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ABSTRACT: The biomass burning emission inventory reported by the Global Fire Emissions Database is at a coarse
temporal (monthly) and spatial resolution (0.25°–0.25°) and may not be appropriate for a model simulation or disease
burden investigation. This study estimated an emission inventory of PM10 and PM2.5 caused by biomass burning in
the nine provinces of Northern Thailand during 2012–2016 based on daily, monthly, and annual. The Visible Infrared
Imaging Radiometer Suite (VIIRS) fire counts (375 m-resolutions), land uses, emission factors, and activity data were
applied for the bottom-up estimation. According to the findings, Mae Hong Son (29%), Chiang Mai (20%), and Chiang
Rai (38%), respectively, had the highest proportion of forest fires, savanna and grassland fires, and agricultural fires.
There was a consistent trend between estimated emission and measured PM. The difference in emission ratio of PM2.5
between the current study and GFED4 was 1.2–2.6, 1.4–2.2, and 1.4–2.5 for forest, savannas and grasslands, and
agricultural lands, respectively. The uncertainty range of PM2.5 and PM10 emissions from the three types of biomasses
were the same with relative errors of −15% to 27%, −8% to 7%, and −17% to 10%, respectively. The VIIRS fire count
can be used for estimation of biomass burning with finer resolution in both temporal and spatial terms.
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INTRODUCTION

PM10 and PM2.5 emissions in Southeast Asia are a
significant problem recognized by all Asian countries,
and the major source of these two pollutants is an-
thropogenic biomass burning. Its emission rates and
distribution trends have been examined during the past
decade [1]. Northern Thailand is a critical region
experiencing the most severe haze problems in the dry
season, and the atmospheric PM10 and PM2.5 during
this period exceeded the National Ambient Air Quality
Standards [2]. In addition, a high concentration of
PM10 and PM2.5 contributed to a potential health risk
to the local population [3]. An emission inventory is an
important record which shows actual emissions of air
pollutants, and these data can be used as input to an air
pollution forecasting model for appropriate decisions
[4, 5]. Investigations of PM10 and PM2.5 emissions
have been adopted in many Asian countries. In Thai-
land, estimations of PM10 and PM2.5 emissions from
biomass burning between the base years of 2005–2014
were developed [6–8]. However, it was found that
only a few studies included a high resolution of both
temporal and spatial distributions for the Northern part
of Thailand.

Fire hot spots provided crucial information for the
estimation of emissions from areas subject to biomass
burning [7]. The VIIRS active fires with 375-m resolu-
tion of the MODIS fire detection instrument has been
improved for the detection of small fires and nighttime
occurrences [9]. The VIIRS-375 m fire result showed a

higher rate of small fire detections and a greater num-
ber of hot spots using MODIS at 1 km resolution such
as MOD14A1/MYD14A1, which has made it possible
to estimate the high resolution of emissions than the
Global Fire Emission Database (GFED) [6] which did
not cover small fires [10]. Crop fires that were sporadic
were not detected by the repeat cycle of satellites like
active fires, resulting uncertainty in estimation. The
burned area product (MCD64A1) can be used to vali-
date the estimated burned area of a hot spot from the
VIIRS. The Geographic Information Systems (GIS) was
employed as a tool to generate a temporal-spatial dis-
tribution and the concentration of particulate matters
[11, 12]. Evaluation was an essential process in the
quantification of an emission inventory to determine
the uncertainties of emission factors, activity data and
estimated emissions. The Monte Carlo method has
been adopted which is frequently used to quantify the
uncertainty of air pollutant emissions from biomass
burning.

The purpose of this study was to estimate an
emission inventory of PM10 and PM2.5 from each type
of biomass burning with high temporal and spatial
resolutions based on daily, monthly, and annual, by
using the fire count data from the VIIRS instrument
which was gridded to the 1 km×1 km resolution by the
GIS tool. The uncertainty of the calculated emissions,
emission factors and activity data were evaluated by
the Monte Carlo method. In addition, the trend be-
tween the estimated emissions and the monitored PM
concentrations were plotted. This study would be the
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first nationally to develop a high temporal (daily) and
spatial resolution (1 km×1 km) of biomass emission
inventory from the active fire.

MATERIALS AND METHODS

Study domain

The nine provinces in the Northern Thailand includ-
ing Chiang Mai, Chiang Rai, Lampang, Lamphun,
Mae Hong Son, Nan, Phayao, Phrae, and Tak are lo-
cated between latitudes 14.90° N–20.46° N, longitudes
97.32° E–101.40° E and they are adjacent to the border
of Myanmar and Laos (Fig. S1). The entire area covers
102 259 km−2 with a total population of 6.5 million.
The main geographical features are mountainous areas
with a variety of forests and agriculture. This region
exposed to air pollution haze episodes over the last
decades. Many fire hots spot is frequently found in the
inner forest areas with a high slope topography which
is difficult to access and control [8]. The level of PM10
concentrations from most of the PCD air monitoring
stations in the study domain were approximately 1 to
3 times higher than Thailand’s daily ambient air quality
standard (120 µg/m3) in the dry season [2, 13, 14] and
similarly for PM2.5 concentrations, for which the daily
ambient air quality standard was 50 µg/m3 during this
period.

Fire count analysis

The result for fire counts were obtained from the
Visible Infrared Imaging Radiometer Suite (VIIRS I-
Band) distributed by NASA’s Fire Information for Re-
source Management System (FIRMS). The high spatial
resolution of fire counts at 375 m from VIIRS has
been improved to give a better response to small fires
and the mapping of large fire perimeters as well as
nighttime detection. Normally, the VIIRS provides a
full global coverage every 12 h with nominal equator-
crossing overpass times at 1.30 pm and 1:30 am. Fortu-
nately, the location of the north and the south of Thai-
land are in the middle latitudes, therefore, two more
rounds of VIIRS overpass Thailand at approximately
12:40 pm (ascending node) and 12:40 am (descending
node) [9]. The land cover data at 500 m×500 m
resolution for the years 2012–2016 were obtained
from the Combined Terra and Aqua Land Cover Type
(MCD12Q1). The 17 classes of MCD12Q1-land cover
were reclassified into 5 main classes according to the
actual land use type of the study area included forests,
shrublands, savannas and grasslands, agricultural, and
others (Fig. S2), however, class no. 5 containing bar-
ren, water bodies, permanent wetlands, and urban
built-up lands was not considered. Fire counts were
then overlaid on the reclassified land cover layer to
generate the biomass fire types.

Emission factors and activity data

Emission factors, burning efficiency, and dry matter
density of forests, savannas and grasslands, and agri-
culture were comprehensively collected from the pub-
lished literature. The priority of data selection was
given to the data obtained in Thailand, followed by
the data from other Asian countries. If these data were
insufficient for Thailand and other Asian countries, the
global data were accepted as shown in Table S1. Emis-
sion factors and activity data influence the accuracy
of emission estimations; therefore, it was necessary to
establish the level of uncertainty.

Emission estimation

A bottom-up approach has been adopted to esti-
mate particulate matter emissions from anthropogenic
sources in various studies [8]. In this study, emissions
from the four main biomass types were initially calcu-
lated for the smallest administrative unit in Thailand
which is called “a sub-district” using the bottom-up
approach to develop a high resolution of PM10 and
PM2.5 emissions on a daily, monthly, and annual basis
using the following equations.

Ei, j =
∑

i

M j×EFi, j (1)

where Ei, j is the total emission of pollutant i (PM10
or PM2.5) from each biomass type j, M j is the amount
of burned biomass type j (kg), EFi, j is emission factor
of biomass type j (g/kg of dry matter). Amount of
biomass burned (M j) was calculated by Eq. (2) [31].

M = A×ρ×η (2)

where A is area of biomass burned (hectare; ha) which
is calculated by the Eq. (3).

A= Np×Rp×10−4 (3)

where Np is the number of fire counts from the VI-
IRS instrument, Rp is the resolution of VIIRS fires
(375 m-resolution), ρ is dry matter density (tons/ha),
and η is the burning efficiency of each biomass type
(Table S3). Nevertheless, estimated PM2.5 emissions
from the bottom-up method were compared to the
GFED4 emission.

Burned area estimation

The monthly biomass burned area in hectares was
calculated from the number of VIIRS fire counts using
Eq. (3) and validated against the burned area product
from MODIS collection 6 with a grid cell resolution of
500 m (MCD64A1).

Temporal allocation

According to the temporal resolution of the VIIRS fire
counts, the daily, monthly, and annual emissions of
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PM10 or PM2.5 were estimated based on the number
of fire counts on each land cover type (forests, sa-
vannas and grasslands, and type of agriculture), and
then allocated to the sub-district level. The temporal
distribution of PM10 or PM2.5 emissions were validated
by the monitored concentration levels of the 13 PCD
stations located in the study domain.

Spatial allocation

The average annual and five-year emissions of PM10 or
PM2.5 were allocated to grid cells of 1 km×1 km res-
olution by the Inverse Distance Weight (IDW) method
in ArcGIS, as the distribution of fire counts in the study
area was not dense enough to capture the extent of
local surface variations, and then the emission values
of PM10 or PM2.5 for nearby fire hot spots were approx-
imated accordingly.

Evaluation of estimated emissions and uncertainty
analysis

Estimated emissions were then evaluated by compar-
ing them with the monitored particulate matter data.
Because of the limitations of PM2.5 data from the PCD
monitoring station during our study period, the trend
between estimated PM10 emissions and the monitored
PM10 of each PCD monitoring location were only ex-
amined. Moreover, emissions from this study were
compared to the GFED4 emissions. Because emission
factors and activity data were gathered from various
sources, there was a major factor influencing the in-
ventory’s uncertainty. The Monte Carlo simulation was
used to quantify the variation of air pollutant emis-
sions and its input parameters (emission factors and
activity data) [7]. Normally, the specified probability
distributions are a fundamental part of Monte Carlo
simulations which generate the random values of input
parameters, and emissions are estimated accordingly.
The mean and standard deviations of the emission
factors and activity data were determined using the
data in Table S1, and then incorporated into the Monte
Carlo simulation with the Crystal Ball software at
100 000 iterations. The number of iterations was
decided by a sample size, as many iterations increase
accuracy. Finally, the range of estimated uncertainties
in terms of relative error (%) at a 95% Confidence
Interval (CI) was determined according to the Monte
Carlo simulation.

RESULTS AND DISCUSSION

Fire count analysis

The four classes of land cover including forests, shrub-
lands, savannas and grasslands, and different type of
agriculture were classified as biomass burning sources.
However, only a few fire counts were detected in
shrublands at around 0.002% of the total fire counts.
Thus, only forests, savannas and grasslands, and dif-
ferent types of agriculture were employed for emission

estimation. The total number of fire counts from the
three biomass burning sources in the five-year inter-
val were 400 630 points which occurred in the years
2012, 2013, 2014, 2015, and 2016 at 81 261; 74 522;
76 886; 75 863; and 92 098 points, respectively. The
highest number of fire counts was from savannas and
grasslands, followed by forests and agricultural areas.
A similar trend of forest for forest fires was observed
during 2012–2015, however, it was clearly increased
in 2016, which showed the same pattern as presented
in the summary report of forest fires and smog with
satellite images [32]. While the trend of fire counts
from savannas and grasslands and agricultural areas
did not change much during the study period as shown
in Fig. S3.

The pattern of VIIRS fire counts from forests
clearly increased in January and escalated until April,
and the highest was in March which shows a similar
pattern to that of previous studies [8], and the forest
fires in Northern Thailand was normally surface fires
from dipterocarp and mixed deciduous forests, which
shed their leaves in the dry season. This is the season
for forest fires since it is the time of harvesting and
preparation of the land for the next planting season
in the up-coming rainy season. While the temporal
distribution of savanna and grassland fires showed sim-
ilar pattern to forest fires, it seems that the incidence
of fires from savannas and grasslands possibly results
from litter build-up in areas where forests have been
unusually [33]. There has been a remarkable trend
in agricultural fires which differ from that of forests
and savannas and grasslands. These agricultural fires
usually start in December and continually increase un-
til May. This rising trend results from crop harvesting
activity.

The provincial allocation of fire counts on each
type of land cover in the nine provinces during 2012–
2016 is shown in Fig. S4. High proportions of forest
fires were found in Mae Hong Son (29%), Chiang Mai
(22%), and Tak (14%), which are like the findings
in Junpen [8] who found that the highest density of
fire in these three provinces was in the year 2007.
The greatest proportion of savanna and grassland fire
was observed in Chiang Mai (20%), Tak (19%), and
Nan (15%). The highest number of agricultural fires
was detected in Chiang Rai (38%) and Phayao (18%),
which were related to the burning of crop residues e.g.
rice, maize, etc [34].

Burned area estimation

The annual estimated burned area derived from the
active fire count (VIIRS) was compared to the burned
area product from the MCD64A1. Generally, the esti-
mated burned area from this study was higher. The
range ratio of burned area between this study and
MCD64A1 for forest, savannas and grasslands, and
agricultural from 2012 to 2016 was 1.0–2.1, 1.5–2.3,
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Table 1 Comparison of estimated burned area and MCD64A1.

Forest Savanna Agricultural Ratio
Year burned area (ha) burned area (ha) burned area (ha) (VIIRS vs. MCD64A1)

VIIRS MCD64A1 VIIRS MCD64A1 VIIRS MCD64A1 Forest Savanna Agricultural

2012 437 161 603 769 661 725 423 193 42 384 22 934 0.7 1.6 1.8
2013 412 284 199 135 599 484 265 522 32 175 19 014 2.1 2.3 1.7
2014 497 489 507 023 629 522 389 048 43 748 25 459 1.0 1.6 1.7
2015 463 303 445 659 563 048 372 328 37 167 35 115 1.0 1.5 1.1
2016 636 258 366 311 612 323 419 661 42 609 29 826 1.7 1.5 1.4

Total 2 446 495 2 121 897 3 066 102 1 869 752 198 083 132 348 – – –

Ratio is the fraction between estimated burned area of this study and the MCD64A1 burned area. Ratio less than 1.0 mean
the estimated burned area of this study was lower than the MCD64A1.

and 1.1–1.8, respectively. The closed ratio between
VIIRS and MCD64 burn areas was shown in forest fires
during 2014 and 2015 (Table 1). While savannas and
agricultural fires were small and short live burning,
therefore, the ratio of estimated burning area using
fire count from the VIIRS is normally higher than
MCD64A1.

Emissions of PM10 and PM2.5

The total annual PM10 and PM2.5 emissions (tons) and
their standard deviations for each biomass type are
summarized in Table S2. The emissions of PM10 from
all biomass types during 2012–2016 were 298 002,
279 476, 332 750, 308 540, and 415 173 tons, respec-
tively. The total emissions of PM2.5 were 217 746,
204 018, 242 502, 224 720, and 301 494 tons, respec-
tively. The emissions for forest, savannas and grass-
lands, and agriculture areas in this study during 2012–
2016 varied between 86.3%–91.9%, 7.3%–12.4%, and
0.8%–1.3%, respectively. Forest fires were the main
contributor of PM10 and PM2.5 emissions that were
similar to the results of previous studies [35]. The
largest emissions of PM10 and PM2.5 from forest fires
occurred in Mae Hong Son (140 560 and 100 777 tons)
and Chiang Mai (107 947 and 77 394 tons), which
were consistent with the proportions of their forest
area (86.5% and 69.9%, respectively) [5]. PM10
and PM2.5 from savannas and grasslands were mainly
emitted from Chiang Mai (10 067 and 8 358 tons) and
Tak (9 982 and 8 275 tons). A high amount of PM10
from agricultural areas was released from Chiang Rai
(1 913 and 1 688 ton) and Phayao (927 and 818 tons)
as both provinces have the two largest agricultural
areas of upper-northern Thailand with 48.6% and
40.1% of their total area, respectively (base year 2013–
2015) [4].

Most of the estimated PM2.5 emissions from this
study were higher than the GFED4 emissions. And
the emission ratios in this study ranged from 1.2 to
2.6, 1.4 to 2.2, and 1.4 to 2.5 for forest, savannas
and grasslands, and agriculture, respectively (Table 2).
However, these range ratios were lower than the study

of Boonman [36] that compared the estimated PM2.5
emission to the GFED3.1 and found the range ratio of
51 and 31 for forest and agricultural, respectively.

Temporal emission distribution

The monthly PM10 and PM2.5 emissions from biomass
burning of the study during 2012–2016 were shown
in Fig. 1(a). The values were conspicuously high in
February–April, similar to the variation in the trend
of fire counts [35, 37] and burned areas. Fig. 1(b)
shows the daily emissions of PM10 of the period
February–April 2014, which fluctuated over this period
of three months with the highest emission volume of
17 950 tons. In addition, the daily PM10 variations
during this period were consistent with the temporal
trends of the maximum PM10 concentrations from the
PCD station as shown in Fig. 1(b).

Distribution of Spatial emissions

The annual spatial distributions of PM10 in Northern
Thailand at 1 km×1 km resolution were shown in
Fig. 2. Emission rates varied between 0.5–50 tons/ha
depending on the number of fire counts and land
cover types. Moderate volumes of PM10 emissions
(>30 tons/ha) were repeatedly found in Mae Hong
Son, Chiang Mai, and Tak during the 5-year period.
These areas have a high density of forest. Emissions
of PM10 in 2005–2009 were reported to range from
>0.1 tons/ha with high intensity in Mae Hong Son and
the Chiang Mai area [8]. The average five-year PM10
emission was significantly high in Mea Hong Son with
emissions of over 10 tons/ha which covered all sub-
districts and differed from other provinces that showed
lower emissions (<10 tons/ha) in some areas. The
area with lower PM10 emissions (<10 tons/ha) was
mainly crop land.

The spatial emission distribution of PM2.5 was sim-
ilar to PM10, but with lower concentration of emissions.
Emissions of PM2.5 varied between 0.5–40 tons/ha in
the study. Moderate emissions of PM2.5 (>30 tons/ha)
were also found in some sub-districts of Chiang Mai,
Mae Hong Son, and Tak during the 5 year period. The
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Table 2 Comparison of estimated PM2.5 and GFED4 emissions.

Forest emission Savanna emission Agricultural emission Ratio
Year (tons) (tons) (tons) (VIIRS vs. GFED4)

VIIRS GFED4 VIIRS GFED4 VIIRS GFED4 Forest Savanna Agricultural

2012 187 926 214 640 27 021 17 623 2799 1139 0.9 1.5 2.5
2013 177 299 72 871 24 566 11 057 2154 945 2.6 2.2 2.3
2014 298 343 182 049 25 716 16 201 2884 1265 1.6 1.6 2.3
2015 199 176 160 604 23 047 15 505 2497 1744 1.2 1.5 1.4
2016 273 641 116 833 25 058 17 476 2795 1482 2.3 1.4 1.9

Total 1 136 385 746 997 125 408 77 862 13 129 6575 – – –

Ratio is the fraction between estimated emission of this study and the GFED4. Ratio less than 1.0 mean the emission of
this study is lower estimated than GFED4.
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Fig. 1 (a) Monthly temporal distribution of PM10 and PM2.5 emission during 2012–2016. (b) Daily temporal PM10 emission
during February to April 2014.
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2012 2013 2014

2015 2016 Average 5 year

Fig. 2 Annual and average five-year emission of PM10 from all types of biomass burning (forests, savannas and grasslands,
and agricultures).

2012 2013 2014

2015 2016 Average 5 year

Fig. 3 Annual and average five-year emission of PM2.5 from all types of biomass burning (forests, savannas and grasslands,
and agricultures).
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average five-year spatial PM2.5 emission distribution
was similar to PM10 which showed emissions of over
10 tons/ha in provinces with a high density of forest
as shown in Fig. 3.

Uncertainty analysis

The uncertainty range of PM10 and PM2.5 emissions
from biomass burning is summarized in Table S4. The
highest uncertainty range was found in forests with
approximately −15% to 27% at 95% CI, as most of
the forest burned continuously day and night, and
developed into large fires, so they could be detected
by satellite at both day and night which caused a high
uncertainty rate. The uncertainty range of forest emis-
sions in this study is like the base year 2005–2009 at
approximately 20% [8]. The estimated emissions from
the forest with a positive 27% had a large overestima-
tion, while the estimated emissions from agriculture
with a minus 17% had the most underestimation. The
most accurate prediction of emissions was made in
savannas and grasslands.

The uncertainty ranges of biomass burning, in-
cluding burning straw, and forest and grassland fires in
the mainland of China in 2012 were in the same inter-
val with this study at −7% and 6% for PM10 and −13%
and 1% for PM2.5, respectively [38]. However, the type
of software and the number of iterations of uncertainty
testing may affect the uncertainty estimation result.

CONCLUSION

We investigated the number of fires on each land cover
type, forests, savannas and grasslands, and agricultural
areas of nine provinces in the Northern Thailand using
the fire count data from the VIIRS instrument. Extreme
amounts of PM10 and PM2.5 were emitted from forest
fires in Mae Hong Son and Chiang Mai, while emissions
of PM10 and PM2.5 from savanna and grassland fires
were high in Chiang Mai and Tak, and there was
a significant volume of emissions from agricultural
fires in Chiang Rai and Phayao provinces. Annual
emissions of PM10 and PM2.5 emissions during 2012–
2016 were 298 002, 279 476, 332 750, 308 540 and
415 173 tons, and 217 746, 204 018, 242 502, 224 720
and 301 494 tons, respectively. The temporal daily
estimated PM10 emissions were consistent with the
maximum PM10 concentrations obtained from the PCD
monitoring station. The highest uncertainty ranges
of PM10 and PM2.5 emissions from biomass burning
were found in forest fires with approximately −15% to
27% at 95% CI. The estimated PM2.5 emissions from
VIIRS were greater than the GFED4 emissions because
they were covered by smaller fires at 375-m resolution.
The estimated emission and burned area of this study,
on the other hand, were finer in terms of temporal
and spatial resolution, with daily and 1 km×1 km
grided. The limitation of our study was the lack of
meteorological parameters that affected the emission

dispersion, such as wind speed, wind direction, and
planetary boundary layer. Therefore, the correlation
between these parameters and PM emissions should be
given more attention in the future.

Appendix A. Supplementary data

Supplementary data associated with this article can be
found at http://dx.doi.org/10.2306/scienceasia1513-1874.
2022.040.
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Appendix A. Supplementary data

Table S1 Compiled emission factors and activity data for PM10 and PM2.5 emission estimation.

Parameters and biomass type Particle size Compiled data

Forests
PM10 18.5 [15], 10.5 [16], 17.8 [17], 12.8 [18]
PM2.5 9.1 [15], 9.1 [16], 13 [17], 9.93 [18], 12.3 [26]

Savannas and grasslands
PM10 7.2 [8], 10 [20], 8.3 [35]
PM2.5 7.71 [1], 5.4 [4], 6.6 [8], 7.65 [19], 8.3 [20]

Agricultures
PM10 11.64 [1], 9.4 [4], 8.87 [22], 9.4 [23], 11.95 [23]
PM2.5 6.26 [1], 8.3 [4], 8.25 [21], 8.48 [22], 11.1 [23], 8.3 [37]

Forests PM10/ PM2.5 0.88 [18], 0.78 [21], 0.5 [24], 0.6 [25]

Savannas and grasslands PM10/ PM2.5 0.5 [5], 0.76 [26], 0.73 [35]

Agricultures PM10/ PM2.5 0.92 [25], 0.8 [27], 0.68 [27], 0.9 [28]

Forests PM10/ PM2.5 59.44 [7], 46.7 [28], 68.7 [35]

Savannas and grasslands PM10/ PM2.5 6.2 [8], 10.06 [28], 10 [29]

Agricultures PM10/ PM2.5 9.4 [5], 10.44, 8.9 [14], 5.05 [30]

Table S2 Annual emission of PM10 and PM2.5 from the three types of biomass burning (tons) during 2012–2016.

Type of biomass
Annually PM10 emission (tons)

2012 2013 2014 2015 2016 Average Standard deviation

Forests 262,112 247,290 298,343 277,804 381,664 293,442 52,828
(88.0%) (88.5%) (89.7%) (90.0%) (91.9%)

Savannas and 32,717 29,745 31,137 27,906 30,341 30,369 1,772
grasslands (11.0%) (10.6%) (9.4%) (9.0%) (7.3%)

Agriculture 3,173 2,442 3,269 2,831 3,168 2,977 342
(1.1%) (0.9%) (1.0%) (0.9%) (0.8%)

Total (tons) 298,002 279,476 332,750 308,540 415,173 326,788 53,027
(100%) (100%) (100%) (100%) (100%)

Type of biomass
Annually PM2.5 emission (tons)

2012 2013 2014 2015 2016 Average Standard deviation

Forests 187,926 177,299 213,902 199,176 273,641 210,389 37,876
(86.3%) (86.9%) (88.2%) (88.6%) (90.8%)

Savannas and 27,558 25,186 26,131 23,421 25,792 25,081 1,464
grasslands (12.4%) (12.0%) (10.6%) (10.3%) (8.3%)

Agriculture 2,799 2,154 2,884 2,497 2,795 2,626 302
(1.3%) (1.1%) (1.2%) (1.1%) (0.9%)

Total (tons) 218,283 204,018 242,502 224,720 301,494 238,096 38,056
(100%) (100%) (100%) (100%) (100%)

Table S3 Parameters for emission calculation.

Biomass type Dry matter density (ρ) Burning efficiency (η)

Forests 58.28 [11, 28] 0.69 [10, 25, 27]
Savannas and grasslands 8.75 [13, 29] 0.66 [8, 18, 24, 25]
Agriculture 9.92 [1, 26, 30] 0.80 [19, 26, 31]
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Table S4 Uncertainties of estimated emission in the nine provinces of the northern Thailand in the five-year interval (2012–2016).

PM type Biomass type Average estimated EI (95% CI) Relative error

PM10 Forests 293,442 (248,772, 373,332) (−15%, 27%)
Savannas and grasslands 30,908 (28,491, 33,088) (−8%, 7%)
Agriculture 2,977 (2,481, 3,260) (−17%, 10%)

PM2.5 Forests 210,389 (178,362, 267,667) (−15%, 27%)
Savannas and grasslands 25,618 (23,598, 27,415) (−8%, 7%)
Agricultures 2,626 (2,188, 2,876) (−17%, 10%)

Thailand

Laos

Cambodia

Fig. S1 Study domain.

Evergreen Needleleaf Forests
Evergreen Broadleaf Forests
Deciduous Needleleaf Forests
Deciduous Broadleaf Forests
Mixed Forests
Closed Shrublands
Open Shrublands
Woody Savannas
Savannas
Grasslands
Croplands
Cropland/Natural Vegetation Mosaics 
Permanent Snow and Ice
Barren 
Water Bodies 
Permanent Wetlands
Urban and Built-up Lands

17 classes of MCD12Q1-land cover 5 classes of reclassified land cover 

Forests 

Shrublands 

Savannas and Grasslands

Agricultures

Others

Fig. S2 Reclassification of land cover from 17 classes of MODIS (MCD12Q1) to 5 classes.
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Fig. S3 Annual variations of VIIRS fire counts from the four classes of biomass in the upper-north region 2012–2016.
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Fig. S4 Provincial allocation of fire counts categorized by land cover type: forest, savannas and grasslands, and agricultures
during 2012–2016.
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