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ABSTRACT: Cost, availability and reliability of labor are major problems in any aquaculture operation, and particularly
in the soft-shell crab industry, since its success depends on the precise timing and accuracy of the workers to observe
and harvest the newly molted crabs before their shells harden. To improve efficiency and reduce the dependence on
human intervention, we have developed an automated molting detection system. The detection system utilizes the fact
that the crab’s carapace reflects infrared light (appearing as white pixels) much more strongly than the surrounding
areas. By using Internet Protocol (IP) cameras, network video recorder (NVR), personal computer and newly designed
image analysis software, molting can be detected by continuously measuring relative changes in white pixel area. Two-
dimensional Gaussian function and Otsu’s thresholding method are incorporated into the detection software. Snapshot
images, date, and time of molting are recorded automatically and displayed via user interface. Test results indicated
that the highest (100%) hit rate and lowest precision (13.92%) were obtained when detection threshold was 20%.
Lower hit rates and higher precision were observed at higher threshold levels. The optimum threshold for detecting
molting in commercial operations is discussed.
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INTRODUCTION

Crabs, like other decapod crustaceans, need to period-
ically shed their old exoskeleton to increase their body
size. This extraordinary and highly complex behavior
is known as molting. Since a newly molted crab
(i.e., soft-shell crab) has a soft exoskeleton, the entire
body can be consumed with ease. Soft-shell crabs
have gained popularity, especially in high gastronomy,
thanks to their excellent taste, high level of protein and
almost no fat, in addition to a general perception as a
healthy food [1, 2].

Currently, the soft-shell crab industry depends on
capturing wild crabs, mostly in the genera Scylla and
Callinectes, and maintaining the animals in controlled
conditions, such as in trays (Callinectes) [3, 4] or float-
ing boxes (Scylla) [5]. In Thailand, almost all the
soft-shell crab production is of mud crab in genus
Scylla, because this species adapts relatively well to
the culture environment. After stocking, crabs are
observed every four hours (during both day and night)
for molting status [5]. The demand for juvenile mud
crabs has grown substantially in the past decade and
now juveniles need to be imported from overseas.

Blue swimming crab (Portunus pelagicus) is also an
economically important species, and it has potential
to be another candidate for soft-shell crab production.
However, its shell begins hardening much faster than
the mud crab, thus requiring a monitoring interval of

less than 30 min (communication with blue swimming
crab farmer and personal experience) and making it ex-
tremely difficult to culture with conventional methods.
Since the market value of the soft-shell crab declines
as the crab exoskeleton hardens, a reliable detection
method and skilled labor are crucial for the success of
the industry.

Image processing techniques have been widely
used in many fields such as medicine [6], fingerprint
identification [7], traffic control [8], insect monitor-
ing [9, 10] and even to assess fish quality and fresh-
ness [11]. This technology performs tasks previously
reliant on human inspection, and provides even more
accuracy and enables continuous monitoring. In the
present study, image processing software was devel-
oped and connected with IP cameras to automatically
detect molting of blue swimming crab. This system
minimizes labor requirements for the soft-shell crab
industry, and creates a platform for future molting
research.

MATERIALS AND METHODS

Blue swimming crab culture

Egg-bearing female blue swimming crabs (Portunus
pelagicus) were purchased and cultured in 200 l plastic
tanks (one individual per tank) at Klongwan Fisheries
Research Station, Prachuabkirikhan Province, Thai-
land. Cleaned and aerated seawater (30 ppt salinity)
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Fig. 1 Network diagram of molting detection system includ-
ing IP camera, NVR, and personal computer. All components
were connected by local-area network (LAN) cable.

was used in each tank. After 24 h, hatched eggs were
transferred to 3000 l cement ponds at the density of
100 individuals/l.

During larval development from zoea stage until
first crab stage (approximately 21 days), phytoplank-
ton (Chaetoceros sp.) and zooplankton (Rotifer sp. and
Artemia sp.) were fed to crab larvae. Small shrimp
pellets (40% protein) were fed to the crabs for another
20–25 days until the average carapace width reached
1.5 cm. Then, young crabs were transferred to a
1600 m2 earthen pond (1.5–1.7 m depth) at the density
of 2 individuals/m2 and cultured for another 90–120
days. These crabs were fed with commercial shrimp
pellets (40% protein) at the rate of 5% body weight
per day. Foldable traps baited with chicken were used
to harvest crabs. Wild-caught crabs were also used in
the experiment to compare their molting and survival
rates with the cultured crabs.

Water quality analysis

Dissolved oxygen (DO) meter (YSI, Ohio, USA 550A)
and pH meter (Cyber scan, Illinois, USA pH 11) were
used to monitor DO (including water temperature)
and pH, respectively. Alkalinity was measured by
titration, while Koroleff’s indophenol blue method and
colorimetric method were used to measure total am-
monia nitrogen (TAN) and nitrite, respectively. Water
exchanges were carried out every seven days at the
rate of 50% to maintain optimum water quality. All
measurements were according to standard methods for
the examination of water and wastewater [12].

Camera and recording system

Four IP cameras (Watashi, Bangkok, Thailand WIP086)
were installed 210 cm above the raft (described below)
and connected to a network video recorder (NVR:
Watashi WRC170-4K) with output to a personal com-
puter (Lenovo, Bangkok, Thailand AIO 510-221SH)
(Fig. 1).

Crab boxes and floating raft

To monitor molting, modified commercially available
crab boxes (19×26×9.5 cm) were used (Fig. 2).

Fig. 2 Modified crab boxes covered with nylon netting on
floating raft made from PVC pipes. Each raft can hold 50
crab boxes.

Crabs were kept individually (i.e., one per box) to
prevent cannibalistic behavior during molting. A nylon
net cover was put on top of each box to prevent
crabs from escaping. Floating rafts (200×140 cm)
made from PVC pipes were constructed to each hold
50 boxes (Fig. 2). Each raft was anchored at a fixed
position in a concrete pond (1.2×6.0×1.0 m) during
the experiment. To optimize the lighting conditions for
the IP cameras, the entire concrete pond was covered
with black plastic sheeting.

Autonomous molting detection software

The principle of this detection system is the fact that
the carapace of a crab reflects infrared light very in-
tensely, with the carapace appearing as white pixels
and the surrounding area appearing as black pixels.
Therefore, by using IP cameras in the absence of
external light, molting can be detected by capturing
images and comparing the ratio of white pixels to total
pixels in each area of interest (Fig. 3).

The imaging analysis software was designed and
developed from Visual C#.net by using .Net Frame-
work version 4.5 in combination with Emgu CV (cross-
platform .Net Wrapper) to create an algorithm to ana-
lyze molting in each captured image. Once the molting
is detected, the software notifies the user via user
interface. Snapshot images of the molting along with
time, date and location are recorded and displayed.

Architecture and design

IP cameras are connected to NVR and computer by
local area network (LAN) cable. User interface of the
program comprises three major components: (1) main
control panel, (2) detection area identification, and (3)
control panel for molting detection.

Main control panel: Camera connection, detection
configuration and detection area recording are con-
trolled by this component. Up to four cameras are
able to connect with the program simultaneously by
using the Internet Protocol address (IP address) of each
camera. Parameter configuration can be adjusted by
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Fig. 3 System overview of the molting detection system. IP cameras acquire images of crabs from the raft and transmit them
to NVR for recording. Then, image analysis software in personal computer analyzes crab images from each area of interest
and displays the result via user interface.

the user to maximize the molting detection accuracy.
Capture Time Interval is the duration between each
picture in frames per second. Maximum Capture Time
is the maximum recording duration. Minimum crab
size is the least possible size (area in pixels) of each
crab in the area of interest, while Beware and Molt
threshold are the size values that will trigger the pro-
gram to give warning and molting messages for each
crab. The size of the area of interest (detection area)
for each crab can also be adjusted.

Detection area identification: This component man-
ages the areas of interest and their locations by la-
belling a snapshot from the IP camera with green
squares. These green squares can be added, moved or
removed at any point. The program only monitors the
ratio of white: total pixels within each green square.

Control panel for molting detection: This compo-
nent can be used to activate, pause, reset and stop the
program during molt monitoring.

Camera calibration

Each camera was calibrated for perspective correction,
since the curved lens of the camera has two inherent
types of distortion, namely radial distortion and tan-

gential distortion. By using these equations, both types
of distortion were corrected.
Radial distortion correction:

xcorrected = x
�

1+ k1r2+ k2r4+ k3r6
�

ycorrected = y
�

1+ k1r2+ k2r4+ k3r6
�

Tangential distortion correction:

xcorrected = x +
�

2p1 x y + p2(r
2+2x2)

�

ycorrected = y +
�

p1(r
2+2y2)+2p2 x y

�

Combined radial and tangential distortion correction:

xcorrected = x +
�

2p1 x y + p2(r
2+2x2)

�

+ x(1+ k1r2+ k2r4+ k3r6)

ycorrected = y +
�

p1(r
2+2y2)+2p2 x y

�

+ y(1+ k1r2+ k2r4+ k3r6)

where r =
p

x2+ y2, (x , y) is an undistorted pixel lo-
cation, (xcorrected, ycorrected) is a corrected pixel location,
and (k1, k2, p1, p2, k3) are the distortion coefficients. In
this scenario, distortion coefficients were designated as
k1 = −0.31, k2 = −0.31, p1 = 0, p2 = 0, and k3 = 0.
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Nylon net removal

To prevent crabs from escaping, nylon netting was used
to cover each box. However, this interfered with the
images and needed to be filtered out. Two-dimensional
Gaussian function was used in this situation to filter out
the net from the images.

fout(x , y) = fin(x , y) ∗G(x , y)

G(x , y) =
1

2πσ2
e−

x2+y2

2σ2

where fin(x , y) is the input image, fout(x , y) is the
output image, G(x , y) is two-dimensional Gaussian
filter, (x , y) is the image coordinate, and σ is the
standard deviation.

Image thresholding

Otsu’s Thresholding method was used to detect the
crab images. First, a histogram of intensity values was
calculated for each crab, then optimum threshold was
determined by the maximum interclass variance (σ2

b).
Histogram calculation:

p(i) =
∑

(x ,y)∈ f

ni

where ni is the number of pixels at intensity i and p(i)
is the histogram of image f .
Inter-class variance (σ2

b) calculation:

σ2
b(t) =ω0(t)ω1(t)[µ0(t)−µ1(t)]

2,

ω0(t) =
t−1
∑

i=1

p(i), µ0(t) =

∑t−1
i=0 ip(i)

ω0(t)
,

ω1(t) =
L−1
∑

i=t

p(i), µ1(t) =

∑L−1
i=t ip(i)

ω1(t)
,

where σ2
b is the inter-class variance, ω0, ω1 are class

probabilities, and µ0, µ1 are class means.
Any intensities under the determined threshold (t)

are classified as black, whereas any intensities above
this threshold are classified as white.

Molt detection

The ratio between white pixels and total pixels within
each green square was continually monitored at 5-min
intervals. The program uses maximum and minimum
ratio recorded from the previous 5 min (Tn−5→ Tn) to
determine molting. By using the following equation,
when the ratio changes more than a predetermined
level, the program automatically notifies its user via
the program interface.

Molt ratio (%)=
Amax(Tn−5→Tn)−Amin(Tn−5→Tn)

Amin(Tn−5→Tn)
×100

where Molt ratio is the ratio of area change,
Amax(Tn−5→Tn

) is the maximum area detected during the
previous 5 min, and Amin(Tn−5→Tn) is the minimum area
detected during the previous 5 min.

Statistical analysis

Results were analyzed by using Student’s t-test for un-
paired samples. Differences are accepted as significant
at p < 0.05. The program SPSS Statistics was used for
calculations.

RESULTS

Molting in crab boxes

The majority of the molting events (55.9%) occurred
between 00:00 and 06:00, while no molting was de-
tected between 06:00 and 12:00. During the 30-
day period, crabs from earth-pond culture (average
carapace width 8.8±0.7 cm, average body weight
53.2±11.7 g) appeared to outperform wild-caught
crabs (average body weight 66.0–83.0 g) in both
molting rate and survival rate. While not statistically
significant (p = 0.131), the molting rate of cultured
crabs (19.0±12.1%) was higher than that of wild crabs
(8.0±3.6%). However, the most striking difference
was found in survival rate. Cultured crabs had much
higher survival (96.0±1.6%) than wild-caught crabs
(23.0±10.8%), and the difference was statistically
significant (p < 0.0001).

Water quality

All water-quality parameters were within with the
ranges recommended by various publications (temper-
ature [13, 14], salinity [15], ammonia [16], nitrite
[17], dissolved oxygen [18]).

Dissolved oxygen concentrations in all ponds were
above 4 mg/l, while the average pH was 8.16±0.01
and average temperature was 27.82±0.66 °C.
Average salinity (31.52±0.25 ppt) and alkalinity
(124.52±1.48 mg/l as CaCO3) were consistent with
normal seawater, while average total ammonia and
nitrite were 0.21±0.04 mg/l and 0.12±0.01 mg/l,
respectively, and therefore not considered harmful to
the experimental crabs.

Automated molting detection software

Camera calibration

The images from the IP cameras were calibrated for
correct perspective, since the curved lens creates radial
distortion and tangential distortion (Fig. 4). The re-
sults indicated that the best distortion coefficients were
k1 = −0.31, k2 = −0.31, p1 = 0, p2 = 0 and k3 = 0.

Nylon net removal, image thresholding and molt
detection

The nylon netting in images from IP cameras was
filtered out by using two-dimensional Gaussian func-
tion. Then, Otsu’s thresholding method was used to
separate crabs (white pixels) from background (black
pixels) (Fig. 5). The proportion of white pixel area
was continuously calculated, and when the percent
change in this proportion during the previous 5 min
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Fig. 4 Uncalibrated (left) and calibrated (right) images. Camera calibration transforms pixel point at (x , y) from distorted
image to corrected pixel point at (xcorrected, ycorrected); thus, the distorted area on each side of the raft is corrected to a
rectangular shape.

Fig. 5 2D-Gaussian filter removes high-frequency patterns
such as net and Gaussian noise in the image. Otsu’s thresh-
olding method decides which pixels belong to crab area
(white pixel) or background area (black pixel) by calculating
the maximal inter-class variance of image intensity.

exceeded a predetermined value, the user was notified
via program interface.

When molting crabs were monitored continuously
for 10 min (Fig. 6), the area of white pixels contin-
uously increased, from 15.02% in the first minute to
29.09% after 10 min. This area increase was because
both new and old shells were classified by the program
as white pixels. Maximum percentage change of white
pixel area was 97.07% (8 min) which is more than
the predetermined threshold of 50%. The program
decided that molting had occurred and notified the
user via the program interface.

In the case of non-molting crabs (Fig. 6), the area
of white pixels fluctuated slightly (20.56%–25.81%)
due to changes in crab posture. When calculated
as percentage change of white pixel area over time,
the maximum rate of change was 15.68%. Since the
predetermined threshold was set at 50% for molting,
the program did not decide that molting occurred
during this 10-min test period.

Location, date, and time of molting are displayed
via user interface. To prevent false positive warnings
(program falsely detects molting), a snapshot image of
the green square appears so that it can be verified by
the user (Fig. 7). Pixel location, box number, height
and width of green square (in pixels), molting status,
date and time of molting are recorded in a text file.

Fig. 6 Percentage change of white pixel area between molting
and non-molting crabs. In non-molting crabs, the percent-
age change fluctuated by less than 20%, and was due to
crab movements. In molting crabs, the percentage change
increased every min and crossed the 50% threshold between
5–6 min, then reached almost 100% at 8 min.

Program testing

To test the accuracy of the detection program, 50 crabs
were continuously monitored for 90 h. Eleven molting
events from 11 crabs were detected. The detection
program took a snapshot every 10 s, resulting in
31 159 images (raft images). Each image contained 50
green squares; therefore, over 1 557 950 images (green
square images) were processed. Different molting
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Fig. 7 User interface with molting information. When molting occurs, the green square changes to red to be easily noticed by
user.

Fig. 8 Hit rate and precision of the detection program with
different molting thresholds. Hit rate decreased from 100%
to 9.09% while precision increased from 13.92% to 100%
when threshold level increased from 20% to 90%.

thresholds (from 20% to 90%) were tested separately
to observe the relationship between hit rate and thresh-
old level (Fig. 8).

Hit rate is the accuracy of the software in detecting
actual molting events without considering the false
positives during the detection. Precision is the accu-
racy of the software in detecting actual molting events

when including false positive events. False-positive
detection is when the program indicates molting but
no actual molting has occurred. In our trial, at a 30%
threshold, the program reported 49 molting events
when, in fact, only 11 actual moltings had occurred.
The other 38 detections were false negatives. In this
scenario, hit rate was 100%, while precision was only
22.45% (Fig. 8).

At the lowest threshold setting of 20%, hit rate
was 100% while precision was only 13.92%. When
threshold level increased, hit rate continued to decline
in contrast to precision, which kept increasing. Hit
rate and precision were equal when thresholds were
50%–60%.

DISCUSSION

The majority (80%) of the molting events occurred be-
tween 18:00 and 06:00, while only 20% were observed
between 12:00 and 18:00, and none were observed
from 06:00 to 12:00. This night-time molting behavior
is thought to help crabs avoid predation, since the
newly molted crabs are soft and defenseless. Both
internal and external factors such as intensity and
duration of light, temperature, salinity [19, 20] and
even conspecific density may influence the timing of
molting. It also has been demonstrated that crabs have
an ability to defer molting in some life-threatening sit-
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uations, such as in the presence of a predator [21]. To
reduce the risk of being preyed upon, some crab species
exhibit synchronized molting behavior, in which the
majority of the animals molt during the same period
and in the same location. In the case of the Tanner crab
(Chionoecetes bairdi) in Alaska, an estimated 11 500
crab exuviae were reported in an area of approxi-
mately 0.034 km2 [22]. From a farm management
perspective, this molting plasticity has the potential
to be useful for production planning, both in labor
management and in the harvesting schedule. For
example, changing the lighting scheme, temperature
or even the direction of water flow to avoid conspecific
cues could stimulate or prolong molting, according to
the farm’s requirements.

Wild-caught crabs had lower molting rate and
higher mortality rate than cultured crabs. This was
not unexpected, since gill nets are the primary fish-
ing gear for blue swimming crab in Thailand [23].
Trauma from gear entanglement, air/temperature ex-
posure and mishandling during transportation [24]
contribute to high mortality rates. However, to achieve
commercial-scale blue swimming crab culture that is
profitable, better survival rates, especially at early and
late larval stages [25] and higher stocking density must
be realized.

The proposed molting detection method consists
of three main stages: (1) preprocessing, (2) crab detec-
tion, and (3) molting classification. The preprocessing
stage prepares the images to eliminate noise. In
our trial, noise was caused by low-light photography
(higher ISO light sensitivity) as well as by the netting
covering each box, which interfered with the crab
detection system. Most noise interference was char-
acterized as high frequency objects. Thus, a Gaussian
low-pass filter [26] was used to reduce the effect of
that particular noise, while maintaining relatively good
crab area images. The standard deviation variable
in the Gaussian filter was related to the size and
frequency of the netting.

The crab detection stage is designed to detect
the crab area in each green square. As the crab’s
carapace strongly reflects infrared light in contrast to
the background, Otsu’s method [27] was chosen as the
most appropriate tool for this stage. Since the refection
of infrared light across the raft was non-uniform due
to the location of light sources, the appropriate value
of Otsu’s threshold of each green square had to be
adaptive. To accommodate this, Otsu’s method was
applied for each green square separately.

The molting classification equation was designed
to calculate the rate of change in white (crab shell) area
over a fixed time, in this case 5 min. Since each crab
has a different size and posture, it is far more effective
to define the molting classification conditions based
on percentage change of each individual crab area
rather than by a universal fixed constant. Snapshot

images were taken every 10 s to reduce computational
workload. Since actual molting events usually took
under 10 min to complete, a 5-min calculation window
was deemed sufficient to detect any molting. The
program’s user interface was also designed to present
all necessary molting information. It also provides
actual molting details such as date and time, which
may be valuable for future research. To the best of our
knowledge, this is the first attempt to detect molting
by using infrared light reflection and image processing
in this manner.

The testing showed that low threshold settings
(20% and 30%) had the highest hit rates (100%) but
also the lowest precision (13.92% and 22.45%). This
is because the low-threshold levels were extremely
sensitive to any changes in crab area, resulting in
100% detection of actual molting cases. However,
the majority of the detections (77.55%–86.08%) were
false positives, making precision very low. At 40
and 50% thresholds, the hit rate dropped to 90.91%
and 72.73%, respectively, while precision increased to
33.33% and 53.33%. At thresholds of 80–90%, it was
rare for the program to detect any molting. The hit rate
was very low at 9.09% while the precision was 100%,
without a single case of false positive detection.

It is tempting to believe that a good detection
system must have both high hit rate and high precision
at the same time, but this is not always the case.
In some situations such as in facial recognition, it is
more important to have high precision than high hit
rate to avoid the nuisance of too many false positive
detections [28]. However, in the case of molting, each
molt is very important because it is a source of income
for the farm, while false positive detection only causes
minor nuisance, and can be further improved upon
in the program. In the case of a 40% threshold, the
farm would lose almost 10% of the total production but
have little improvement in precision. This loss would
be even greater in the case of a higher threshold. For
these reasons, it is recommended that the threshold for
the current version of the detection program be set at
30% to provide the highest hit rate of molting and to
maximize the soft-shell crab production.

Although a perfect system with 100% hit rate and
precision is nearly impossible to achieve, one can still
improve the system so that both values are relatively
high across different thresholds. One possibility to im-
prove both hit rate and precision is to improve lighting
conditions. Most of the IP cameras have infrared array
LED lights near the lens that cause water reflection
in the center of images and uneven distribution of
light across the raft. This reflection can interfere with
the detection program because the bright white light
results in a higher number of false positive/negative
detections. Meanwhile, around the edge of the raft,
reflection is very dim. To avoid this, the source of
infrared light should be relocated from the top-center
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to the top-left and top-right of the raft to avoid direct
reflection and provide more even light distribution. It
has also been demonstrated that the accuracy of finger
vein authentication technology could be improved by
adjusting the intensity of infrared light [29].

Movements of rafts due to maintenance activities
such as feeding or harvesting also interfere with the
detection system, causing more false positive/negative
detection. Installing augmented reality markers (AR
markers) to track orientation and position of the raft
might resolve this issue. A similar method has been
demonstrated [30] to help visually impaired persons
by recognizing dynamic content and fixed positions.

Crab posture also needs to be considered in the use
of this system, and as a matter for further development.
Some crabs align themselves with the wall in a vertical
position, which makes the detectable area much less
than for a horizontal position. When a crab changes
posture from vertical to horizontal, the detectable
area increases, causing false positive detection. As a
result, “Minimum Crab Size%” was introduced to the
detection configuration so the program would ignore
any area less than a predetermined level.

The conventional method of soft-shell crab (mud
crab) production in Thailand is by floating crab boxes
in earthen ponds, exposing crabs to both sunlight and
rain. Workers physically inspect each box using a
flashlight and personal expertise. The detection system
introduced in this study was designed not only for
blue swimming crab (which cannot be cultured by
conventional methods for biological and physiological
reasons) but also could be adapted to improve the
conventional method for mud crab. The detection
software also lays the groundwork for a novel soft-
shell crab production method by incorporating image
processing technologies with aquaculture. For the
detection system to achieve highest effectiveness, the
entire production facility should be redesigned from
the ground up. Environmental control (to prevent
light interference) and a monitoring system need to
be factored in from the beginning. Monitoring via
cameras would enable the farmer to use less space and
resources by stacking crab boxes vertically, reducing
both the workload and skill required to detect and
collect molted crabs. This, in turn, would enable the
farmer to increase not only the production output but
also the quality of the soft-shell crabs. The size of the
production facility is not limited by the system per se
but by the availability of crab seeds and investment
level. It would also require farmers with a technology-
and data-driven mindset, and initial financial invest-
ment for the system.

CONCLUSION

Labor shortage and unskilled human error contribute
to the significant loss of soft-shell crab production
annually. To improve efficiency and reduce human

workload, an autonomous system to detect molting
has been developed. We have demonstrated that the
reflection of infrared light from the crab’s carapace
in combination with image-analysis software can be
coupled to detect molting.

The authors consider this detection program use-
ful not only for the soft-shell crab industry, but also as a
research platform for any future molting experiments.
Molting frequency, date, and time, along with crab
behavior could be tracked and analyzed in a real-
time fashion. It is also possible to collect data from
various off-site locations simultaneously via internet
network, thus enabling even greater molting detection
and prediction.
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