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Research progress of plant-derived aconitine as insecticide
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ABSTRACT: In recent years, increasing attention is being given to the effective protection of the environment. The
use of pesticides is a common practice in agriculture. At present, finding effective and safe pesticides is important for
research in agricultural application. Botanical insecticides are environmentally friendly because of their environmental
viability and easy degradation. However, there are still some problems in the development and utilization of botanical
insecticides leading to a bottleneck in the process. In order to facilitate the development of botanical insecticides, this
review uses aconitine as an example to summarize the research progress, the detection and analysis, and the carrier
materials to optimize its usage and storage.
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INTRODUCTION

The changes of human lifestyle in the present world
with high-technology and new things emerging around
are recognized. In such an environment, people have
paid more attention to the development concept of
environmental protection, green practices, and food
security. For high agricultural productivity, though the
use of chemical insecticides is effective in prevention
of insect pests [1], but a large number of agricultural
products, soils, and even water sources for drinking or
irrigation production, especially the increasingly abun-
dant food markets, have been damaged by residues
from the use of chemical pesticides. Therefore, re-
search on effective and safe pesticides and insecticides
is important. In particular, botanical insecticides have
several advantages such as environmental survivabil-
ity, easy degradation, and environmental friendliness
[2–4]. However, the applications of these natural

products in agricultural insecticides still have some
limitations.

Therefore, studying the structural characteristics
of botanical insecticides, the mechanism of structural
changes in the environment, the safety evaluation of
beneficial organisms and the introduction of inorganic
materials as a carrier to solve the easy hydrolysis or
difficult degradation of plant-derived insecticides or
in drug application will play a crucial role in the
development and application of botanical insecticides.
This review describes research progress on aconitine as
an attractive example of plant-based insecticides for a
sustainable green environment.

ACONITINE FROM A BOTANICAL EXTRACT

It is urgent for researchers in related fields to
find ideal pesticides that are not only in line
with the development of modern safe, green,
and environmental protection agriculture, but are

Fig. 1 (a) Medicinal herbs from Aconitum carmichaeli Debx
and (b) the molecular structure of aconitine.

also widely accepted and used [5–7]. There are
many extraction methods for aconitine such as
acid extraction, alcohol extraction, semi-bionic
extraction, and supercritical CO2 extraction. The main
method is extraction of aconitine with anhydrous
ethanol. The common separation methods of
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aconitine are silica gel column chromatography, Al2O3
column chromatography, high speed countercurrent
chromatography, macroporous resin separation, and
ion exchange resin separation. Through continuous
improvement of extraction and separation technology,
several kinds of typical double ester alkaloids have
been separated from high top Ranunculaceae plant,
including aconitine, neoconitine, mesaconitine, and
hypaconitine [8–10]. Among them, aconitine has
the strongest insecticidal activity [11–14]. According
to the literature, different aconitum (aconite or
monkshood) sources contain varied alkaloids. For
example, mesaconitine is the main compound of
Aconitum kusnezofi, aconitine is the main alkaloid
in Aconitum napellus, and the main constituents
of Aconitum carmichaeli are hypaconitine and
mesaconitine [15]. Aconitine is the main ingredient
in the roots (Radix Aconiti Kusnezoffii and Radix
Aconiti Carmichaeli), stems, and leaves of these
plants (Fig. 1). Three hydroxyl and two ester groups
are present in this alkaloid; the latter is reported
to be a toxic part [16]. Due to its high toxicity,
aconitine has been used as a pesticide for a long time,
and a good insecticidal effect on Plutella xylostella,
Pieris rapae, and Armyworm was found. In recent
years, Wang et al [17] introduced sulfonyl groups
into aconitine (S(−−O)2C34H47NO11). Moreover,
Xu et al [18] prepared new alkyl and acyl aconitines
((COC2H5)C34H47NO11 and (COC6H5)C34H47NO11,
respectively). Wang [19] synthesized 3,13-ester
based aconitines, (COC2H5)(COC6H5)C34H47NO11
and tested their insecticidal activity. These molecular
structures of aconitine were modified to improve its
properties, which provided great achievements. It was
concluded that the modification of aconitine required
the retention of the hydroxyl group of C3, which was
crucial to the insecticidal activity.

THE CRYSTAL STRUCTURE OF ACONITINE

Natural botanical insecticides have attracted wide at-
tention because of their high efficiency, less residues,
and compliance with environmental factors. Since the
1960s, many scholars have conducted in-depth studies
on the separation [20, 21], determination [22], and
application of aconitine [23–25]. Pu et al [26] reported
an unexpected crystal structure of aconitine and re-
vealed the main reason for the spontaneous transfor-
mation of aconitine solid powders into crystals in air.
The crystal was characterized by X-ray single crystal
diffraction analysis and elemental analysis. Its main
structure consists of four six-membered rings and two
five-membered rings (Fig. 2). Intramolecular and in-
termolecular O−H · · ·O and C−H · · ·O hydrogen bonds
extend neighboring molecules into one-dimensional
chains and two-dimensional skeletons, which may be
the primary factor for this change.

THERMAL STABILITY AND HYDROLYSIS
CHARACTERISTICS OF ACONITINE

Though botanical pesticides are highly favored [27],
the insecticidal aconitum alkaloids are easily hy-
drolyzed. As a result, their potency is not long last-
ing [28–32]. In order to solve such disadvantages,
it is necessary to study the structural characteristics
of aconitine itself such as its thermal stability and
hydrolysis characteristics, which provides theoretical
basis for its storage and pharmacodynamic conditions
in the process of use. Our research group discussed
the thermal degradation mechanism of aconitine and
the thermal effect of hydrolysis mechanism by using
microcalorimetry and thermogravimetric method as
shown in Fig. 3 [33]. The thermal degradation of
aconitine in air exhibited one further additional step
at 484–579 °C compared to the degradation under
nitrogen atmosphere (Fig. 3a). This was because small
molecules containing C compounds were further oxi-
dized to CO2 by oxygen in the air. Under nitrogen at-
mosphere, aconitine was not completely oxidized and
decomposed. Fig. 3b showed that the pyrolysis pro-
cess at different heating rates was basically consistent.
Aconitine underwent an exothermic reaction in both
pure water and soil filtrate environments (Fig. 3c). In
general, aconitine readily hydrolyzes to subaconitine
and other molecules, which will greatly reduce the
drug activity. Aconitine was thus unstable in air and
should be stored under low temperature and dry con-
ditions.

Many natural plant-derived insecticides which are
unstable in structure and easily hydrolyzed can im-
prove the degradation rate of insecticides and reduce
the amount of the pesticide residue. Problems caused
by degradation can be avoided by drug loading before
and during pesticide use, such as the introduction of
mesoporous materials as carriers.

THE DETECTION METHOD OF ACONITINE

Aconitine has some value in the treatment of arthri-
tis and rheumatic diseases due to its analgesic effect
[34, 35], but it is also known for its toxicity. Ingestion
of 0.2 mg aconitine will cause vomiting, diarrhea, sen-
sory paralysis, and other toxic symptoms. More than
3 mg can cause heart and lung failure and even death
[36, 37]. It is necessary to develop a rapid detection
method for aconitine in order to avoid the accidents
caused by overdose and sudden food poisoning.

At present, high performance liquid chromatogra-
phy [38, 39] and chromatography tandem mass spec-
trometry [40] have been used for the determination
of aconitine, hypaconitine, and neoconitine in blood
and other biological samples. Zhang et al [41] qual-
itatively and quantitatively determined a variety of
aconite alkaloids and related metabolites in the blood
and urine of aconite poisoning patients and compared
the metabolite contents in blood and urine using ul-
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Fig. 2 Diagram of the experimental setup. Two-dimensional structure of aconitine viewed from the b-axis. The dashed lines
represent the C−H · · ·O hydrogen bonds. The black spheres represent carbon atoms, the red ones show oxygen atoms, and
the blue ones are the nitrogen atoms [26]. Figure reprinted with permission from Chinese J Struct Chem.

Fig. 3 (a) TG curve of aconitine (β = 5 °C/min), (b) TG curve of aconitine in air (β = 3, 5, 10, 15, 20 °C/min) and (c) heat
release rate (dH/d t) in the entire reaction process of aconitine [33]. Figure reprinted with permission from CIESC J.

tra performance liquid chromatography coupled with
quadrupole-time of flight mass spectrometry (UPLC/Q-
TOF-MS). This method is simple and accurate and can
quickly detect aconite alkaloids in samples.

Pang et al [42] established an ultra-performance
liquid chromatography-tandem mass spectrometry
(UPLC-MS/MS) method for the simultaneous deter-
mination of three kinds of aconitoid alkaloids. The
determination was performed on ACQUITY UPLC BEH
C18 column (50 mm, 2.1 mm, 1.7 µm) at 35 °C with
mobile phase consisting of 0.1% formic acid – acetoni-
trile solution at the flow rate of 0.25 ml/min. Multiple
reaction monitoring (MRM) was performed using elec-
trospray ion source (ESI) and positive ion mode. The
mass concentrations of aconitine, hypaconitine, and
neoconitine were 0.9198–91.9800 ng/ml (r = 0.9978,
n = 7), 1.048–104.800 ng/ml (r = 0.9974, n = 7),
and 1.268–126.800 ng/ml (r = 9998, n = 7), respec-
tively. The method was found to be simple, precise,
reproducible, highly specific, and accurate. It can be
used for simultaneous determination of three kinds of
aconitoid alkaloids in the Zouchuan Guci Tincture, a
Chinese traditional medicine.

Zhang et al [43] modified the surface of C18

column with positive charge to significantly improve
the peak shape and sample load of alkaline com-
pounds. This type of column uses an electrostatically
controlled bonding on unique surface to introduce a
partial charge onto the surface of the reversed bonded
silica gel, achieving a perfect balance of hydrophobic-
ity/hydrophilicity and electrostatic characteristics on
the packing surface, which significantly improves the
performance of all columns. In this study, alkaline
compounds with high separation selectivity were se-
lected as analytes for separation on this improved chro-
matographic column with 0.05% water phosphate and
acetonitrile as mobile phase. This method avoided the
use of tetrahydrofuran, chloroform, and other highly
toxic organic solvents.

However, the use of these methods is limited
because they require sophisticated instruments and
professional operators. Several other detection meth-
ods are being developed. Enzyme-linked immunosor-
bent assay (ELISA) combines highly sensitive enzyme
biocatalysis with highly selective antigen and anti-
body recognition. The enzyme-catalyzed oxidation of
3,3′,5,5′-tetramethyl benzidine (3,3′,5,5′-tetramethyl
benzidine, TMB) produces different shades of yel-
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Fig. 4 (a) Scheme of the proposed ELISA biosensor for aconitine detection with naked eyes; (b) UV-Vis spectra of etched gold
nanorods caused by different concentrations of aconitine; (c) standard curve of LSPR shift (λ) and concentration of aconitine
for gold nanorods; (d) the sensor color changes with different doses of aconitine. The concentrations of aconitine are as
follows: 0, 5, 10, 15, 20, 25, 30, and 35 ng/l [48]. Figure reprinted with permission from J Food Safety Quality.

low solution after adding termination solution. This
method has been widely used in the analysis and detec-
tion of supernatant of aconitine in plant tissues/cells
and related liquid samples [44].

Lin et al constructed a series of multicolor ELISA
sensing platforms to regulate the aspect ratio of gold
nanorods based on target objects [45–47]. As a result
of the compaction effect of Localized Surface Plasmon
Resonance (LSPR), the metal rod solutions with dif-
ferent aspect ratios exhibit colorful colors [44]. The
transition from the traditional single-color change to
the multi-color change greatly improves the sensitivity
and accuracy of the detection. In this study [48], a
multicolor colorimetric enzyme linked immunosensor
was constructed for the visual detection of aconitine
by naked eyes (Fig. 4). In the presence of aconi-
tine, the horseradish peroxidase (HRP)-conjugated an-
tibody forms a complex with aconitine. HRP fixed
on the micropore oxidizes TMB to TMB+, which is

converted to TMB2+ in an acidic environment. TMB2+

can rapidly etch gold nanorods, forming gold nanorods
with different aspect ratios and presenting rich color
changes so as to realize the naked-eye visual semi-
quantitative detection of aconitine [46]. According to
the relationship between the shift of the LSPR absorp-
tion peak and the concentration of aconitine, it was
used for the quantitative detection of aconitine in order
to improve its on-site real-time detection ability.

In addition, near infrared spectroscopy (NIRS) is
widely used in various fields of traditional Chinese
medicine (TCM) due to its advantages of fast and
non-destructive and no need for sample pretreatment.
Some examples include quality analysis of TCM raw
materials and TCM preparations [49–51], an online
monitoring and control of TCM pharmaceutical pro-
cess [52–54], and real-time release strategy of TCM
products [55, 56]. A fast non-destructive method for
the detection of multi-index components in aconite
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was developed by using NIRS combined with partial
least squares (PLS) and least squares support vector
machine (LS-SVM) [57]. PLS and LS-SVM were used
to establish the quantitative correction model between
the determination value of each component by HPLC
and the NIRS map of aconite samples. The relative
prediction deviations (RPD) of the LS-SVM models
for total amount of benzoylneocaconitine, benzoy-
laconitine, benzoylhypaconitine, mesaconitine, hypa-
conitine, aconitine, monoester alkaloids, and diester
alkaloids were 3.3, 3.2, 4.1, 7.7, 8.8, 7.6, 4.0, and 8.6,
respectively. Their verification set correlation coeffi-
cients were 0.9486, 0.9475, 0.9668, 0.9909, 0.9946,
0.9969, 0.9669, and 0.9927, respectively. These re-
sults showed that the NIRS model verification set has a
good nonlinear relationship with the measured values
by HPLC. NIRS technology combined with LS-SVM
model can be used to quickly detect the contents of
the above six alkaloids as well as the total amount
of single ester alkaloids and double ester alkaloids in
Radix Aconite.

ACONITINE AS A PESTICIDE

P. xylostella and P. rapae are the main pests for crucif-
erous vegetables at present, which cause the decline in
vegetable yield and quality or even failure of harvest
in severe cases, posing a serious threat to vegetable
production [58]. Due to the continuous, frequent, and
high dosage of insecticides, the resistance and mutual
resistance of these two pests to various insecticides
are continuously strengthened. Drug prevention and
control effects are not ideal. Pesticide dosage is getting
higher, and the interval between applications is getting
progressively shorter. These problems lead to excessive
pesticide residues in vegetable products, drastically
affecting the food safety of consumers. Therefore,
exploring the use of new pesticides with high efficiency,
low toxicity, and low residue is of great importance
for the production of pollution-free vegetables. As
a kind of biological pesticides, botanical pesticides
usually have the characteristics of high efficiency, easy
degradation, no pollution, and non-toxic side effects,
making them green pesticides. The first consideration
of this pesticide is its environmental compatibility, and
the second is its biological activity. Phytogenic pesti-
cides refer to plants and their secondary metabolites
used in the prevention and control of diseases and
insect pests, mainly including plant toxins that cause
effects such as insect food resistance, growth inhibi-
tion, avoidance, repellent, oviposition rejection, etc.
Pesticides extracted from plants have medicinal and
fertilizing functions. They have no residual poison and
pesticide harm and play an important role in the con-
trol of crop diseases and insect pests. Yang et al [59]
measured the inhibitory effects of several plant-derived
active substances on the proliferation activity of in
vitro cultured cells of Spodoptera exigua. The re-

sults demonstrated that camptothecin, hydroxycamp-
tothecin, and rotenone had better inhibitory effects on
the cells of S. exigua. Jiang et al [60] investigated the
field control effects of two new insecticides, aconitine
and sodium aminobenzate, on rapeseed moth. The
results showed that 0.15% aconitine emulsion and
10% sodium aminobenzate aqueous solution had a
good control effect on the cabbage insect. Hence,
they are two kinds of high efficiency, low toxicity, and
safety control agents for the cabbage insect. Aconi-
tine, hypaconitine, pseudogarnetine, strychnine, and
evoidine had a certain time effect on cytotoxicity, but
there was no obvious dose relationship. Chen and
his colleagues [61] isolated several diterpene alkaloids
from Song Guolin (Aconitum plant of North China)
including total alkaloids, mesaconitine, and aconitine.
The results showed that these alkaloids had obvious
inhibitory effects on rice plant hoppers and alfalfa
aphids. Toxicity analysis in mice reported that the LD50
is 0.12 mg/kg after intravenous injection of aconitine.
For humans, the lethal dose of aconitine is estimated
to be 1–2 mg for a healthy man with a body weight
of 70 kg (15–30 µg/kg) [15]. In insects, detoxi-
fication enzymes mainly include mixed function ox-
idases, carboxylesterases, glutathione-s-transferases,
etc. Insects could reduce toxicity by enhancing the
transformation and degradation of pesticides or pro-
tect their target sites. Studies have shown that ex-
ogenous toxic substances can increase the activity of
carboxylesterase in the larvae of S. schopenhaeria to
fight against external toxic substances, which is an
instinctive reaction of biological detoxification [62].
Activating glutathione-s-transferase can enhance the
metabolism and play a detoxification role, which is the
stress protection response of the test insects to non-
feeding substances [63]. However, at high aconitase
insecticide concentration, the carboxylesterase activity
was significantly inhibited, and its detoxification ability
was lost [63].

ACONITINE ACTS AT DNA LEVEL

DNA carries the important information of reproduc-
tion and heredity of an organism, which is closely
related to the survival and evolution of plants and
animals. Aconitine was found to act at DNA level.
Our group investigated the interaction to determine
the binding sites and the types of forces between
aconitine and DNA of calf thymus, salmon sperm, and
armyworm [64]. Two kinds of binding forms were
found. One form is groove binding with the binding
constant Ka1 of 105. The number of binding sites is
0.40–0.60, and the reaction is a spontaneous process
driven by enthalpy. The other form is the binding of
aconitine molecules to the surface of DNA with binding
constant Ka2 of 103. In addition, molecular simulations
of the binding sites showed that armyworm DNA,
salmon sperm DNA, and calf thymus DNA base chains
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Fig. 5 (a) Scheme of preparation process of lotus mesoporous TiO2 and ultraviolet stimulation for release of aconitine.
(b–g) The TEM patterns of TiO2 treated with NH4F at different concentrations [65]. Figure reprinted with permission from
Elsevier, J Alloy Compd.

and aconitine molecules acted at C8, T33/T34, and
G16/C9/C8, respectively. It is of great significance
to screen or modify drug samples effectively at the
biomolecular level to prevent the harmful effects of
gene damage on living environment.

TiO2 NANOPARTICLES AS A DRUG CARRIER
MATERIAL

Due to the easy hydrolysis of aconitine under natural
conditions, its efficacy cannot be guaranteed during
drug storage and use. If aconitine can be loaded onto
some inorganic material, then it can be stored for a
long time, and the drug can be released during use by
external natural conditions such as sunlight exposure.
This will solve some problems existing in the use of
aconitine as an agricultural insecticide. Therefore, it is
necessary to find an inorganic material with both load-
ing properties and photosensitive properties. The inor-
ganic compound titanium dioxide (TiO2) is extremely
sensitive to ultraviolet light. Different TiO2 crystals
with different structures are sensitive to ultraviolet
light to varied degrees. Such a photosensitive material
with excellent properties plays a very important role

in scientific research, production, and application. If
this carrier material can be effectively introduced into
the field of pesticide production and application, it can
improve the utilization rate of natural products. The
interaction mechanism between the drug molecule and
the carrier material is a key factor. In our research
group, porous titanium dioxide with “lotus root” struc-
ture was synthesized for the first time by an improved
template-free method (Fig. 5) [65]. Aconitine could
be supported in porous TiO2 by simple immersion
with the maximum loading rate of 17.6%. According
to the ultraviolet spectrum of drug release behavior,
the aconitine loaded-porous titanium dioxide particles
could be successfully released by UV irradiation with
release rate of 46.24% (Fig. 6). The “lotus root”
porous titanium dioxide material thus has potential
application value in the storage and use of aconitine.
Similarly, inorganic nanomaterials such as photosen-
sitive mesoporous zinc oxide, tungsten trioxide, and
molybdenum trioxide can also be used as drug carriers
for research and application. The specific materials can
be selected according to cost control and other aspects
such as loading ability.
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Fig. 6 (a) mTiO2-aconitine cycles release as a function of time. (b) Molecular simulation diagram of aconitine molecule and
titanium dioxide (white, gray, red, light blue, and dark blue spheres representing elements H, C, O, Ti, and N, respectively).
Drug loading analysis with different time intervals: (c) drug loading as a function of time and (d) UV-vis absorption
spectra) [65]. Figure reprinted with permission from Elsevier, J Alloy Compd.

CONCLUSION

The plant source, extraction, and detection analysis of
a botanical insecticide aconitine were reviewed. The
unstable structure and easily hydrolyzed properties
made the molecule attractive as an agricultural insec-
ticide for green environment. The interaction between
aconitine and biomolecular DNA studied reflected pos-
sible damages at the gene level. Besides insecticidal
activity, aconitine can be used as an analgesic drug
able to treat arthritis and rheumatic diseases. Potential
applications of aconitine might be enhanced by loading
it in a low toxic, cheap, and light-sensitive porous in-
organic material like TiO2 nanoparticles to protect the
active group of aconitine drug and optimize its storage
and usage conditions. This study can provide new
ideas for the production and processing of botanical
insecticides.
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