n_1 + n_2} \tau - A \frac{m^{n_2 - 1} - 1}{m - 1}$$

That is

$$s = \frac{m^{n_2-1}}{m-1} \left[(m-1)m^{n_1+1}\tau - A \right] + \frac{A}{m-1}.$$

When $n_2 \ge 2$ and $n_1 > \max\left\{\frac{\log(A+1) - \log(m-1)\tau}{\log m} - 1, 1\right\}$, we have $(m-1)m^{n_1+1}\tau > A+1$, that is $(m-1)m^{n_1+1}\tau - A > 1$. Hence $s \ge 1$.

Set $z_1 = q^{j_1 + \dots + j_{n_1+n_2}} z_0 (0 < |q^{j_1 + \dots + j_{n_1+n_2}} z_0| < M)$. Then z_1 is a pole of f(z) of multiplicity $s \ge 1$. Specially, when $n_1 = 1$ and $n_2 = 0$, then $z_1 = q^{j_1} z_0$ is a pole of f(z) of multiplicity $s = \tau_1 = m\tau$.

Using the same reasoning as Subcase 1, we conclude that $\zeta_v = q^{j_1 + \dots + j_v} z_1 (\notin D \cup D_1)$ is a pole of f(z) of multiplicity $k_v = m^v s$. Thus, there is a sequence $\{\zeta_v, v = 1, 2, \dots\}$ which are the poles of f(z). Since 0 < |q| < 1, we have $\zeta_v \to 0$ as $v \to \infty$. Thus, f(z) is not a meromorphic function. It is a contradiction.

Thus, Theorem 3 is proved.

VALUE DISTRIBUTION OF MEROMORPHIC SOLUTION OF DIFFERENCE EQUATION

Recently, there are also papers focusing on complex difference equations, see [10–13]. Ablowitz et al [14] looked at a difference equation of the type

$$f(z+1)+f(z-1) = R(z,f),$$

where R is rational in both of its arguments, and showed the following theorem.

Theorem 4 ([14]) If the second-order difference equation

$$f(z+1) + f(z-1) = \frac{a_0(z) + a_1(z)f(z) + \dots + a_p(z)f(z)^p}{b_0(z) + b_1(z)f(z) + \dots + b_d(z)f(z)^d}, \quad (9)$$

where a_i and b_i are polynomials, admits a nonrational meromorphic solution of finite order, then $\max\{p, d\} \leq 2$.

In Theorem 4, we see that if equation (9) admits a transcendental meromorphic solution of finite order , then $\max\{p, d\} \leq 2$. A natural question is: what is the result when $p - d \geq 2$ in (9)? Corresponding to this question, we get Theorem 5.

Theorem 5 Let $a_0(z), \ldots, a_p(z), b_0(z), \ldots, b_d(z)$ be rational functions with $a_p(z)b_d(z) \neq 0$. Suppose that f is a transcendental meromorphic solution of equation

$$f(z+1) + f(z-1) = \frac{P(z, f(z))}{Q(z, f(z))}$$
$$= \frac{a_0(z) + a_1(z)f(z) + \dots + a_p(z)f(z)^p}{b_0(z) + b_1(z)f(z) + \dots + b_d(z)f(z)^d}, \quad (10)$$

where P(z, f(z)) and Q(z, f(z)) are relatively prime polynomials in f. Let $m = p - d \ge 2$.

(i) If f is entire or has finitely many poles, then there exist constants K > 0 and $r_0 > 0$ such that

$$\log M(r,f) \ge Km^3$$

holds for all $r \ge r_0$.

(ii) If *f* has infinitely many poles, then there exist constants K > 0 and $r_0 > 0$ such that

 $n(r, f) \ge Km^r$

holds for all $r \ge r_0$.

From Theorem 4 and Theorem 5, we can get the following Corollary 2.

Corollary 2 Suppose that the second-order difference equation (9) satisfies the hypothesis of Theorem 4. If equation (9) admits a non-rational meromorphic solution of finite order, then $\max\{p, d\} \le 2$ and $p - d \le 1$.

In fact, many authors studied special forms of equation (9) when $\max\{p, d\} \le 2$ and $p-d \le 1$. Especially, they mainly considered three types of equations as show below.

$$f(z+1) + f(z-1) = \frac{az+b}{f(z)} + c,$$
(11)

$$f(z+1) + f(z-1) = \frac{az+b}{f(z)} + \frac{c}{f^2(z)},$$
 (12)

$$f(z+1) + f(z-1) = \frac{(az+b)f(z) + c}{1 - f^2(z)},$$
 (13)

where *a*, *b* and *c* are constants. These equations are now known as the Painlevé equations. (11)–(13) are difference Painlevé equations *I* and *II*. Some results about transcendental meromorphic solutions of finite order to equations (11)–(13), can be found in [14–16].

From this, we see that the equation (10) is an important class of difference equations. It will play an important role for research of difference Painlevé equations *I* and *II*.

Remark 2 By Theorem 5, we obtain that meromorphic solutions of (10) are infinite order when $p-d \ge 2$. Under the conditions of $\max\{p, d\} \le 2$ and $p-d \le 1$, equation (9) may have meromorphic solution of infinite order, which can be seen by the following example.

Example 1 The difference equation

$$f(z+1) + f(z-1) = 2f(z)$$

has a solution $f(z) = \exp\{e^{2\pi i z}\}$, where $\sigma(f) = \infty$.

PROOF OF Theorem 5

Without loss of generality, suppose that $a_i(z)$ (i = 0, 1, ..., p) and $b_v(z)$ (v = 0, 1, ..., d) are polynomials.

(*i*): Suppose that *f*, the solution of (10), is transcendental entire. Denote $l_v = \deg b_v$, $t = \deg a_p$. The maximum modulus principle yields

$$M(r+1, f(z)) \ge M(r, f(z \pm 1))$$

for *z* satisfying |z| = r. Choosing $h = 1 + \max\{l_0, l_1, \dots, l_d\}$, it follows that

$$M\left(r, \frac{P(z, f(z))}{Q(z, f(z))}\right) = M\left(r, f(z+1) + f(z-1)\right)$$

$$\leq CM(r+1, f(z)), \qquad (14)$$

when r is large enough, where C is a positive constant. Using the same methods as the proof of Theorem 3, we have

$$M\left(r, \frac{P(z, f(z))}{Q(z, f(z))}\right) \ge \frac{r^{(t-h)}|f(z)|^{p-d}}{2(d+1)}$$
$$= \frac{r^{(t-h)}M(r, f(z))^m}{2(d+1)}, \qquad (15)$$

when r is sufficiently large. We have by (14) and (15) that

$$\log M(r+1, f(z)) \ge m \log M(r, f(z)) + g(r), \quad (16)$$

where $|g(r)| < K \log r$ for some K > 0 and r is large enough. Iterating (16), we have

$$\log M(r+j,f(z)) \ge m^j \log M(r,f(z)) + E_j(r), \quad (17)$$

where

$$|E_{j}(r)| = \left| m^{j-1}g(r) + m^{j-2}g(r+1) + \dots + g(r+(j-1)) \right|$$

$$\leq Km^{j-1} \sum_{k=0}^{j-1} \frac{\log(r+k)}{m^{k}} \leq Km^{j-1} \sum_{k=0}^{\infty} \frac{\log(r+k)}{m^{k}}.$$

Since $\log(r + k) \leq (\log r)(\log k)$ for sufficiently large r and k, we have

$$\sum_{k=0}^{\infty} \frac{\log(r+k)}{m^k} \leq \sum_{k=0}^{\infty} \frac{(\log r)(\log k)}{m^k} = \log r \sum_{k=0}^{\infty} \frac{\log k}{m^k}.$$

Obviously, the series $I = \sum_{k=0}^{\infty} \frac{\log k}{m^k}$ is convergent. Hence

$$|E_i(r)| \le K m^j \log r. \tag{18}$$

Since, by the hypothesis, f is transcendental entire, we get the inequality $\log M(r, f) \ge 2K' \log r$ for sufficiently large r. Thus, (17) and (18) imply

$$\log M(r+j, f(z)) \ge K' m^j \log r, \tag{19}$$

which holds for *r* sufficiently large, say $r \ge r_0$. By choosing $r \in [r_0, r_0 + 1)$ arbitrarily and letting $j \to \infty$

ScienceAsia 49 (2023)

for each choice of *r*, and set s = r + j, then $j = s - r \ge s - (r_0 + 1)$. We have by (19) that

$$\log M(s, f(z)) = \log M(r + j, f(z))$$

$$\geq K' m^{s - r_0 - 1} \log r_0 = K'' m^s$$

holds for all $s \ge s_0 = r_0 + 1$, where $K'' = K'm^{-(r_0+1)}\log r_0$. We have proved the assertion in the case of *f* being entire.

Suppose now that f, the solution of (10), is meromorphic with finitely many poles. Then there exists a polynomial H(z) such that F(z) = H(z)f(z) is entire. Substituting f(z) = F(z)/H(z) into (10) and again multiplying away the denominators, we will obtain an equation similar to (10). Applying the same reasoning above to F(z), we obtain that for sufficiently large r, $\log M(r, f) = \log M(r, F) + O(1) \ge (K'' - \varepsilon)m^r = K'''m^r$, where K'''(> 0) is some constant.

Thus, part (i) is proved.

(*ii*): Suppose that f(z) is a meromorphic function with infinitely many poles. Since $a_i(z)$ (i = 0, 1, ..., p), $b_v(z)$ (v = 0, 1, ..., d) are polynomials, there is a constant M > 0 such that all zeros of $a_i(z)$ (i = 0, 1, ..., p) and $b_v(z)$ (v = 0, 1, ..., d) are in $D = \{z : |\operatorname{Re}(z)| < M, |\operatorname{Im}(z)| < M\}$. Set

$$\begin{aligned} &D_1 = \{z : \operatorname{Re}(z) > M\}; \quad D_2 = \{z : \operatorname{Re}(z) < -M\}; \\ &D_3 = \{z : \operatorname{Im}(z) > M\}; \quad D_4 = \{z : \operatorname{Im}(z) < -M\}. \end{aligned}$$

Since f(z) has infinitely many poles, there exists at least one of D_s (s = 1, 2, 3, 4) such that f(z) has infinitely many poles in it. Suppose that z_0 is in one of D_s (s = 1, 2, 3, 4) such that D_s has infinitely many poles of f(z), and z_0 is a pole of f(z) having multiplicity $k_0 \ge 1$. Then the right-hand side of (10) has a pole of multiplicity mk_0 at z_0 . Thus, there is $l_1 \in \{1, -1\}$ such that $z_0 + l_1$ is a pole of f(z) of multiplicity $k_1 = mk_0$.

Our conclusion holds for the following cases.

Case 1: $l_1 = 1$. Then $z_0 + 1$ is a pole of f(z) of multiplicity k_1 .

Suppose that f(z) has infinitely many poles in D_1 and $z_0 \in D_1$. Then $z_0 + 1 \in D_1$ since $z_0 \in D_1$. Substitute $z_0 + 1$ for z in (10) to obtain

$$f(z_0+2)+f(z_0) = \frac{a_0(z_0+1)+\dots+a_p(z_0+1)f^p(z_0+1)}{b_0(z_0+1)+\dots+b_d(z_0+1)f^d(z_0+1)}.$$
 (20)

By (20) and $m = p - d \ge 2$, we conclude that $z_0 + 2$ is a pole of f(z) of multiplicity $k_2 = mk_1 = m^2k_0$. Obviously $z_0 + 2 \in D_1$.

Similarly, $z_0 + n \in D_1$ is a pole of f(z) of multiplicity $k_n = mk_{n-1} = m^n k_0$. Thus, there is a sequence $\{z_0 + j \in D_1, j = 1, 2, ...\}$ which are the poles of f(z). Since $m^j k_0 \to \infty$, as $j \to \infty$, and since f(z) does not have essential singularities in the finite plane, we must have

 $|z_0 + j| \rightarrow \infty$, as $j \rightarrow \infty$. It is clear that, for *j* large enough, say $j > j_0$,

$$m^{j}k_{0} \leq k_{0}(1 + m + \dots + m^{j}) \leq n(|z_{0} + j|, f)$$

$$\leq n(|z_{0}| + j, f) \leq n(t + j, f),$$

where $t \in [|z_0|, |z_0| + 1]$ can be chosen arbitrarily. Letting $j \to \infty$ for each choice of t, and set r = t + j, then $j = r - t \ge r - (|z_0| + 1)$. Thus, the above inequality implies

$$n(r, f) \ge m^{j} k_{0} \ge k_{0} m^{r-(|z_{0}|+1)} = K m^{r}$$

which holds for all $r \ge r_0 := j_0 + 1 + |z_0|$, where $K = k_0 m^{-(|z_0|+1)}$. The fact that r_0 and K both depend on $|z_0|$ is not a problem, since z_0 is fixed.

Suppose that f(z) has infinitely many poles in D_3 (or D_4). Then we may use the same method as above.

Suppose that f(z) has infinitely many poles in D_2 and $z_0 \in D_2$. Set deg $a_p = A \ge 0$. Since $z_0 \in D_2$, we know that $z_0 + 1$ has two possibilities:

(a): If $z_0 + 1 \notin D_2$, this process will be terminated and we have to choose another pole z_0 of f(z) in the way we did above.

(b): If $z_0 + 1 \in D_2$, then $z_0 + 1$ is a pole of f(z) of multiplicity $k_1 = mk_0$, since the right-hand side of (10) has a pole of multiplicity mk_0 at z_0 .

Substitute $z_0 + 1$ for z in (10) to obtain (20). And we conclude that $z_0 + 2$ is a pole of f(z) of multiplicity $k_2 = mk_1$.

We proceed to follow the steps (*a*) and (*b*) as above. Since there are infinitely many poles of f(z)in D_2 , we will find a pole $z_0 (\in D_2)$ of f(z) such that $z_0 + n_1 (\in D_2)$ is a pole of f(z) of multiplicity $k_{n_1} = mk_{(n_1-1)} = m^{n_1}k_0$. And z_0 satisfies $z_0 + n_1 + 1 \notin D_2$, that is $\operatorname{Re}(z_0 + n_1 + 1) \ge -M$. By (10) and $m = p - d \ge 2$, we conclude that $z_0 + n_1 + 1$ is a pole of f(z) of multiplicity $k_{(n_1+1)} = m^{n_1+1}k_0$.

Substitute $z_0 + n_1 + 1$ for z in (10) to obtain

$$f(z_0 + n_1 + 2) + f(z_0 + n_1)$$

= $\frac{a_0(z_0 + n_1 + 1) + \dots + a_p(z_0 + n_1 + 1)f^p(z_0 + n_1 + 1)}{b_0(z_0 + n_1 + 1) + \dots + b_d(z_0 + n_1 + 1)f^d(z_0 + n_1 + 1)}.$ (21)

We see that the right-hand side of (21) has a pole of multiplicity at least $pk_{(n_1+1)} - A - dk_{(n_1+1)} = mk_{(n_1+1)} - A$ at $z_0 + n_1 + 1$. Without loss of generality, suppose that the right-hand side of (21) has a pole of multiplicity $mk_{(n_1+1)} - A$ at $z_0 + n_1 + 1$.

In the left-hand side of (21), f(z-1) has a pole of multiplicity $k_{n_1} = m^{n_1}k_0$ at $z_0 + n_1 + 1$. By $m \ge 2$, when $n_1 > \max\left\{\frac{\log(A+1) - \log[(m^2-1)k_0]}{\log m}, 1\right\}$, we have $mk_{(n_1+1)} - A = m^{n_1+2}k_0 - A > m^{n_1}k_0 + 1$.

Hence, by (21), we conclude that $z_0 + n_1 + 2$ is a pole of f(z) of multiplicity $k_{(n_1+2)} = mk_{(n_1+1)} - A = m^{n_1+2}k_0 - A$.

We proceed to follow the step as above. We will find $z_0+n_1+n_2$ is a pole of f(z) of multiplicity $k_{(n_1+n_2)} =$

 $m^{n_1+n_2}k_0 - A[m^{n_2-2}+\cdots+m+1]$ such that $\operatorname{Re}(z_0+n_1+n_2) > M$, that is $z_0 + n_1 + n_2 \in D_1$.

Set $k := k_{(n_1+n_2)} = m^{n_1+n_2}k_0 - A[m^{n_2-2} + \dots + m+1]$. Then

$$k = \frac{m^{n_2-1}}{m-1} \left[(m-1)m^{n_1+1}k_0 - A \right] + \frac{A}{m-1}.$$

When $n_2 \ge 2$ and $n_1 > \max\left\{\frac{\log(A+1) - \log(m-1)k_0}{\log m} - 1, 1\right\}$, we have $(m-1)m^{n_1+1}k_0 > A+1$, that is $(m-1)m^{n_1+1}k_0 - A > 1$. Hence $k \ge 1$.

Set $z_1 := z_0 + n_1 + n_2 (\in D_1)$. Then z_1 is a pole of f(z) of multiplicity at least $k \ge 1$. Specially, when $n_1 = 1$ and $n_2 = 0$, then $z_1 = z_0 + 1$ is a pole of f(z) of multiplicity $k = k_1 = mk_0$.

Applying the same reasoning that f(z) has infinitely many poles in D_1 , we obtain that

$$n(r, f) \ge Km$$

holds for all $r \ge r_0$. The fact that r_0 and K both depend on $|z_1|$ is not a problem, since $z_1 \in D_1$ is fixed by $z_0 \in D_2$.

Case 2: $l_1 = -1$. Then $z_0 - 1$ is a pole of f(z) of multiplicity $k_1 = mk_0$.

Suppose that f(z) has infinitely many poles in D_2 and $z_0 \in D_2$. Then $z_0 - 1 \in D_2$ since $z_0 \in D_2$. Substitute $z_0 - 1$ for z in (10) to obtain

$$f(z_0) + f(z_0 - 2) = \frac{a_0(z_0 - 1) + \dots + a_p(z_0 - 1)f^p(z_0 - 1)}{b_0(z_0 - 1) + \dots + b_d(z_0 - 1)f^d(z_0 - 1)}.$$
 (22)

By (22) and $m = p - d \ge 2$, we conclude that $z_0 - 2$ is a pole of f(z) of multiplicity $k_2 = m^2 k_0$. Obviously $z_0 - 2 \in D_2$.

Similarly, $z_0 - n \ (\in D_2)$ is a pole of f(z) of multiplicity $k_n = m^n k_0$. Thus, there is a sequence $\{z_0 - j \in D_2, j = 1, 2, ...\}$ which are the poles of f(z) of multiplicity $k_j = m^j k_0$. Since $k_j = m^j k_0 \rightarrow \infty$, as $j \rightarrow \infty$, and since f does not have essential singularities in the finite plane, we must have $|z_0 - j| \rightarrow \infty$, as $j \rightarrow \infty$. It is clear that, for j large enough, say $j > j_0$,

$$\begin{split} m^{j}k_{0} &\leq k_{0}(1+m+\cdots+m^{j}) \\ &\leq n(|z_{0}-j|,f) \leq n(|z_{0}|+j,f) \leq n(t+j,f), \end{split}$$

where $t \in [|z_0|, |z_0| + 1]$ can be chosen arbitrarily. By the same method as Case 1, we have

$$n(r, f) \ge Km^r$$
.

Suppose that f(z) has infinitely many poles in D_3 (or D_4). Then we may use the same method as above.

Suppose that f(z) has infinitely many poles in D_1 and $z_0 \in D_1$. Set deg $a_p = A \ge 0$). Since $z_0 \in D_1$, we know that $z_0 - 1$ has two possibilities:

(a): If $z_0 - 1 \notin D_1$, this process will be terminated and we have to choose another pole z_0 of f(z) in the way we did above. (b): If $z_0 - 1 \in D_1$, then $z_0 - 1$ is a pole of f(z) of multiplicity $k_1 = mk_0$, since the right-hand side of (10) has a pole of multiplicity mk_0 at z_0 .

Substitute $z_0 - 1$ for z in (10) to obtain (22). And we conclude that $z_0 - 2$ is a pole of f(z) of multiplicity $k_2 = mk_1$.

We proceed to follow the steps (*a*) and (*b*) as above. Since there are infinitely many poles of f(z)in D_1 , we will find a pole $z_0 (\in D_1)$ of f(z) such that $z_0 - n_1 (\in D_1)$ is a pole of f(z) of multiplicity $k_{n_1} = m^{n_1}k_0$. And z_0 satisfies $z_0 - n_1 - 1 \notin D_1$, that is $\operatorname{Re}(z_0 - n_1 - 1) \leq M$. By (10) and $m = p - d \geq 2$, we conclude that $z_0 - n_1 - 1$ is a pole of f(z) of multiplicity $k_{(n_1+1)} = m^{n_1+1}k_0$.

Substitute $z_0 - n_1 - 1$ for z in (10) to obtain

$$f(z_0 - n_1) + f(z_0 - n_1 - 2) = \frac{a_0(z_0 - n_1 - 1) + \dots + a_p(z_0 - n_1 - 1) f^p(z_0 - n_1 - 1)}{b_0(z_0 - n_1 - 1) + \dots + b_d(z_0 - n_1 - 1) f^d(z_0 - n_1 - 1)}.$$
 (23)

We see that the right-hand side of (23) has a pole of multiplicity at least $pk_{(n_1+1)} - A - dk_{(n_1+1)} = mk_{(n_1+1)} - A$ at $z_0 - n_1 - 1$. Without loss of generality, suppose that the right-hand side of (23) has a pole of multiplicity $mk_{(n_1+1)} - A$ at $z_0 - n_1 - 1$.

We proceed to follow the step as above. We will find $z_0-n_1-n_2$ is a pole of f(z) of multiplicity $k_{(n_1+n_2)} = m^{n_1+n_2}k_0-A[m^{n_2-2}+\cdots+m+1]$ such that $\operatorname{Re}(z_0-n_1-n_2) < -M$, that is $z_0-n_1-n_2 \in D_2$.

Using the same reasoning as Case 1, we obtain that

$$n(r, f) \ge Km^r$$

holds for all $r \ge r_0$.

Thus, Theorem 5 is proved.

Acknowledgements: This research is supported by the National Natural Science Foundation of China (No. 11861023), and the Foundation of Science and Technology Project of Guizhou Province of China (No. QIANKEHEJICHU-ZK[2021]Ordinary313).

REFERENCES

- 1. Hayman WK (1964) *Meromorphic Functions*, Clarendon Press, Oxford.
- 2. Yang L (1982) Value Distribution Theory and Its New Research, Science Press, Beijing.
- Bergweiler W, Ishizaki K, Yanagihara N (2002) Growth of meromorphic solutions of some function equations I. *Aequat Math* 63, 140–151.
- Chen MF, Gao ZS, Zhang ZL (2022) Meromorphic solutions of some types of *q*-difference differential equation and delay differential equation. *ScienceAsia* 48, 107–114.
- Du YF, Gao ZS, Zhang JL, Zhao M (2018) Existence of zero order meromorphic solutions of certain *q*difference equations. *J Inequal Appl* **2018**, 217.
- 6. Xu HY, San YL, Zheng XM (2017) Some properties of meromorphic solutions for *q*-difference equations. *Electron J Differ Equ* **2017**, 175.

ScienceAsia 49 (2023)

- Zhang JL, Korhonen RJ (2010) On the Nevanlinna characteristic of *f* (*qz*) and its applications. *J Math Anal Appl* 369, 537–544.
- Zheng XM, Chen ZX (2010) Some properties of meromorphic solutions of *q*-difference equations. *J Math Anal Appl* 361, 472–480.
- Bergweiler W, Ishizaki K, Yanagihara N (1999) Meromorphic solutions of some functional equations. *Meth*ods Appl Anal 6, 248–258.
- 10. Chen ZX (2014) Complex Difference and Difference Equations, Science Press, Beijing.
- Chen ZX, Shon KH (2019) On existence of solutions of difference Riccati equation. Acta Math Sci 39, 139–147.
- 12. Peng CW, Chen ZX (2014) Properties of meromorphic

solutions of some certain difference equations. *Kodai Math J* **37**, 97–119.

- Qi XG, Yang LZ (2015) Properties of meromorphic solutions of difference equations. *Electron J Differ Equ* 2015, 59.
- Ablowitz M, Halburd RG, Herbst B (2000) On the extension of Painlevé property to difference equations. *Nonlinearity* 13, 889–905.
- Wei MX, Yan MT (2017) On properties of meromorphic solutions of difference Painlevé *I* and *II* equation. *Glob J Math Anal* 5, 37–42.
- 16. Wen ZT (2016) Meromorphic solutions to difference Painlevé equations *I* and *II*. Electron J Differ Equ **2016**, 262.