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ABSTRACT: It is well known that an adjointable operator between Hilbert C∗-modules admits a Moore-Penrose inverse
if and only if it has closed range. In this paper, we give certain necessary and sufficient conditions for the existence of
the reverse order law for the Moore-Penrose inverse of closed range adjointable operators in Hilbert C∗-module settings.
Some new related results are also derived, which can be used to establish connections with the reverse order law in
Hilbert C∗-modules.
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INTRODUCTION

Let S be a semigroup containing unit. The order
relation of elements a, b ∈ S is called the reverse
order law for the ordinary inverse of S if a and b
are invertible such that (ab)−1 = b−1a−1. The reverse
order law is a nice property which makes it very useful
in many fields of mathematics. From the operator
theory, it can be seen that the reverse order law also
applies to the invertible operators, but this case is
generally not applicable to Moore-Penrose invertible
operators [1]. Therefore, for the product of operators
with Moore-Penrose inverses, it is one of the most
important problems to find the conditions for the ex-
istence of the reverse order law.

There exist a lot of researchers investigated the
above problem in various settings [2–4]. The reverse
order law for Moore-Penrose invertible matrices was
first proved by Greville [5]. Bouldin [6] devoted
himself to the study of reverse order law for bounded
linear operators on a complex Hilbert space, and some
similar results were proved by Izumino, see [7]. More-
over, Cvetković-Ilić and Harte [8] extended the reverse
order law for Moore-Penrose inverse to C∗-algebra
elements. Another interesting result was contributed
by Djordjević and Dinčić [9]. In recent years, Sharifi
[10] and Bonakdar [11] studied the reverse order law
for Moore-Penrose inverse of operators in Hilbert C∗-
modules. Recent studies, especially [12–15], motivate
us to study the problem in the framework of Hilbert
C∗-modules.

In the present paper, space decomposition and
operator matrix representation in Hilbert C∗-modules
are used to continue and supplement this study. We
give some equivalent conditions for the existence of
the reverse order law in Hilbert C∗-module settings.
Moreover, several related results are obtained, which

can be used to establish connections with the existence
of the reverse order law in Hilbert C∗-modules.

PRELIMINARIES

The theory of Hilbert C∗-modules generalizes the the-
ory of Hilbert spaces, of one-sided norm-closed ideals
of C∗-algebras, of (locally trivial) vector bundles over
compact base spaces and of their noncommutative
counterparts – the projective C∗-modules over unital
C∗-algebras, among others (see [16, 17]). In the fol-
lowing, we recall some definitions and basic properties
of operators in Hilbert C∗-modules.

Definition 1 LetA be a C∗-algebra. A pre-HilbertA -
module is a complex linear space H which is a right
A -module with anA -valued inner product 〈·, ·〉:H ×
H →A satisfying the following properties:
(i) 〈x ,αy+βz〉= α〈x , y〉+β〈x , z〉 whenever α,β ∈C

and x , y, z ∈H ;
(ii) 〈x , ya〉= 〈x , y〉a for all a ∈A , x , y ∈H ;
(iii) 〈y, x〉∗ = 〈x , y〉 for all x , y ∈H ;
(iv) 〈x , x〉¾ 0 for all x ∈H and 〈x , x〉= 0 if and only

if x = 0.

For x ∈ H , ‖x‖ =
p

‖〈x , x〉‖A defines a norm on H .
Throughout the present paper we suppose that H is
complete with respect to that norm. So H becomes
the structure of a Banach A -module. In this case H
is called a HilbertA -module.

Let H and K be Hilbert A -modules. We define
their direct sumH ⊕K as the set of all ordered pairs
{(h, k) : h ∈ H , k ∈ K }. The completion of H ⊕K ,
with respect to theA -valued inner product for which

〈(h1, k1), (h2, k2)〉= 〈h1, h2〉+ 〈k1, k2〉,
h1, h2 ∈H , k1, k2 ∈K ,
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is also a HilbertA -module.
In the special case where A is the field C of

complex numbers, the above definition reproduces the
definition of Hilbert spaces. However, by no means
all theorems of Hilbert space theory can be simply
generalized to the situation of Hilbert C∗-modules.
To appreciate this, consider the C∗-algebra A of all
bounded linear operators on the separable Hilbert
space H together with its two-sided norm-closed ideal
L of all compact operators on H. The C∗-algebra A
equipped with theA -valued inner product defined by
the formula 〈a, b〉= a∗b becomes a HilbertA -module
over itself. The restriction of thisA -valued inner prod-
uct to the ideal L turns L into a Hilbert A -module,
too. So we can form the new Hilbert A -module H =
A ⊕L as defined in the previous paragraph. We now
consider some properties of H . First of all, the ana-
logue of the Riesz representation theorem for bounded
A -linear mappings f :H →A is not valid forH . For
example, the mapping f ((a, l)) = a+ l, a ∈A , l ∈ L ,
cannot be realized by applying the A -valued inner
product to H with one fixed entry of H in its second
place. Secondly, the bounded A -linear operator T on
H defined by the rule T ((a, l)) = (l, 0A), a ∈A , l ∈L ,
does not have an adjoint operator T ∗ in the usual
sense. Furthermore, the Hilbert A -submodule L of
the Hilbert A -module A is not a direct summand,
neither an orthogonal nor a topological one.

Hence the reader should be aware that every for-
mally generalized formulation of Hilbert space theo-
rems has to be checked for any larger class of Hilbert
C∗-modules carefully and in each case separately.
There are some further surprising situations in Hilbert
C∗-module theory which cannot happen in Hilbert
space theory. Due to their minor importance for
our considerations we refer the interested reader to
the standard reference sources on Hilbert C∗-modules
[16–18].

Let H and K be two Hilbert A -modules. A
mapping T :H →K is said to be adjointable if there
exists a mapping T ∗ : K →H such that 〈T x , y〉 =
〈x , T ∗ y〉 for each x ∈ H , y ∈ K . The operator T
is called selfadjoint if T = T ∗. We also reserve the
notation Hom∗A (H ,K ) for the set of all adjointable
operators fromH toK and we denote Hom∗A (H ,H )
by End∗A (H ). It is easy to see that every element of
Hom∗A (H ,K ) is a bounded mapping.

Definition 2 Let T ∈ Hom∗A (H ,K ). Then an opera-
tor X ∈ Hom∗A (K ,H ) is called Moore-Penrose inverse
of T if
(1) T X T = T ,
(2) X T X = X ,
(3) (T X )∗ = T X ,
(4) (X T )∗ = X T .

Let T{1, 2,3}, T{1,2, 4} and T{1,2, 3,4} be the set
of operators X ∈ Hom∗A (K ,H ) which satisfy above

equations {(1), (2), (3)}, {(1), (2), (4)} and {(1),
(2), (3), (4)}, respectively. Obviously, the operator
X is Moore-Penrose inverse of T if and only if X ∈
T{1, 2,3, 4}. In symbols, this is denoted by T †. The
equations (1) to (4) imply that T † is unique and
T †T and T T † are orthogonal projections. It has
been proven that an adjointable operator between two
Hilbert C∗-modules admits a Moore-Penrose inverse if
and only if it has closed range (see [19]).

Let us recall here some basic properties concerning
the Moore-Penrose inverse of adjointable operators in
Hilbert C∗-modules from [11, 19, 20]. It is useful in ob-
taining our results in this paper. For information about
theory and applications of Moore-Penrose inverse we
refer to the book [21]. In what follows, the symbols
ran(·) and ker(·) refer, respectively, to the range and
kernel of an operator.

Proposition 1 Let T ∈ Hom∗A (H ,K ) admitting the
Moore-Penrose inverse T †. Then
(i) ran(T ) = ran(T T †) and ran(T †) = ran(T †T ),
(ii) ker(T ) = ker(T †T ) and ker(T †) = ker(T T †),
(iii) ran(T †) = ran(T ∗) and ker(T †) = ker(T ∗),
(iv) T † = (T ∗T )†T ∗ = T ∗(T T ∗)† and (T ∗T )† = T †T ∗†,
(v) T ∗ = T †T T ∗ = T ∗T T † and T = T T ∗T ∗† = T ∗†T ∗T.

The pivotal tools in our investigation are the
notions of space decomposition and operator matrix
representation. Let M be a closed submodule of a
Hilbert A -module H and M⊥ := {x ∈ H : 〈x , y〉 =
0, y ∈M} be orthogonal complement ofM inH . We
sayM is orthogonally complemented ifH =M⊕M⊥.
Bearing in mind that a closed submodule of a Hilbert
C∗-module need not be orthogonally complemented.
Fortunately, we have the following well known result
which enables us to conclude that certain submod-
ules are orthogonally complemented. Suppose T ∈
Hom∗A (H ,K ), the operator T has closed range if and
only if T ∗ has closed range. In this case,H = ker(T )⊕
ran(T ∗) and K = ker(T ∗)⊕ ran(T ) (see [16, Theorem
3.2]).

The matrix form of an operator T ∈Hom∗A (H ,K )
is induced by some natural decompositions of Hilbert
C∗-modules. If H = Y ⊕Y ⊥, K = Z ⊕Z⊥, then T
can be written as the following 2×2 matrix

T =
�

T1 T2
T3 T4

�

,

where T1 ∈ Hom∗A (Y ,Z ), T2 ∈ Hom∗A (Y
⊥,Z ), T3 ∈

Hom∗A (Y ,Z⊥), T4 ∈ Hom∗A (Y
⊥,Z⊥).

MAIN RESULTS

We begin with some technical lemmas, which will be
used repeatedly in this paper.

Lemma 1 ([11]) Suppose that T ∈ Hom∗A (H ,K ) has
closed range. Then T has the following matrix decompo-
sition with respect to the orthogonal decompositions of
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submodulesH = ker(T )⊕ ran(T ∗) andK = ker(T ∗)⊕
ran(T ):

T =
�

T1 0
0 0

�

:
�

ran(T ∗)
ker(T )

�

→
�

ran(T )
ker(T ∗)

�

,

where T1 is invertible. Moreover

T † =
�

T−1
1 0

0 0

�

:
�

ran(T )
ker(T ∗)

�

→
�

ran(T ∗)
ker(T )

�

.

Lemma 2 ([11]) Suppose that T ∈ Hom∗A (H ,K ) has
closed range. Let H1,H2 be closed submodules of H
and K1,K2 be closed submodules of K such that H =
H1 ⊕H2 and K =K1 ⊕K2. Then the operator T has
the following matrix representations with respect to the
orthogonal sums of submodules H = ker(T )⊕ ran(T ∗)
and K = ker(T ∗)⊕ ran(T ):

T =
�

T1 T2
0 0

�

:
�

H1
H2

�

→
�

ran(T )
ker(T ∗)

�

.

Moreover

T † =
�

T ∗1 D−1 0
T ∗2 D−1 0

�

where D = T1T ∗1 +T2T ∗2 ∈ End∗A (ran(T )) is positive and
invertible.

Lemma 3 ([15]) Suppose that T ∈ Hom∗A (H ,K ) has
closed range. and U ∈ End∗A (H ) is an orthogonal
projection commuting with T †T. Then T U T ∗ has closed
range.

Lemma 4 ([22]) Let T ∈ End∗A (H ) be an idempotent
and contraction operator (‖T‖ ¶ 1). Then T is a
projection.

Armed with these lemmas, we can now state and
prove some equivalent conditions for the existence of
the reverse order law in Hilbert C∗-module settings.
We first give some necessary and sufficient conditions
for S†T † ∈ (TS){1,2, 3}.

Theorem 1 Let H ,K and G be Hilbert A -modules.
Suppose that S ∈ Hom∗A (H ,K ), T ∈ Hom∗A (K ,G ),
TS ∈ Hom∗A (H ,G ) have closed ranges. Then the
following statements are equivalent:
(i) (TSS†)† = SS†T †,
(ii) S†(TSS†)† = S†T †,
(iii) (TSS†)(TSS†)† = TSS†T †,
(iv) S†T † ∈ (TS){1, 2,3}.

Proof : By Lemma 1, the operator S and its Moore-
Penrose inverse S† have the following matrix forms:

S =
�

S1 0
0 0

�

:
�

ran(S∗)
ker(S)

�

→
�

ran(S)
ker(S∗)

�

,

S† =
�

S−1
1 0

0 0

�

:
�

ran(S)
ker(S∗)

�

→
�

ran(S∗)
ker(S)

�

.

From Lemma 2, it follows that the operator T and its
Moore-Penrose inverse T † have the following matrix
forms:

T =
�

T1 T2
0 0

�

:
�

ran(S)
ker(S∗)

�

→
�

ran(T )
ker(T ∗)

�

,

T † =
�

T ∗1 D−1 0
T ∗2 D−1 0

�

,

where D= T1T ∗1+T2T ∗2 ∈ End∗A (ran(T )) is positive and
invertible. Then we have the following products

TS =
�

T1S1 0
0 0

�

, (TS)† =
�

(T1S1)† 0
0 0

�

,

S†T † =
�

S−1
1 T ∗1 D−1 0

0 0

�

.

Notice that ran(TSS†) = ran(TS) is closed, so
there exists (TSS†)†. Before proceeding, we find the
equivalent expressions for our statements in terms of
T1, T2 and S1.
(i) (TSS†)† = SS†T †⇔ T †

1 = T ∗1 D−1.
(ii) S†(TSS†)† = S†T †⇔ T †

1 = T ∗1 D−1, so (i)⇔(ii).
(iii) (TSS†)(TSS†)† = TSS†T †⇔ T1T †

1 = T1T ∗1 D−1.

(iv) S†T † ∈ (TS){1,2, 3}⇔
�

T1 = T1T ∗1 D−1T1,
T1T ∗1 D−1 =D−1T1T ∗1 .

Based on these equivalent expressions, we now prove
the declared equivalent statements. We proceed with
the following steps: (i)⇒ (iii)⇒ (iv)⇒ (i).

(i)⇒ (iii): This is obvious.
(iii) ⇒ (iv): Since T1T †

1 = T1T ∗1 D−1 is self-adjoint
and T1T †

1 D = T1T ∗1 , we get that T1T ∗1 D−1 = D−1T1T ∗1
and T1T †

1 T2T ∗2 = 0. Hence

ran(T2T ∗2 ) ⊂ ker(T1T †
1 ) = ker(T ∗1 ).

It follows that T ∗1 T2T ∗2 = 0 and T2T ∗2 T1 = 0. Now,

DT1 = (T1T ∗1 + T2T ∗2 )T1 = T1T ∗1 T1.

Thus T1 = D−1T1T ∗1 T1 = T1T ∗1 D−1T1.
(iv) ⇒ (i): Assume that T1 = T1T ∗1 D−1T1 and

T1T ∗1 D−1 = D−1T1T ∗1 . We now check that T ∗1 D−1

satisfies all four Moore-Penrose inverse equations for
operator T1,















T1T ∗1 D−1T1 = T1,
T ∗1 D−1T1T ∗1 D−1 = T ∗1 D−1,
(T1T ∗1 D−1)∗ = D−1T1T ∗1 = T1T ∗1 D−1,
(T ∗1 D−1T1)∗ = T ∗1 D−1T1.

Due to the uniqueness property of the Moore-Penrose
inverse as mentioned in preliminaries, we obtain that
T †

1 = T ∗1 D−1, as claimed. 2
In what follows, we present some necessary and

sufficient conditions for S†T † ∈ (TS){1,2, 4}.
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Theorem 2 Let H ,K and G be Hilbert A -modules.
Suppose that S ∈ Hom∗A (H ,K ), T ∈ Hom∗A (K ,G ),
TS ∈ Hom∗A (H ,G ) have closed ranges. Then the
following statements are equivalent:
(i) (T †TS)† = S†T †T,
(ii) (T †TS)†T † = S†T †,
(iii) (T †TS)†(T †TS) = S†T †TS,
(iv) S†T † ∈ (TS){1,2, 4}.

Proof : Let us follow the strategy used in the proof of
above theorem. We keep the matrix forms of T and S
as in previous theorem. We see that

ran((T †TS)∗) = ran(S∗T †T ) = ran(S∗T ∗) = ran((TS)∗)

is closed, so there exists (T †TS)†. Notice that

T †TS =
�

T ∗1 D−1T1S1 0
T ∗2 D−1T1S1 0

�

,

S†T †T =
�

S−1
1 T ∗1 D−1T1 S−1

1 T ∗1 D−1T2
0 0

�

.

Using the formula T † = (T ∗T )†T ∗ (see (iv) of Proposi-
tion 1), we obtain that

(T †TS)† =
�

(S∗1 T ∗1 D−1T1S1)†S∗1 T ∗1 D−1T1 (S∗1 T ∗1 D−1T1S1)†S∗1 T ∗1 D−1T2
0 0

�

.

Similarly to Theorem 1, we find the equivalent expres-
sions for our statements in terms of T1, T2 and S1.
(i) (T †TS)† = S†T †T ⇔

�

(S∗1 T ∗1 D−1T1S1)†S∗1 T ∗1 D−1T1 = S−1
1 T ∗1 D−1T1,

(S∗1 T ∗1 D−1T1S1)†S∗1 T ∗1 D−1T2 = S−1
1 T ∗1 D−1T2.

(ii) (T †TS)†T †=S†T †⇔S1(S∗1 T ∗1 D−1T1S1)†S∗1 T ∗1=T ∗1 .
(iii) (T †TS)†(T †TS) = S†T †TS⇔
(S∗1 T ∗1 D−1T1S1)†S∗1 T ∗1 D−1T1S1 = S−1

1 T ∗1 D−1T1S1.
(iv) S†T † ∈ (TS){1, 2,4}⇔

�

T1 = T1T ∗1 D−1T1,
S1S∗1 T ∗1 D−1T1 = T ∗1 D−1T1S1S∗1.

According to these equivalent expressions, we now
prove the claimed equivalent statements. We proceed
with the following steps: (a) (i) ⇔ (ii); (b) (ii) ⇔
(iv); (c) (iii)⇔ (iv).

Step (a):
(i)⇒ (ii): If (T †TS)† = S†T †T , then by equivalent

expression we can get

�

(S∗1 T ∗1 D−1T1S1)†S∗1 T ∗1 D−1T1T ∗1 = S−1
1 T ∗1 D−1T1T ∗1 ,

(S∗1 T ∗1 D−1T1S1)†S∗1 T ∗1 D−1T2T ∗2 = S−1
1 T ∗1 D−1T2T ∗2 .

By summing the above two equalities we obtain (ii).

(ii)⇒ (i): This is obvious.

Step (b):
(ii) ⇒ (iv): If we multiply the left side of

S1(S∗1 T ∗1 D−1T1S1)†S∗1 T ∗1 = T ∗1 by S∗1 T ∗1 D−1T1 and the

right side by D−1T1S1, then we get

S∗1 T ∗1 D−1T1S1(S
∗
1 T ∗1 D−1T1S1)

†S∗1 T ∗1 D−1T1S1 =

S∗1 T ∗1 D−1T1T ∗1 D−1T1S1,

and therefore T ∗1 D−1T1 = T ∗1 D−1T1T ∗1 D−1T1. Now,
T ∗1 D−1T1 is an orthogonal projection onto a subspace
of ran(T ∗1 ), so

T1 = T1T ∗1 D−1T1.

Since (S∗1 T ∗1 D−1T1S1)†S∗1 T ∗1 D−1T1 = S−1
1 T ∗1 D−1T1 is

self-adjoint, we obtain that

S1S∗1 T ∗1 D−1T1 = T ∗1 D−1T1S1S∗1.

(iv)⇒ (ii): Using the formula T † = (T ∗T )†T ∗, we
have

(D−
1
2 T1S1)

† = (S∗1 T ∗1 D−1T1S1)
†S∗1 T ∗1 D−

1
2 ,

which means that

S1(S
∗
1 T ∗1 D−1T1S1)

†S∗1 T ∗1 = S1(D
− 1

2 T1S1)
†D

1
2 .

In following we will show (D−
1
2 T1S1)† = S−1

1 T ∗1 D−
1
2 ,

by proving that S−1
1 T ∗1 D−

1
2 satisfies four Moore-Penrose

equations for operator D−
1
2 T1S1. It is easy to see that

D−
1
2 T1S1S−1

1 T ∗1 D−
1
2 D−

1
2 T1S1 = D−

1
2 T1T ∗1 D−1T1S1

= D−
1
2 T1S1,

S−1
1 T ∗1 D−

1
2 D−

1
2 T1S1S−1

1 T ∗1 D−
1
2 = S−1

1 T ∗1 D−1T1T ∗1 D−
1
2

= S−1
1 T ∗1 D−

1
2 ,

D−
1
2 T1S1S−1

1 T ∗1 D−
1
2 = D−

1
2 T1T ∗1 D−

1
2 is self-adjoint,

S−1
1 T ∗1 D−

1
2 D−

1
2 T1S1 = S−1

1 T ∗1 D−1T1S1 is self-adjoint.

This implies that S−1
1 T ∗1 D−

1
2 ∈ (D−

1
2 T1S1){1,2, 3,4}, as

desired.

Step (c):
(iii)⇒ (iv): If we multiply the left side of

(S∗1 T ∗1 D−1T1S1)†S∗1 T ∗1 D−1T1S1 = S−1
1 T ∗1 D−1T1S1 by

S∗1 T ∗1 D−1T1S1, we get that

T ∗1 D−1T1 = T ∗1 D−1T1T ∗1 D−1T1.

Now, T ∗1 D−1T1 is an orthogonal projection onto a
subspace of ran(T ∗1 ), so T1 = T1T ∗1 D−1T1. On the other
hand, since

(S∗1 T ∗1 D−1T1S1)
†S∗1 T ∗1 D−1T1S1 = S−1

1 T ∗1 D−1T1S1

is self-adjoint, we obtain that

S1S∗1 T ∗1 D−1T1 = T ∗1 D−1T1S1S∗1.
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(iv)⇒ (iii): As discussed in (iv)⇒ (ii), we know
that

S†T † ∈ (TS){1, 2,4} ⇒ S1(S
∗
1 T ∗1 D−1T1S1)

†S∗1 T ∗1 = T ∗1 .

Hence, (S∗1 T ∗1 D−1T1S1)†S∗1 T ∗1 D−1T1S1=S−1
1 T ∗1 D−1T1S1.

2
We are now in the position to give some sufficient

and necessary conditions for (TS)† = S†T †.

Corollary 1 Let H ,K and G be Hilbert A -modules.
Suppose that S ∈ Hom∗A (H ,K ), T ∈ Hom∗A (K ,G ),
TS ∈ Hom∗A (H ,G ) have closed ranges. Then the
following statements are equivalent:
(i) (TS)† = S†T †;
(ii) (TSS†)† = SS†T † and (T †TS)† = S†T †T;
(iii) S†(TSS†)† = S†T † and (T †TS)†T † = S†T †;
(iv) (TSS†)(TSS†)† = TSS†T † and (T †TS)†(T †TS) =

S†T †TS.

Proof : For proof argument we refer to the Theorems 1
and 2. 2

In what follows, we find the inverses of two special
operators by using Moore-Penrose inverses of opera-
tors in Hilbert C∗-modules. Some related results have
been derived that can be used to establish connections
with the reverse order law.

Theorem 3 Let H ,K and G be Hilbert A -modules.
Suppose that S ∈ Hom∗A (H ,K ), T ∈ Hom∗A (K ,G ),
TS ∈ Hom∗A (H ,G ) have closed ranges. If SS† com-
mutes with T †T, then the following statements hold.
(i) ran(TSS†) is closed;
(ii) I − TSS†T † + TSS†T ∗ is invertible with inverse

I − TSS†T †+(TSS†T ∗)†;
(iii) (I−TSS†T †+TSS†T ∗)(TSS†)(TSS†)† = TSS†T ∗.

Proof : The statement (i) follows from Theorem 1. For
the proofs of (ii) and (iii), we keep the matrix forms of
T and S as in previous theorems. Notice that

TSS†T ∗ =
�

T1T ∗1 0
0 0

�

, (TSS†)(TSS†)† =
�

T1T †
1 0

0 0

�

,

I−TSS†T †+TSS†T ∗ =
�

I1−T1T ∗1 D−1+T1T ∗1 0
0 I2

�

.

It follows that

(I − TSS†T †+ TSS†T ∗)(TSS†)(TSS†)† =
�

(I1− T1T ∗1 D−1+ T1T ∗1 )(T1T †
1 ) 0

0 0

�

.

Since SS† commutes with T †T , we have T1T ∗1 D−1T1 =
T1. Moreover, T †

1 = T ∗1 D−1. So by Proposition 1 we get

(I1− T1T ∗1 D−1+ T1T ∗1 )(T1T †
1 )

= T1T †
1 − T1T ∗1 D−1T1T †

1 + T1T ∗1 T1T †
1

= T1T †
1 − T1T †

1 + T1T ∗1
= T1T ∗1 ,

therefore, the equation of (iii) holds.
In the following, we will show that I − TSS†T † +

TSS†T ∗ is invertible. By Lemma 3 we know
that TSS†T ∗ has closed range, hence there exists
(TSS†T ∗)†. Put

U = I−TSS†T †+TSS†T ∗ =
�

I1−T1T ∗1 D−1+T1T ∗1 0
0 I2

�

,

V= I−TSS†T †+(TSS†T ∗)†=
�

I1−T1T ∗1 D−1+(T1T ∗1 )
† 0

0 I2

�

.

Since

(I1 − T1T ∗1 D−1 + T1T ∗1 )(I1 − T1T ∗1 D−1 +(T1T ∗1 )
†)

= I1 − T1T ∗1 D−1 +(T1T ∗1 )
† − T1T ∗1 D−1 + T1T ∗1 D−1T1T ∗1 D−1

−T1T ∗1 D−1(T1T ∗1 )
†+T1T ∗1−T1T ∗1 T1T ∗1 D−1+T1T ∗1 (T1T ∗1 )

†

= I1 +(T1T ∗1 )
† − T1T †

1 − T1T †
1 (T

∗
1 )

†T †
1 + T1T ∗1 − T1T ∗1 T1T †

1

+ T1T ∗1 (T
∗
1 )

†T †
1

= I1 +(T1T ∗1 )
† − T1T †

1 − (T
∗
1 )

†T †
1 + T1T ∗1 − T1T ∗1 + T1T †

1

= I1,

we have

UV =
�

I1 0
0 I2

�

= I .

Similarly we can prove that V U = I . Hence I −
TSS†T †+TSS†T ∗ is invertible with the desired inverse,
so the statement (ii) is proved. 2

Using the same ideas as in above theorem we can
get the following result.

Theorem 4 Let H ,K and G be Hilbert A -modules.
Suppose that S ∈ Hom∗A (H ,K ), T ∈ Hom∗A (K ,G ),
TS ∈ Hom∗A (H ,G ) have closed ranges. If SS† com-
mutes with T †T, then the following statements hold.
(i) ran(T †TS) is closed;
(ii) I − S†T †TS + S∗T †TS is invertible with inverse

I − S†T †TS+(S∗T †TS)†;
(iii) (T †TS)†(T †TS)(I−S†T †TS+S∗T †TS) = S∗T †TS.

Proof : Replace in Theorem 3, T and S by S∗ and T ∗,
respectively, and take the adjoints. 2

We end the paper with the following useful corol-
lary which offers another necessary and sufficient
condition for the existence of the reverse order law
(TS)† = S†T † in Hilbert C∗-modules.

Corollary 2 Let H ,K and G be Hilbert A -modules.
Suppose that S ∈ Hom∗A (H ,K ), T ∈ Hom∗A (K ,G ),
TS ∈ Hom∗A (H ,G ) have closed ranges. Then (TS)† =
S†T † if and only if SS† commutes with T †T, TSS†T † =
TSS†T ∗ and S†T †TS = S∗T †TS.

Proof : Suppose that (TS)† = S†T †. We first show that
T †T and SS† are commutative. Since

TS = TS(TS)†TS = TSS†T †TS,
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we have

T †TSS† = T †TSS†T †TSS† = (T †TSS†)2.

Besides, clearly ‖T †TSS†‖ ¶ 1. Hence by Lemma 4,
T †TSS† is a projection, so that T †T and SS† are
commutative. Now by (i) ⇔ (iv) of Corollary 1 we
see that

(TSS†)(TSS†)† = TSS†T †, (T †TS)†(T †TS) = S†T †TS.

Now, exploiting Theorem 3 and Theorem 4 simultane-
ously, we conclude that

TSS†T † = TSS†T ∗, S†T †TS = S∗T †TS.

The converse conclusion is also a simple calcula-
tion. Using Theorem 3 and Theorem 4, we see that

(TSS†)(TSS†)† = TSS†T ∗ = TSS†T †,

(T †TS)†(T †TS) = S∗T †TS = S†T †TS.

From equivalent statement (iv) of Corollary 1, we get
(TS)† = S†T †. 2
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