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ABSTRACT: To solve the quadratic bilinear equation arising from the dynamical system, a fixed-point iterative method
and Newton’s method are considered in this paper. The iteration sequence generated by two methods, starting from the
zero matrix is proved to be monotonically increasing and convergent to the minimal positive (semi-)definite solution.
Besides, a double Newton step is given to accelerate the current Newton’s iteration when the equation is near or in
the semi-stable case. Numerical experiments demonstrate the effectiveness of the fixed-point iteration and Newton’s
method with the ADI preconditioning. In particular, the adapted double Newton step can efficiently decrease iterative
steps of Newton’s method when the equation is semi-stable.
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INTRODUCTION

Consider a class of quadratic bilinear equations with
the Hadamard product (QBEH)

Q(X )=AX+XAT+MX MT+(GX GT)◦ (FX FT)+D=0
(1)

arising from the dynamical system

ẋ(t) = Ax(t)+H(x(t)⊗ x(t))+M x(t)u(t)+Bu(t),

y(t) = C x(t),
(2)

where M , G, F, D in (1) are real matrices of order n
and D is symmetric positive (semi-)definite, x(t) ∈
Rn in (2) represents the state vector at time t,
u(t) ∈ Rm and y(t) ∈ R denote the input and the
output functions, respectively, A ∈ Rn×n, B ∈ Rn×m

(m < n) and C ∈ R1×n stand for the state matrix,
input matrix and the output matrix, respectively,
H ∈ Rn×n2

is a sparse matrices associated with the
quadratic functions x(t)⊗x(t) [1]. In some systems
such as the transmission line circuit, comprising of
resistors, capacitors, and diodes [1–4], the matrix
H has some implicit structure and the quadratic
item H(x(t) ⊗ x(t)) could be represented via the
Hadamard product (Gx(t)) ◦ (F x(t)). Take the
sparse matrix H in the system of transmission line
circuit as an example [3]. The elements are of the

following structure

H( n
2 + i, (i−1)n+ n

2 + i) = H( n
2 + i, n2

2 +(i−1)n+ n
2 + i)

= −80 for i = 2, . . . , n
2 ,

H( n
2 + i, in+ n

2 + i) = H( n
2 + i, n2

2 + in+ n
2 + i)

= 40 for i = 2, . . . , n
2 −1,

H( n
2 + i, (i−2)n+ n

2 + i) = H( n
2 + i, n2

2 +(i−2)n+ n
2 + i)

= −80 for i = 3, . . . , n
2

H( n
2 +1, n

2 +1) = H( n
2 +1, n2

2 +
n
2 +1) = −40,

H( n
2 +1, 3n

2 +1) = H( n
2 +1, n2

2 +
3n
2 +1) = −40,

H( n
2 +2, n

2 +2) = H( n
2 +2, n2

2 +
n
2 +2) = −40

and other are zeros. Let x(t) = (v1, v12, . . . , vn−1,n,
y1, . . . , yn)T ∈ R2n, G = I2n and

F =
�

0n 0n
T T

�

∈ R2n×2n

with tri-diagonal matrix T = tridiag(40,−80,40),
T (1, 1) = −40, T (1,2) = −40 and T (2, 1) = −40,
the quadratic item H(x(t)⊗ x(t)) could be repre-
sented as (Gx(t)) ◦ (F x(t)). Then the system (2)
further develops to the quadratic bilinear system
with Hadamard product (QBSH) [5]

ẋ(t) = Ax(t)+(Gx(t))◦(F x(t))+M x(t)u(t)+Bu(t),

y(t) = C x(t).
(3)
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To describe the controllability and observability of
the system effectively, the Gramian matrix of the
system, i.e. the solution to the QBEH (1) with
D = BBT is required. If A is stable and there is a
positive (semi-)definite matrix Z such that Q(Z) ¾
0, the existence of the solution is then guaranteed
via employing a fixed-point iteration [5]. However
in most cases, the initial point selection X0 satisfying
X0 ¾ Z and Q(X0) ¶ 0 is normally not easy and
might make the fixed-point iteration hard to realize.
In this paper, a more convenient choice of the initial
point, as well as the following contributions are
provided.
(i) The fixed-point iteration is reconsidered with

an initial zero matrix at fingertips, producing
a monotonically increasing sequence that con-
verges to the minimal positive (semi-)definite
solution to the QBEH (1);

(ii) Newton’s method with the initial zero matrix
is proposed to solve the QBEH and it shares
the analogously monotonic convergence with
that of the fixed-point iteration. Especially,
the alternated-direction-implicit (ADI) iteration
[6, 7] is employed as the preconditioning to
compute Newton’s subproblem and the selec-
tion strategy of ADI parameters is given in de-
tail;

(iii) When the QBEH (1) is semi-stable, the conver-
gence rate of Newton’s method degenerates to
be linear and can be re-accelerated by imple-
menting a double Newton step [8, 9].

Numerical experiments indicate that the fixed-
point method and the devised Newton-ADI precon-
ditioning method are effective solvers to calculate
the minimal positive (semi-)definite solution to the
QBEH (1). Meanwhile, the double Newton step
is very efficient to accelerate the original Newton’s
method when the QBEH (1) is near to or in the semi-
stable case.

Throughout this paper, it is written A¾ B (A>
B) for symmetric matrices A and B if A− B is a
symmetric positive semi-definite (definite) matrix.
By Rn×n

+ = {A ∈ Rn×n |A¾ 0} we denote the closed
convex cone of non-negative definite matrices. Sym-
bols σ(A), ρ(A) = max{|α| : α ∈ σ(A)} and λ(A) =
max{Re(α) : α ∈ σ(A)} are the spectrum, the spec-
tral radius and the spectral abscissa of the matrix
A, respectively. Several definitions and lemmas are
also required.

Definition 1 ([10]) The matrix A is called stable or
semi-stable if its spectrum lies in the left half of the

complex plane C<, or the left half of the complex
plane plus the imaginary axis C¶.

Definition 2 ([11]) A linear operator L : Rn×n →
Rn×n is called positive if it maps Rn×n

+ to Rn×n
+ and

inverse positive if L −1 exists and is positive. When
the operatorαI−L is inverse positive for sufficiently
large α > 0, the operator L is called resolvent
positive.

Lemma 1 ([12]) Let L : Rn×n → Rn×n be a resol-
vent positive linear operator and T : Rn×n→ Rn×n be
a positive linear operator. Then the adjoint operator
of L , denoted by fL , is also resolvent positive and the
following assertions hold:

i. There exists a matrix V ¾ 0, V 6= 0 such that
L (V ) = λ(L )V .

ii. If S is a linear operator with S ¾L , then S is
resolvent positive and λ(S )¾ λ(L ).

iii. aI − L is inverse positive ⇔ a > λ(L ) ⇔
σ(L − aI) ⊂ Cn×n

< .

iv. L +T is stable if and only if there exists X > 0
satisfying (L +T )(X )< 0.

Lemma 2 ([12]) Let the operator F be Fréchet dif-
ferentiable on an open neighbourhood of a convex
subset of Rn×n. If for some V ¾ 0, V 6= 0

〈V,F (Y )−F (X )〉= 〈V,F ′X (Y − X )〉,

then 〈V,F ′X (·) −F
′
Y (·)〉 = 0, i.e. eF ′X (V ) = eF ′Y (V ).

Here 〈·〉 represents the inner product, eF stands for
the adjoint operator of F and F ′X (·) is the Fréchet
derivative at X .

Lemma 3 ([13]) Let the matrix A ∈ Rn×n be stable
and D ∈ Rn×n be symmetric. Then the Lyapunov
equation

AX + XAT + D = 0

has a unique symmetric solution X . Moreover, X ¾ 0
if D ¾ 0.

Lemma 4 ([14]) Let A, B ∈ Rn×n be symmetric ma-
trices.

1. If A> 0 and B > 0, then A◦ B > 0.

2. If A ¾ 0 and B ¾ 0, then A ◦ B ¾ 0. Moreover,
A◦ B > 0 when A has no zero row.

Lemma 5 ([15]) Let A, B ∈ Cn×n be complex matri-
ces and ‖ · ‖ be any unitarily invariant norm. Then

‖A◦ B‖2 ¶ ‖A∗A‖‖B∗B‖

with “(·)∗” being the conjugate transpose of a matrix.
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ITERATIVE METHODS FOR THE QBEH

Fixed-point iteration

When matrix A is stable and there exists a matrix Z ¾
0 such that Q(Z) ¾ 0, it has been shown that there
is a solution (actually the maximal positive (semi-
)definite solution) to the QBEH (1) [5]. The way to
prove is based on a fixed-point iteration

L (Xk+1) =−(GXkGT)◦(FXk FT)−MXk MT−D, k¾ 0 (4)

with an initial matrix X0 ¾ Z andQ(X0)¶ 0, where
L is a linear operator Rn×n→ Rn×n given by

L (X ) = AX + XAT

and has been shown resolvent positive [12]. Gener-
ally, finding such an initial matrix is not easy even
if the solution exists. In this section, we reconsider
the fixed-point iteration (4) but with a different zero
initial point, i.e. X0 = 0. The produced iteration
sequence {Xk} will be demonstrated to be mono-
tonically increasing and converging to the minimal
positive (semi-)definite solution to the QBEH (1).

Theorem 1 Let A be a stable matrix. Let X ∗ ¾ 0
be the solution to the QBEH (1). The fixed-point
iteration (4) with X0 = 0 produces a matrix sequence
{Xk} such that for k ¾ 0, Xk ¶ Xk+1, Xk ¶ X ∗,
Q(Xk) ¾ 0. Then the QBEH (1) has a minimal
positive (semi-)definite solution X̂ .

Proof : Starting with X0 = 0, the fixed-point iteration
obviously yields X1 ¾ 0 = X0 and Q(X0) = D ¾ 0.
Now suppose that

X i ¶ X i+1, X i ¶ X ∗, Q(X i)¾ 0 (5)

holds for i = k, we shall show that it is valid for
i = k + 1. Firstly, by the iteration format (4) and
Lemma 4, we have

L (X ∗− Xk+1) = −(GX ∗GT) ◦ (F(X ∗− Xk)F
T)

− (G(X ∗− Xk)G
T) ◦ (FXk FT)−M(X ∗− Xk)M

T ¶ 0

and

L (Xk+2− Xk+1) = −(GXkGT) ◦ (F(Xk+1− Xk)F
T)

−(G(Xk+1−Xk)G
T)◦(FXk+1FT)−M(Xk+1−Xk)M

T ¶ 0,

respectively. Then Xk+1 ¶ X ∗ and Xk+1 ¶ Xk+2 hold
by using Lemma 1. This goes together with

Q(Xk+1) = AXk+1+Xk+1AT+(GXk+1GT)◦(FXk+1FT)

+MXk+1MT + D

= −A(Xk+2− Xk+1)− (Xk+2− Xk+1)A
T

= −L (Xk+2− Xk+1)¾ 0

show that the induction assumption (5) holds for
i = k + 1. Then the sequence {Xk} is well defined
and has a limit limk→∞ Xk = X̂ such that X̂ ¶ X ∗.
Moreover, X̂ is the minimal positive (semi-)definite
solution. 2

Remark 1 Conditions of the stable A and Q(Z) ¾
0 are required to prove the existence of the posi-
tive (semi-)definite solution (actually the maximal
positive (semi-)definite solution) to the QBEH [5].
With an easier initial matrix (i.e. X0 = 0), Theo-
rem 1 shows the existence of the minimal positive
(semi-)definite solution to the QBEH. Although two
extreme solutions might be different, they are both
of main concerned in practices.

Newton’s method

Let the first order and the second order Fréchet
derivative of Q(·) at X be

Q′X (∆) = A∆+∆AT +M∆MT

+(G∆GT) ◦ (FX FT)+ (GX GT) ◦ (F∆FT) (6)

and

Q′′X (∆1,∆2) = (G∆1GT) ◦ (F∆2FT)

+ (G∆2GT) ◦ (F∆1FT),

respectively. Given the initial matrix X0, for k =
0, 1, . . ., Newton’s method

Xk+1 = Xk −Q′Xk
(Q(Xk))

admits the following iteration

AXk+1+Xk+1AT+MXk+1MT+(GXk+1GT)◦ (FXk FT)

+ (GXkGT) ◦ (FXk+1FT)

= (GXkGT) ◦ (FXk FT)− D. (7)

Theorem 2 Let X ∗ ¾ 0 be the solution to the QBEH
(1). Newton’s iteration iteration (7) with X0 = 0
produces a matrix sequence {Xk} such that for k ¾ 0,

1. Xk ¶ Xk+1, Xk ¶ X ∗, Q(Xk)¾ 0, Q′Xk
is stable;

2. limk→∞ Xk = X̂ is a positive (semi-)definite so-
lution to the QBEH (1). Especially, X̂ is the
minimal positive (semi-)definite solution.

Proof : The theorem is also proved by the induction
applied to

X i ¶ X i+1, X i ¶ X ∗, Q(X i)¾ 0, Q′X i
is stable, i ¾ 0. (8)
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Starting with X0 = 0, one has Q(X0)¾ 0 and

Q′X0
=L +T

withL (·) = A(·)+(·)AT and T (·) = M(·)MT. It then
follows the iteration (7) and Lemma 1 that Q′X0

is
stable. Moreover, X1 = X0− (Q′X0

)−1Q(X0)¾ X0, so
the induction (8) holds for i = 0.

Assume that (8) is true for i = k. We next show
the case for i = k + 1. Firstly, it follows from the
iteration format (7) that

Q′Xk
(X ∗ − Xk+1) = A(X ∗ − Xk+1)+ (X

∗ − Xk+1)A
T

+(G(X ∗ − Xk+1)G
T) ◦ (FXk FT)

+ (GXkGT) ◦ (F(X ∗ − Xk+1)F
T)+M(X ∗ − Xk+1)M

T

= D− (GXkGT) ◦ (FXk FT)+AX ∗ + X ∗AT

+(GX ∗GT) ◦ (FXk FT)+ (GXkGT) ◦ (FX ∗FT)+MX ∗MT

= −(G(X ∗ − Xk)G
T) ◦ (F(X ∗ − Xk)F

T)¶ 0.
(9)

AsQ′Xk
is stable, −(Q′Xk

)−1 is positive. So Xk+1 ¶ X ∗.
Next we show that Q′Xk+1

is stable. Let

L = A(·)+ (·)AT,

MXk+1
=(G(·)GT)◦(FXk+1FT)+(GXk+1GT)◦(F(·)FT).

Then it follows from Lemma 1(ii) that Q′Xk+1
=

L +MXk+1
is resolvent positive and thus the adjoint

operator eQ′Xk+1
is also resolvent positive. So by

Lemma 1, there exists V ¾ 0 such that

eQ′Xk+1
V = λV, (λ¾ 0). (10)

If Q′Xk+1
is assumed to be unstable, then

〈V,Q′Xk+1
(X ∗− Xk+1)〉= 〈λV, X ∗− Xk+1〉¾ 0.

On the other hand,

Q′Xk+1
(X ∗ − Xk+1) = A(X ∗ − Xk+1)+ (X

∗ − Xk+1)A
T

+(G(X ∗ − Xk+1)G
T) ◦ (FXk+1FT)

+ (GXk+1GT) ◦ (F(X ∗ − Xk+1)F
T)+M(X ∗ − Xk+1)M

T

=Q(X ∗)−Q(Xk+1)−(G(Xk+1−X ∗)GT) ◦ (F(Xk+1−X ∗)FT)

¶ −(G(Xk+1 − X ∗)GT) ◦ (F(Xk+1 − X ∗)FT)

− (G(Xk+1 − Xk)G
T) ◦ (F(Xk+1 − Xk)F

T)

¶ −(G(Xk+1 − Xk)G
T) ◦ (F(Xk+1 − Xk)F

T)¶ 0

indicates that 〈V,Q′Xk+1
(X ∗− Xk+1)〉¶ 0. So one has

〈V,Q′Xk+1
(X ∗− Xk+1)〉= 0, implying

〈V, (G(Xk+1− Xk)G
T) ◦ (F(Xk+1− Xk)F

T)〉= 0.

Note that

Q′Xk
(Xk+1− Xk) =Q(Xk+1)−Q(Xk)

− (G(Xk+1− Xk)G
T) ◦ (F(Xk+1− Xk)F

T).

Then

〈V,Q(Xk+1)−Q(Xk)〉= 〈V,Q′Xk
(Xk+1− Xk)〉.

It follows from Lemma 2 that

eQ′Xk
(V ) = eQ′Xk+1

(V )+ eQ′Xk−Xk+1
(V )

= eQ′Xk+1
(V ) = λV ¾ 0,

contradicting the stability ofQ′Xk
. SoQ′Xk+1

is stable.
Now, by Newton’s iteration (7), one has

Q′Xk+1
(Xk+2 − Xk+1) = A(Xk+2 − Xk+1)+ (Xk+2 − Xk+1)A

T

+(G(Xk+2 − Xk+1)G
T) ◦ (FXk+1FT)

+ (GXk+1GT) ◦ (F(Xk+2−Xk+1)F
T)+M(Xk+2−Xk+1)M

T

= −AXk+1 − Xk+1AT − (GXk+1GT) ◦ (FXk+1FT)

−MXk+1MT − D

= (GXk+1GT) ◦ (FXk FT)+ (GXkGT) ◦ (FXk+1FT)

− (GXk+1GT) ◦ (FXk+1FT)− (GXkGT) ◦ (FXk FT)

= −(G(Xk+1 − Xk)G
T) ◦ (F(Xk+1 − Xk)F

T)¶ 0.

AsQ′Xk+1
is stable, −(Q′Xk+1

)−1 is positive. So Xk+2 ¾
Xk+1.

Finally, Newton’s iteration Q(Xk+1) =
−Q′Xk+1

(Xk+2 − Xk+1) ¾ 0 shows that the induction
holds for i = k + 1. Therefore, the sequence {Xk}
is well defined, monotonically increasing and
bounded by X ∗. So limk→∞ Xk = X̂ . Moreover,
X̂ ¶ X ∗ shows that X̂ is the minimal positive
(semi-)definite solution to the QBEH (1). 2

The following theorem further indicates the
quadratic convergence of Newton’s iteration.

Theorem 3 Let the sequence {Xk} be produced by
Newton’s iteration (7) and X̂ be the minimal positive
definite solution to the QBEH. If Q′

X̂
is stable, then

there is a constant θ such that

‖Xk+1− X̂‖¶ θ‖Xk − X̂‖2,

where ‖ · ‖ is any unitarily invariant norm.

Proof : It follows from the Newton’s iteration (7)
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that

Q′
X̂
(X̂ − Xk+1) = A(X̂ − Xk+1)+ (X̂ − Xk+1)A

T

+(G(X̂ − Xk+1)G
T) ◦ (F X̂ FT)

+ (GX̂ GT) ◦ (F(X̂ − Xk+1)F
T)+M(X̂ − Xk+1)M

T

= (GXk+1GT) ◦ (FXk FT)+ (GXkGT) ◦ (FXk+1FT)

− (GXkGT) ◦ (FXk FT)+ (GX̂ GT) ◦ (F X̂ FT)

− (GX̂ GT) ◦ (FXk+1FT)− (GXk+1GT) ◦ (F X̂ FT)

= (G(X̂ − Xk+1)G
T) ◦ (F(X̂ − Xk+1)F

T)

− (G(Xk+1− Xk)G
T) ◦ (F(Xk+1− Xk)F

T).

Then one has

‖X̂ − Xk+1‖¶

‖(Q′
X̂
)−1‖ · ‖(G(X̂ − Xk+1)G

T) ◦ (F(X̂ − Xk+1)F
T)‖.

Note that ‖(Q′
X̂
)−1‖ is bounded above, it then fol-

lows from Lemma 5 that there exists a constant
θ > 0 such that

‖X̂ − Xk+1‖¶ θ‖Xk+1− Xk‖2 ¶ θ‖X̂ − Xk‖2,

where the last inequality comes from the mono-
tonic convergence of Newton’s sequence {Xk} for
k ¾ 0. 2

Theorem 3 indicates that the convergence rate
of Newton’s method (7) is quadratic when Q′

X̂
is

stable. If it is semi-stable, the convergence will
degenerate to be linear. So the acceleration of
the iteration (7) can be further considered. Before
that, we concentrate on the calculation of Newton’s
subproblem.

ADI preconditioning for the linear subproblem

To efficiently implement Newton’s method, a linear
matrix equation with Hadamard product

AX+XAT+MX MT+(GX GT)◦(FX )+(GX )◦(FX FT) = E (11)

requires to be solved, here FX , GX and E are
available symmetric positive definite matrices at the
current step. Directly solving (11) is not easy but
again a fixed-point form

AX + XAT = D̂ (12)

is feasible with the current available D̂ = E −
MX MT − (GX GT) ◦ (FX ) − (GX ) ◦ (FX FT). This is
a standard Lyapunov equation and might be fur-
ther accelerated by proper preconditioning. Here a
cyclic Smith or ADI preconditioning as in [16, 17]

is employed. Specifically, by incorporating the ADI
parameters pl > 0 for l ¾ 0 and rewriting the QBEH
as

AX + XAT

=
1

2pl

�

(A−pl I)X (A−pl I)
T−(A+pl I)X (A+pl I)

T
�

,

the iteration (12) will implement in the following
way

Yk,0 = Xk,

Yk,l = Ãpl
Yk,l−1ÃT

pl
+2plApl

D̂kAT
pl

, 1¶ l ¶ L,

Xk+1 = Yk,L ,

(13)

where

Ãpl
= (A− pl I)

−1(A+ pl I), Apl
= (A− pl I)

−1,

D̂k= E−MXk MT−(GXkGT) ◦ (FX )−(GX ) ◦ (FXk FT).

Generally, given the prescribed accuracy, the
ADI iteration number L will be available by Wachs-
press’s method [6, 7] before starting the iterations.
Then the iteration scheme (13) becomes

Xk+1 = Yk,L

= ÃpL
Yk,L−1ÃT

pL
+2pLApL

D̂kAT
pL

= ÃpL
(ÃpL−1

Yk,L−2ÃT
pL−1
+2pL−1ApL−1

D̂kAT
pL−1
)ÃT

pL

+2pLApL
D̂kAT

pL

...

=
�

L
∏

l=1

Ãpl

�

Xk

�

L
∏

l=1

Ãpl

�T

+
L
∑

l=1

2pl

�

(
L
∏

i=l+1

Ãpi
Apl
)D̂k(

L
∏

i=l+1

Ãpi
Apl
)T
�

. (14)

The fixed-point of the above iteration is the
solution to the equation (11) and the iteration pro-
cess essentially transforms the equation (11) into a
preconditioned equation

L
∑

l=1

2pl(
L
∏

i=l+1

Ãpi
Apl
)(S(X ))(

L
∏

i=l+1

Ãpi
Apl
)T

= −
L
∑

l=1

2pl

�

(
L
∏

i=l+1

Ãpi
Apl
)E(

L
∏

i=l+1

Ãpi
Apl
)T
�

.

with S(X ) = AX + XAT +MX MT + (GX GT) ◦ (FX ) +
(GX )◦(FX FT) and parameters pl being independent
of the iteration number k.
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It is known that the choice of parameters pl

in
∏L

l=1 Ãpl
determines the convergence rate of the

ADI preconditioning and it is solved by Wachspress
via the Jacobian elliptic function.

Let ε > be the tolerance and a, b > 0 be con-
stants such that σ(A) ⊂ [a, b]. The minimal ADI
iteration number L and the ADI parameters can be
determined by the following min-max problem

min
p1,...,pL

max
γ∈[a,b]

L
∏

l=1

�

�

�

�

γ− pl

γ+ p1

�

�

�

�

¶ ε.

Define the complete elliptic integral of the first

kind u = F(φ, m) =
∫ φ

0
1p

1−m sin2 θ
dθ and the cor-

responding elliptic function dn(u) =
p

1−m sin2 θ .
Then

L =

�

√

√

F(π/2,
p

1−(a/b)2)
2πF(π/2,a/b) ln

4
ε

�

with [x] denoting the smallest integer toward the
floor and

pl = b× dn
�2l −1

2L
F
�π

2
,
s

1− (
a
b
)2
��

.

Remark 2 As the computation of L and pl in ADI
preconditioning is independent of the fixed-point
iteration and Newton’s iteration, it can be deter-
mined before the iteration process when A and the
desired accuracy are available. Then the fixed-
point iteration of the form (14) is applied to the
preconditioned subproblem.

SEMI-STABLE CASE

The quadratic convergence of Newton’s method
generally degenerates to be linear when the QBEH
(1) is in the semi-stable case. In this case, a double
step as in [8, 9] can be employed to improve the
performance of Newton’s iteration (7).

Let N be the null space of the Fréchet operator
Q′

X̂
andM be the corresponding complement space

in Rn×n. Let PN and PM be the orthogonal projec-
tions onto N and M , respectively. Normally, for
sufficiently large k, if the error of Newton’s sequence
Xk − X̂ tends to lie in the space M rather than the
space N , i.e.,

‖PM (Xk − X̂ )‖> c‖PN (Xk − X̂ )‖

for some constant c. Then Newton’s iteration (7)
might be quadratically convergent [8]. On the con-
trary, if the error is dominated by the null space N ,
the convergent rate is not quadratic as the following
theorem states.

Theorem 4 Suppose that Newton’s method (7) pro-
duces the sequence {Xk}, converging to the solution X̂ .
If Q′

X̂
is semi-stable and Xk − X̂ ∈ N , then

1. Q′Xk
(Xk − X̂ ) = 2Q(Xk).

2. Xk+1− X̂ = 1
2 (Xk − X̂ ).

Proof : Note that Xk − X̂ ∈ N implies

A(Xk − X̂ )+ (Xk − X̂ )AT +M(Xk − X̂ )MT

= (GX̂ GT) ◦ (F(X̂−Xk)F
T)+ (G(X̂−Xk)G

T) ◦ (F X̂ FT).

This together with (6) yields

Q′Xk
(Xk − X̂ ) = A(Xk − X̂ )+ (Xk − X̂ )AT +M(Xk − X̂ )MT

+(GXkGT) ◦ (F(Xk−X̂ )FT)+(G(Xk−X̂ )GT) ◦ (FXk FT)

=Q(Xk)−AX̂ − X̂ AT −MX̂ MT − (GXkGT) ◦ (F X̂ FT)

− (GX̂ GT) ◦ (FXk FT)+ (GXkGT) ◦ (FXk FT)

=Q(Xk)+ (GX̂ GT) ◦ (F(X̂ − Xk)F
T)

+ (G(X̂ − Xk)G
T) ◦ (F X̂ FT)

− (GX̂ GT) ◦ (F X̂ FT)+ (GXkGT) ◦ (FXk FT)

=Q(Xk)+A(Xk − X̂ )+ (X̂ − Xk)A
T +M(Xk − X̂ )X T

− (GX̂ GT) ◦ (F X̂ FT)+ (GXkGT) ◦ (FXk FT)

= 2Q(Xk)+Q(X̂ )
= 2Q(Xk).

So assertion 1 holds true. By Newton’s iteration (7),
one has

Q′Xk
(Xk+1−X̂ ) = A(Xk+1−X̂ )+(Xk+1−X̂ )AT+M(Xk+1−X̂ )MT

+(GXkGT) ◦ (F(Xk+1−X̂ )FT)+(G(Xk+1−X̂ )GT) ◦ (FXk FT)

= (GXkGT) ◦ (FXk FT)− D−AX̂ − X̂ AT −MX̂ MT

− (GXkGT) ◦ (F X̂ FT)− (GX̂ GT) ◦ (FXk FT)

=Q′Xk
(Xk − X̂ )−Q(Xk).

Then assertion 2 holds via Q′Xk
(Xk − X̂ ) =

2Q(Xk). 2
When Q′

X̂
is semi-stable, Theorem 4 indicates

that the iteration error will be dominated by the null
space N of Q′

X̂
, with the linear convergence of the

constant 1/2. Moreover, assertion 1 in Theorem 4
provides a simple accelerated strategy when Xk is
close to solution X̂ , i.e., the double Newton step

AXk+1+Xk+1AT+MXk+1MT+(GXkGT) ◦ (FXk+1FT)

+ (GXk+1GT) ◦ (FXk FT)

= −AXk − XkAT −MXk MT −2D. (15)

In our practical implementations, Newton’s method
will be switched to the double Newton step when
the iterative sequence is close to the solution to the
semi-stable QBEH.
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NUMERICAL EXPERIMENTS

In this section, we demonstrate the effectiveness
of the proposed iterative methods for solving the
QBEH (1). The fixed-point iteration scheme (4)
(“FIP”), Newton’s method (7) with ADI precondi-
tioning (“NEW”) and the Hybrid Newton’s method
with a double Newton step (“DN-NEW”) were coded
by MATLAB 2014 and all examples were operated on
a laptop with an Intel i3-3240 3.4GHz processor and
8GB RAM. The terminated condition in each algo-
rithm is that the relative residual satisfied ReQX <
tol or the iteration exceeds 100, where

ReQX =
‖AXk+XkAT+D+MXk MT+(GXkGT) ◦ (FXk FT)‖
2‖A‖‖Xk‖+ ‖G‖2‖F‖2‖Xk‖2 + ‖M‖2‖Xk‖+ ‖D‖

,

Xk represents the approximated solution when the
algorithm stops at the tolerance tol = 10−12. The
capital “IT” and “CPU” represent the number of
iterations and the elapsed CPU time, respectively.

Example 1 Consider the QBEH (1) in [5] with

A=
�

−2 1
1 −2

�

, G = I2, F =
�

0 0
0 1

�

,

M =

�
p

5/2 0
0 0

�

, D =
�

3 −3
−3 3

�

.

This equation has a positive definite solution X̂ =
diag(2, 1). Starting from the zero matrix in our
experiments, the sequences from the fixed-point
iteration (4) and Newton’s method (7) are both
monotonically increasing and converge to the posi-
tive definite solution X̂ . The corresponding residual
histories of the two methods are plotted in Fig. 1.
One can see that both methods are efficient to calcu-
late the solution to the QBEH. Specifically, the fixed-
point method (4) requires 95 iterations (within
0.173 s) to attain the prescribed accuracy. Newton’s
method needs 5 iterations and the corresponding
numbers of the fixed-point iteration for the ADI
preconditioned subproblem are 43, 38, 27, 23, 23,
respectively. The elapsed CPU time is about 0.188 s.

Example 2 This example is a proper modification
of the transmission line circuit in [1, 3] as the origi-
nal system is not stable. The coefficient matrices of
the QBEH (1) are

A=
�

A11 A12

AT
12 A22

�

, D =
�

D11 D12

D21 D22

�

,

M =
�

15.9107In 0n×n

0n×n 0n×n

�

, G = IN , F =
�

0n×n 0n×n

−3In −3In

�

with A11 = A22 = −18In, A12 = tridiag(1,−3, 1),
A12(1, 2) = A12(2, 1) = −1; D11 = D22 = 0.0034In,
D12 = D21 = −0.0137In.
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Fig. 1 Residual history in Example 1.

This equation was shown at least having a pos-
itive definite solution [5]. We took different n′s
to test the fixed-point iteration (4) and Newton’s
iteration (7). Analogously to Example 1, sequences
{Xk} generated by both algorithms, starting from
the initial zero matrix, were monotonically increas-
ing and converge to the minimal positive solution.
Table 1 records the “IT”, “CPU” and “ReQX” of two
algorithms at n= 20, 40,60, 80.

It is seen from Table 1 that Newton’s method
always requires 10 iterations with each costing 8
ADI inner iterations to obtain the prescribed residual
tolerance, beating the fixed-point method that needs
957, 995, 1001 and 1002 iterations at various n.
Moreover, Newton’s method spent less CPU time
on attaining the terminated condition, indicating its
superiority over the fixed-point iteration.

Example 3 This example is to show the effective-
ness of the double Newton step when the QBEH is
in the semi-stable case. The coefficient matrices of
the QBEH (1) are

A=
�

−2 1
2 −3

�

, D = 5.543
�

2.6141735 −3
−3 3.6141735

�

,

M =
�

0 0
1 0

�

, G = I2, F = 0.5× I2.

This equation has a positive definite solution
X̂ = 5.543 × I2. Moreover, Q′

X̂
has an eigenvalue

of 4.8× 10−5 and is almost semi-stable. Given the
initial zero matrix, we ran the fixed-point iteration
(4), Newton’s method (7) and the double Newton’s
method (15) (DN-NEW) to compute the solution. In
the DN-NEW, initial iterations in the double New-
ton’s method are the same as Newton’s iteration (7).
But when the current iteration point is very close to
the solution, i.e. the residual ReQX is less than 10−9,
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Table 1 Numerical results for Example 2.

Alg IT CPU ReQX Alg IT CPU ReQX

n= 20 FIP 957 1.32 9.86×10−13 NEW 10 (8) 0.703 9.84×10−13

n= 40 FIP 995 4.55 9.97×10−13 NEW 10 (8) 3.150 9.85×10−13

n= 60 FIP 1001 8.48 9.94×10−13 NEW 10 (8) 6.640 9.81×10−13

n= 80 FIP 1002 13.47 9.94×10−13 NEW 10 (8) 12.060 9.81×10−13
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Fig. 2 Residual history for different methods in Example 3.

the double Newton step is employed. Fig. 2 records
the residual history of different iterative methods.
Note that the fixed-point method did not attain
the prescribed residual level of 10−13 after 20 000
iterations (actually only arriving at 7.96 × 10−10).
So its residual history only for the first 250 iterations
was plotted in contrast to Newton’s method.

It is seen from Fig. 2 that Newton’s method
requires 246 iterations with each costing 11 ADI
inner iterations to obtain the prescribed residual
tolerance of 9.81 × 10−13. The double Newton’s
method shares the same decreasing residual levels
to Newton’s method at about the former 30 steps,
then drops lower at subsequent iterations. At last,
it terminated after 142 iterations, arriving at the
residual level of 9.66× 10−13. This shows that the
double Newton steps (15) can effectively accelerate
the iteration when the equation is in the semi-stable
case.
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