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ABSTRACT: Copper(I) and silver(I) chloride complexes containing triphenylphosphine (PPh3) and 4-phenyl-
thiosemicarbazide (4-PTSC) ligands were prepared and structurally analyzed, namely [CuCl(4-PTSC)(PPh3)2] (1) and
[AgCl(4-PTSC)(PPh3)2]CH3CN (2). Both compounds (1) and (2) exhibit a distorted tetrahedral metal coordination
environment with two P atoms from two PPh3 ligands, one terminal S atom from the 4-PTSC ligand and a chloride ion.
Intramolecular N−H · · ·Cl and N−H · · ·N hydrogen bonds are observed (graph set motifs S(6) and S(5), respectively). In
the crystals of both complexes, molecules are linked to form dimers via bifurcated N−H · · ·Cl hydrogen bonds involving
the amine and chloride units. For compound (2), a solvate acetonitrile molecule acts as a hydrogen bond donor and
acceptor via C−H(CH3CN) · · ·Cl and C−H · · ·N(CH3CN) interactions, leading to the formation of 1D chains along [010].

KEYWORDS: silver(I) chloride, copper(I) chloride, 4-phenylthiosemicarbazide, crystal structure, intra- and intermolec-
ular hydrogen bonding

INTRODUCTION

Thiosemicarbazide and thiosemicarbazide deriva-
tives have for several decades attracted attention
due to a range of biological activities that they
possess such as anticancer, antimicrobial, antifun-
gal [1, 2], anticonvulsant, antimalarial, analgesic,
and antiinflammatory properties [3–6]. Therefore,
many scientists have prepared members of these
compounds as target structures to estimate and
evaluate their biological activities. Thiosemicar-
bazides may also act as ligands in metal com-
plexes, featuring both soft sulfur and hard nitro-
gen donor atoms as potential sites for coordination
that give them an affinity for chelation to divalent
metal ions such as Fe2+, Zn2+, Cu2+, and Mn2+

[7, 8]. Many of the thiosemicarbazide’s biological
and pharmaceutical activities are generally assumed
to originate from these metal-complexing proper-
ties and their capacity to act as in vivo reducing
agents. Thiosemicarbazide and their metal com-
plexes have thus been extensively investigated, e.g.
for their antiviral properties [9], or for their an-
ticancer activities [10, 11]. Most notable here is
3-aminopyridine-2-carboxaldehyde (3-AP or Triap-
ine®), which is currently tested in a randomized

phase III trial as an addition to the usual chemother-
apy treatment (Cisplatin) during radiation therapy
for advanced-stage cervical and vaginal cancers
[12, 13]. Several copper(I) and silver(I) complexes
of thiosemicarbazide derivatives have been pre-
pared and characterized, and an unusual enhance-
ment in antitubercular activity has been observed
for some of these complexes [14]. We recently
reported a series of metal thiourea complexes pre-
pared by reacting copper(I) or silver(I) halide with
triphenylphosphane and 1-(4-nitrophenyl)thiourea,
NPTU [15–17]; we report herein the synthesis and
crystal structures of copper(I) and silver(I) chloride
complexes containing triphenylphosphine (PPh3)
and 4-phenylthiosemicarbazide (4-PTSC) ligands
(Fig. 1).

MATERIALS AND METHODS

Materials

The reagents and solvents used in the synthesis
were obtained from commercial suppliers and used
directly without further purification. Copper(I)
chloride, silver(I) chloride, triphenylphosphine, and
4-phenylthiosemicarbazide were purchased from
Sigma Aldrich (USA). Infrared spectra were mea-
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Fig. 1 Chemical structures of [CuCl(4-PTSC)(PPh3)2] (1)
and [AgCl(4-PTSC)(PPh3)2]CH3CN (2).

sured in the region of 4000–400 cm−1 on a Perkin-
Elmer Infrared Spectrophotometer (Spectrum BX,
England) using potassium bromide pellets.

Synthesis of [CuCl(4-PTSC)(PPh3)2] (1)

Triphenylphosphane, PPh3 (0.16 g, 0.61 mmol),
was dissolved in 30 ml of acetonitrile at 339.15 K,
and copper(I) chloride, CuCl (0.03 g, 0.30 mmol),
was added. The mixture was stirred for 3 h, and
then 4-phenylthiosemicarbazide, 4-PTSC (0.05 g,
0.30 mmol), was added. The resulting reaction
mixture was heated under reflux for 7 h during
which the precipitate gradually disappeared. The
resulting clear solution was filtered and left to
evaporate for several days at room temperature,
leaving a crystalline complex, which was filtered
off and dried in vacuo (0.10 g, 42% yield). M.p.
171–172 K. IR bands (KBr, cm−1): 3168.07(w),
1964.93(w), 1888.21(w), 1820.27(w), 1629.43(w),
1594.52(w), 1503.44(w), 1289.86(m), 1090.41(w),
1024.65(w), 897.53(m), 851.50(w), 700.95(s),
509.56(s).

Synthesis of [AgCl(4-PTSC)(PPh3)2]CH3CN (2)

Triphenylphosphine, PPh3 (0.16 g, 0.61 mmol),
was dissolved in 30 ml of acetonitrile at 340 K,
and silver(I) chloride, AgCl (0.04 g, 0.299 mmol),
was added. The mixture was stirred for 4 h, and
then 4-phenylthiosemicabazide, 4-PTSC (0.05 g,
0.299 mmol), was added. The resulting reaction
mixture was heated under reflux for 7 h during
which the precipitate gradually disappeared. The
resulting clear solution was filtered and left to
evaporate at room temperature. The crystalline
complex, which was deposited upon standing for
a couple of days, was filtered off and dried in
vacuo (0.16 g, 66% yield). M.p. 450–452 K. IR
bands (KBr, cm−1): 3311(w), 3263(w), 3148(w),

1961(w), 1625(w), 1599(w), 1544(w), 1432(w),
1282(w), 1209(w), 1094(w), 1026(w), 996(w),
968(w), 907(w), 852(w), 741(m), 686(w), 489(s),
450(w), 437(w).

X-ray crystallographic analysis

X-ray diffraction data for (1) and (2) were ob-
tained on a Bruker Quest diffractometer (D8 Quest,
Germany) with Mo-Kα radiation (λ = 0.71073 Å)
at 150 K. Data were collected, and reflections
were indexed and processed using APEX3 [18].
Space groups were assigned, and structures were
solved by direct methods using XPREP within the
SHELXTL suite of programs [19, 20] and refined
using Shelxl [21] and Shelxle [22]. Crystallographic
data are given in Table 1. Refinements for (1):
crystal data, data collection, and structure refine-
ment details are summarized in Table 1. All H
atoms attached to carbon atoms were positioned ge-
ometrically and constrained to ride on their parent
atoms with C−H = 0.95 Å. The nitrogen bound
H atoms were located in difference-Fourier maps
and were refined with an N−H = 0.831 (19)–
0.89 (2) Å. Uiso(H) values were set to 1.2 Ueq(C/N).
Refinements for (2): crystal data, data collection,
and structure refinement details are summarized
in Table 1. All H atoms attached to carbon atoms
were positioned geometrically and constrained to
ride on their parent atoms with C−H = 0.95 Å. The
nitrogen bound H atoms were located in difference-
Fourier maps and were refined with an N−H =
0.858 (19)–0.892 (19) Å. Uiso(H) values were set
to 1.2Ueq(C/N). Reflections −1 1 2, 2 1 0, −2 1 1,
and 2 0 4 were affected by the beam stop and were
omitted from the refinement. CCDC 2042521 for
(1) and 2042520 for (2) contain the supplementary
crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge
Crystallographic Data Center (https://www.ccdc.
cam.ac.uk).

RESULTS AND DISCUSSION

The reaction of copper(I) chloride with
4-phenylthiosemicarbazide (4-PTSC) and
triphenylphosphine (PPh3) ligands in 1:1:2
ratio in acetonitrile yielded the copper complex
[CuCl(4-PTSC)(PPh3)2] (1) in a triclinic setting
in space group P1̄. The analogous reaction with
silver(I) chloride yielded the silver complex
[AgCl(4-PTSC)(PPh3)2], which crystallized
as the mono-acetonitrile solvate [AgCl(4-
PTSC)(PPh3)2]CH3CN (2) in space group P21/c.
Soft sulfur donor atom from the thiosemicarbazide
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Table 1 Crystal data and structure refinement details for (1) and (2).

[CuCl(4-PTSC)(PPh3)2] (1) [AgCl(4-PTSC)(PPh3)2]CH3CN (2)

Crystal data
Chemical formula C43H39ClCuN3P2S C43H39AgClN3P2S ·C2H3N
Mr 790.76 876.14
Crystal system, space group Triclinic, P1̄ Monoclinic, P21/c
Temperature (K) 150 150
a, b, c (Å) 10.1234 (4), 13.2260 (6), 16.4011 (7) 16.5657 (7), 9.4156 (4), 26.5967 (11)
α, β, χ (°) 105.0998 (16), 93.9536 (16), 112.2322 (15) 90, 95.4679 (13), 90
V (Å3) 1927.76 (14) 4129.6 (3)
Z 2 4
Radiation type Mo Kα Mo Kα
µ (mm−1) 1.81 0.72
Crystal size (mm) 0.46×0.32×0.22 0.56×0.53×0.33

Data collection
Diffractometer Bruker AXS D8 Quest CMOS Bruker AXS D8 Quest CMOS

diffractometer diffractometer
Absorption correction Multi-scan SADABS 2016/2: Krause L, Multi-scan SADABS 2016/2: Krause, L.,

Herbst-Irmer R, Sheldrick GM, Stalke D, Herbst-Irmer R, Sheldrick GM, Stalke D,
J Appl Cryst 48 (2015), 3–10 J Appl Cryst 48 (2015), 3–10

No. of measured, 93937, 14713, 11031 54737, 15053, 12221
independent and
observed [I > 2σ(I)]
reflections
R int 0.041 0.047
(sinθ/λ)max (Å−1) 0.771 0.770

Refinement
R[F2> 2σ(F2)], wR(F2), S 0.036, 0.086, 1.03 0.028, 0.074, 1.05
No. of reflections 14713 15053
No. of parameters 472 525
H-atom treatment H atoms treated by a H atoms treated by a mixture

mixture of independent of independent
and constrained refinement and constrained refinement

∆ρmax, ∆ρmin (e Å−3) 0.60, −0.43 0.63, −0.54

Computer programs: Apex3, SAINT [18], SHELXS9 [19], SHELXL2014/7 [20], SHELXLE Rev714 [21], Mer-
cury [26], SHELXL97, and publCIF [27].

Table 2 Hydrogen-bond geometry (Å, °) for [CuCl(4-PTSC)(PPh3)2] (1) and [AgCl(4-PTSC)(PPh3)2]CH3CN (2).

D−H · · ·A D−H H · · ·A D · · ·A D−H · · ·A

Compound (1)
N1−H1 · · ·N3 0.832 (19) 2.235 (18) 2.6500 (18) 111.1 (15)
N2−H2 · · ·Cl1 0.831 (19) 2.373 (19) 3.1751 (12) 162.5 (17)
N3−H3A · · ·Cli1 0.89 (2) 2.62 (2) 3.5046 (14) 173.5 (16)

Compound (2)
N1−H1 · · ·N3a 0.88 2.12 2.592 (10) 113
N1−H1 · · ·N4 0.88 2.45 3.155 (2) 138
N2a−H2a · · ·Cl1 0.88 (2) 2.34 (2) 3.200 (11) 164 (4)
N2Bb−H2Bb · · ·Cl1 0.89 (2) 2.21 (3) 3.086 (13) 168 (5)
N3Bb−H3Cb · · ·Clii1 0.86 (2) 2.72 (5) 3.353 (13) 131 (5)
C33−H33 · · ·Niii

4 0.95 2.60 3.317 (2) 133
C45−H45A · · ·Clii1 0.98 2.57 3.517 (2) 164

Symmetry codes: (i) −x +1, −y , −z; (ii) −x +1, −y +2− z+1; and (iii) x , −y +3/2, z+1/2.
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Fig. 2 Molecular structure of [CuCl(4-PTSC)(PPh3)2] (1)
with ellipsoid displacement drawn at the 50% probability
level.

Fig. 3 Molecular structure of [AgCl(4-PTSC)(PPh3)2]
CH3CN (2) with ellipsoid displacement drawn at the 50%
probability level. Disordered atoms were omitted for
clarity.

is coordinated to both Cu and Ag, and no interaction
of the amine moiety with the metal is observed.
Both complexes are monomeric and exhibit a
distorted tetrahedral geometry in which the
metal ion is coordinated to two P atoms from
two PPh3 ligands, one terminal S atom from
the 4-PTSC ligand and a chloride ion (Fig. 2
and Fig. 3). The monomeric structures are
stabilized by an intramolecular N2−H2 · · ·Cl1
hydrogen bond between the NH2 (4-PTSC) and
the Cl atom and N1−H1 · · ·N3 hydrogen bond
between NH2 and NH of the thiosemicarbazide

Fig. 4 Part of the crystal structure of [AgCl(4-PTSC)
(PPh3)2]CH3CN (2), showing the dimer formed by inter-
molecular N−H · · ·Cl hydrogen bonds (shown as dashed
lines).

moiety (graph set [23] motif S(6) and S(5),
respectively) (Table 2). The Cu−S distance in (1)
of 2.3389 (4) Å is close to that of another related
tetrahedral complex, [CuCl(η1-S-H2itsc)(Ph3P)2]
(H2itsc = isatin-3-thiosemicarbazone) [24],
but smaller than 2.3893 (5) Å in [CuCl(η1-S-
H Intsc)(Ph3P)2] [14]. The Cu−P bond lengths of
2.2710 (4)–2.3109 (4) Å are a bit larger than the
values of 2.2602 (4)–2.2671 (4) Å observed for
[CuCl(C7H7N3O2S)(C18H15P)2] [15]. In compound
(2), the Ag−S bond length of 2.6108 (4) Å is
similar to the bond length of 2.628 (8) Å found in
[AgCl(η1-S-H Intsc)(Ph3P)2] [14]. The Ag−P bond
lengths of 2.4703 (3)–2.4750 (4) Å are close to the
values of 2.4409 (7)–2.4879 (7) Å for [AgCl(η1-
S-H pytsc)(PPh3)2]·CH3CN [25]. In the crystals of
(1) and (2), the amine NH2 moieties of 4-PTSC
and Cl atom of neighboring molecules are linked
through intermolecular N3−H3 · · ·Cl1 hydrogen
bonds, forming dimers (Fig. 4). For compound
(2), the acetonitrile molecules are connected to
dimers through C45−H45A(CH3CN) · · ·Cl1 and
C33−H33 · · ·N4(CH3CN) hydrogen bonds, leading
to the formation of 1D chains along [010] (Fig. 5,
Table 2). The results from IR spectroscopy are
corresponding to the X-ray crystallographic data;
the characteristic peak of ν(C−−S) of both complexes
appeared at lower energy than that of the stretching
presented in the free 4-PTSC ligand (896 cm−1)
supporting the coordination of the thione sulfur to
a metal center.
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Fig. 5 Part of the crystal structure of [AgCl(4-PTSC)(PPh3)2]CH3CN (2), showing intermolecular C−H · · ·N and
C−H · · ·Cl hydrogen bonds and forming long chains along b-axis (shown as dashed lines).

CONCLUSION

The complexes [CuCl(4-PTSC)(PPh3)2] (1) and
[AgCl(4-PTSC)(PPh3)2]CH3CN (2) were prepared
from MCl:4-PTSC:PPh3 in 1:1:2 molar ratios in ace-
tonitrile. The structures of the complexes were de-
termined using single crystal X-ray diffraction anal-
ysis and further characterized by IR spectroscopy.
Both complexes display a distorted tetrahedral coor-
dination with two PPh3 ligands, one 4-PTSC ligand
and a chloride ion. In the crystals, there are intra-
and intermolecular hydrogen bonds to connect com-
plexes into dimers. The existence of a solvate ace-
tonitrile in (2) plays an important role in connecting
each dimer to form a one-dimensional network.
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