Some new upper bounds for moduli of eigenvalues of iterative matrices

Jun He*, Yanmin Liu, Guangjun Xu

School of mathematics, Zunyi Normal College, Zunyi, Guizhou, 563006 China

*Corresponding author, e-mail: hejunfan1@163.com

Received 9 Feb 2021 Accepted 8 Aug 2021

ABSTRACT: Based on the matrix splitting M = P - Q, some upper bounds for the maximum of moduli of eigenvalues of the iteration matrix $P^{-1}Q$ are obtained when *P* is an strictly diagonally dominant (SDD) matrix or a doubly strictly diagonally dominant (DSDD) matrix. In this paper, some new upper bounds are introduced, which is applicable to a Dashnic-Zusmanovich (DZ) matrix *P*, and proved to be better than those in Huang and Gao [Int J Comput Math **80** (2003):799–803] and Li et al [Appl Math Comput **173** (2006):977–984] in certain cases.

KEYWORDS: iteration matrix, eigenvalues, spectral radius

MSC2010: 65F50

INTRODUCTION

Let $M = (m_{ts})$ be an $n \times n$ nonsingular complex matrix and consider the following large system of linear equations

$$Mx = b, \tag{1}$$

which plays an important role in the numerical solution of elliptic partial differential equations [1, 2]. Based on the matrix splitting M = P - Q, some basic iterative methods, such as Jacobi, Gauss-Seidel and successive overrelaxation iterative methods, are introduced to solve the system of linear equations (1) [3]. The matrix splitting M = P - Q leads to the stationary iteration scheme

$$x_{k+1} = P^{-1}Qx_k + c. (2)$$

The matrix $P^{-1}Q$ in (2) is called the iteration matrix. It is well known that the iteration scheme (2) converges for any initial vector x_0 if $\rho(P^{-1}Q) < 1$, where $\rho(P^{-1}Q)$ denotes the spectral radius of the matrix $P^{-1}Q$, namely, maximum of moduli of eigenvalues of $P^{-1}Q$.

Let $\mathbb{C}^{n \times n}$ be the set of all complex matrices, and denote $[n] := \{1, 2, ..., n\}$. A matrix $P = (p_{ts}) \in \mathbb{C}^{n \times n}$ is called an SDD (strictly diagonally dominant) matrix if for each $t \in [n]$,

$$|p_{tt}| > r_t(P),$$

where $r_t(P) = \sum_{s \neq t} |p_{ts}|$. A matrix $P = (p_{ts}) \in \mathbb{C}^{n \times n}$ is called a DSDD (doubly strictly diagonally domi-

nant) matrix if for distinct $t, s \in [n]$, the following inequality holds:

$$|p_{tt}||p_{ss}| > r_t(P)r_s(P).$$

A matrix $P = (p_{ts}) \in \mathbb{C}^{n \times n}$ is called a DZ (Dashnic-Zusmanovich) matrix if there exists an index $t \in [n]$, for all $s \neq t, s \in [n]$, the following inequality holds:

$$|p_{tt}|(|p_{ss}| - r_s^t(P)) > r_t(P)|p_{st}|$$

where $r_s^t(P) = r_s(P) - |p_{st}|$. It has been shown in [4] that the above three classes of matrices are nonsingular and have the following inclusions:

$$\{SDD\} \subseteq \{DSDD\} \subseteq \{DZ\}.$$

One practical application of the eigenvalues of $P^{-1}Q$ is that one can identify the convergence property of the iteration scheme $x_{k+1} = P^{-1}Qx_k + c$ by the maximum of moduli of eigenvalues of $P^{-1}Q$, for more details, see [5–8]. In [5, 7], the authors established the following result for an SDD matrix *P*.

Theorem 1 ([5,7]) Let $P = (p_{ts}) \in \mathbb{C}^{n \times n}$ be an SDD matrix, $Q = (q_{ts}) \in \mathbb{C}^{n \times n}$. Then

$$|\lambda(P^{-1}Q)| \le \omega_1 = \max_{t \in [n]} \frac{|q_{tt}| + r_t(Q)}{|p_{tt}| - r_t(P)}.$$

If further $P = (p_{ts}) \in \mathbb{C}^{n \times n}$ is a DSDD matrix, the result in Theorem 1 can be improved as follows.

Theorem 2 ([8]) Let $P = (p_{ts}) \in \mathbb{C}^{n \times n}$ be a DSDD matrix, $Q = (q_{ts}) \in \mathbb{C}^{n \times n}$. Then

$$|\lambda(P^{-1}Q)| \leq \omega_2 = \max_{t,s \in [n], s \neq t} \frac{B + \sqrt{B^2 - 4AC}}{2A},$$

where

$$A = |p_{tt}p_{ss}| - r_t(P)r_s(P),$$

$$B = |p_{tt}q_{ss}| + |q_{tt}p_{ss}| + r_t(P)r_s(Q) + r_t(Q)r_s(P),$$

$$C = |q_{tt}q_{ss}| - r_t(Q)r_s(Q).$$

Recently, Li et al [9] presented the following result, for a DSDD matrix $P = (p_{ts}) \in \mathbb{C}^{n \times n}$.

Theorem 3 ([9]) Let $P = (p_{ts}) \in \mathbb{C}^{n \times n}$ be a DSDD matrix, $Q = (q_{ts}) \in \mathbb{C}^{n \times n}$. Then

$$|\lambda(P^{-1}Q)| \leq \omega_3 = \max_{t,s \in [n], s \neq t} \frac{B + \sqrt{B^2 - 4AC}}{2A},$$

where

$$A = |p_{tt}p_{ss}| - r_t(P)r_s(P),$$

$$B' = |p_{tt}q_{ss} + q_{tt}p_{ss}| + r_t(P)r_s(Q) + r_t(Q)r_s(P),$$

$$C' = -[|q_{tt}q_{ss}| + r_t(Q)r_s(Q)].$$

For an SDD matrix $P = (p_{ts}) \in \mathbb{C}^{n \times n}$, Theorem 1 can be used to obtain the upper bound for $|\lambda(P^{-1}Q)|$. For a DSDD matrix *P*, Theorems 2 and 3 can be used to obtain the upper bounds for $|\lambda(P^{-1}Q)|$. In this paper, some new bounds for a DZ matrix $P = (p_{ts})$ are introduced.

MAIN RESULTS

Before presenting our main results, we need the following lemmas.

Lemma 1 ([4]) If $P = (p_{ts}) \in \mathbb{C}^{n \times n}$ is a DZ matrix, then P is nonsingular.

Lemma 2 ([4]) All eigenvalues of a matrix $P = (p_{ts}) \in \mathbb{C}^{n \times n}$, $n \ge 2$, belong to the set

$$\Theta(P) = \bigcap_{t \in [n]} \bigcup_{s \in [n], t \neq s} \Theta_{ts}(P),$$

where

$$\Theta_{ts}(P) = \{\lambda \in \mathbb{C} : |\lambda - p_{tt}| (|\lambda - p_{ss}| - r_s^t(P))\} \leq r_t(P)|p_{st}|$$

Our first main result for a DZ matrix *P* is stated as follows.

Theorem 4 Let $P = (p_{ts}) \in \mathbb{C}^{n \times n}$ be a DZ matrix, $Q = (q_{ts}) \in \mathbb{C}^{n \times n}$. Then

$$|\lambda(P^{-1}Q)| \leq \omega_4 = \min_{t \in [n], s \neq t} \max_{k \in [n], s \neq t} \frac{H + \sqrt{H^2 - 4GK}}{2G}$$

where

$$G = |p_{tt}|(|p_{ss}| - r_s^t(P)) - r_t(P)|p_{st}|,$$

$$H = |p_{tt}|(|q_{ss}| + r_s^t(Q)) + |p_{ss}||q_{tt}|$$

$$+ r_t(P)|q_{st}| + r_t(Q)|p_{st}|,$$

$$K = |q_{tt}|(|q_{ss}| + r_s^t(Q)) - r_t(Q)|q_{st}|.$$

Proof: Since $P = (p_{ts}) \in \mathbb{C}^{n \times n}$ is a DZ matrix, by Lemma 1, $P = (p_{ts})$ is nonsingular. Assume $\lambda \in \sigma(P^{-1}Q)$ ($\sigma(P^{-1}Q)$ is the set of all the eigenvalues of $P^{-1}Q$), then

$$\det(\lambda I - P^{-1}Q) = 0,$$

which means

$$\det(\lambda P - Q) = 0.$$

By Lemma 2, for the index $t \in [n]$, there is an index $s \in [n], s \neq t$, if

$$\begin{aligned} |\lambda p_{tt} - q_{tt}| (|\lambda p_{ss} - q_{ss}| - r_s^t (\lambda P - Q)) \\ > r_t (\lambda P - Q) |\lambda p_{st} - q_{st}|, \quad (3) \end{aligned}$$

then $\lambda \notin \sigma(P^{-1}Q)$. Therefore, if

$$\begin{aligned} (|\lambda||p_{tt}| - |q_{tt}|)(|\lambda||p_{ss}| - |q_{ss}|) \\ - (|\lambda||p_{tt}| + |q_{tt}|)(|\lambda|r_s^t(P) + r_s^t(Q)) \\ > (|\lambda|r_t(P) + r_t(Q))(|\lambda||p_{st}| + |q_{st}|), \quad (4) \end{aligned}$$

then, $\lambda \notin \sigma(P^{-1}Q)$. Therefore, if $\lambda \in \sigma(P^{-1}Q)$, we have

$$\begin{aligned} (|\lambda||p_{tt}| - |q_{tt}|)(|\lambda||p_{ss}| - |q_{ss}|) \\ &- (|\lambda||p_{tt}| + |q_{tt}|)(|\lambda|r_s^t(P) + r_s^t(Q)) \\ &\leq (|\lambda|r_t(P) + r_s(Q))(|\lambda||p_{st}| + |q_{st}|), \end{aligned}$$
(5)

that is,

$$G|\lambda|^2 - H|\lambda| + K \le 0, \tag{6}$$

where

$$G = |p_{tt}|(|p_{ss}| - r_s^t(P)) - r_t(P)|p_{st}|,$$

$$H = |p_{tt}|(|q_{ss}| + r_s^t(Q)) + |p_{ss}||q_{tt}|$$

$$+ r_t(P)|q_{st}| + r_t(Q)|p_{st}|,$$

$$K = |q_{tt}|(|q_{ss}| + r_s^t(Q)) - r_t(Q)|q_{st}|.$$

Since $P = (p_{ts}) \in \mathbb{C}^{n \times n}$ is a DZ matrix, then $|p_{tt}|(|p_{ss}|-r_s^t(P))-r_t(P)|p_{st}| > 0$, then for the index $t \in [n]$, there is an index $s \in [n]$, $s \neq t$,

$$|\lambda(P^{-1}Q)| \leq \max_{s \in [n], s \neq t} \frac{H + \sqrt{H^2 - 4GK}}{2G},$$

By the arbitrariness of t, we have

$$|\lambda(P^{-1}Q)| \leq \min_{t \in [n], s \neq t} \max_{s \in [n], s \neq t} \frac{H + \sqrt{H^2 - 4GK}}{2G}.$$

Remark 1 In Theorem 4 of [9], when $P = (p_{ts}) \in \mathbb{C}^{n \times n}$ is a DSDD matrix, $Q = (q_{ts}) \in \mathbb{C}^{n \times n}$, the authors obtained the following result:

$$|\lambda(P^{-1}Q)| \leq \max_{t,s \in [n], s \neq t} \{\min\{\tau_1, \tau_2\}\}$$

where
$$\tau_1 = \frac{B + \sqrt{B^2 - 4AC}}{2A}$$
, $\tau_2 = \frac{E + \sqrt{E^2 - 4DF}}{2D}$, and
 $D = |p_{tt}p_{ss}| + r_t(P)r_s(P)$,
 $E = |p_{tt}q_{ss} + q_{tt}p_{ss}| - r_t(P)r_s(Q) - r_t(Q)r_s(P)$,
 $F = |q_{tt}q_{ss}| + r_t(Q)r_s(Q)$.

If $\Delta = E^2 - 4DF < 0$, the authors take $\frac{E + \sqrt{E^2 - 4DF}}{2D} = \infty$. There are some errors in the calculation process of Theorem 4 in [9]. First, from inequality (7) in the proof of Theorem 4 in [9], we have

$$\begin{bmatrix} |p_{tt}p_{ss}| + r_t(P)r_s(P)]|\lambda|^2 - [|p_{tt}q_{ss}| \\ + p_{ss}q_{tt}| - r_t(P)r_s(Q) - r_s(P)r_t(Q)]|\lambda| \\ + [q_{tt}q_{ss} + r_t(Q)r_s(Q)] \ge 0, \end{bmatrix}$$

Obviously, by the above inequality, E should be defined as follows:

$$E = |p_{tt}q_{ss}| + |q_{tt}p_{ss}| - r_t(P)r_s(Q) - r_t(Q)r_s(P).$$

Second, from inequality (7) in the proof of Theorem 4 in [9], we have

$$D|\lambda|^2 - E|\lambda| + F \ge 0,$$

if $\Delta \ge 0$, then

$$|\lambda| \leq \frac{E - \sqrt{E^2 - 4DF}}{2D}, \text{ or } |\lambda| \geq \frac{E + \sqrt{E^2 - 4DF}}{2D},$$

which means, the result of Theorem 4 in [9] is incorrect.

Another upper bound for moduli of eigenvalues $|\lambda(P^{-1}Q)|$ is incorporated in the following theorem.

Theorem 5 Let $P = (p_{ts}) \in \mathbb{C}^{n \times n}$ be a DZ matrix, $Q = (q_{ts}) \in \mathbb{C}^{n \times n}$. Then

$$|\lambda(P^{-1}Q)| \leq \omega_5 = \min_{t \in [n]} \max_{s \in [n], s \neq t} \frac{H' + \sqrt{H'^2 - 4GK'}}{2G}$$

where

$$G = |p_{tt}|(|p_{ss}| - r_s^t(P)) - r_t(P)|p_{st}|,$$

$$H' = |p_{tt}q_{ss} + p_{ss}q_{tt}| + |p_{tt}|r_s^t(Q) + |q_{tt}|r_s^t(P) + r_t(P)|q_{st}| + r_t(Q)|p_{st}|,$$

$$K' = -|q_{tt}|(|q_{ss}| + r_s^t(Q)) - r_t(Q)|q_{st}|.$$

Proof: Since $P = (p_{ts}) \in \mathbb{C}^{n \times n}$ is a DZ matrix, by Lemma 1, $p = (p_{ts})$ is nonsingular. Assume $\lambda \in \sigma(P^{-1}Q)$. Then

$$\det(\lambda I - P^{-1}Q) = 0,$$

which implies

$$\det(\lambda P - Q) = 0.$$

By Lemma 2, for the index $t \in [n]$, there is an index $s \in [n], s \neq t$, if

$$|\lambda p_{tt} - q_{tt}| (|\lambda p_{ss} - q_{ss}| - r_s^t (\lambda P - Q)) > r_t (\lambda P - Q) |\lambda p_{st} - q_{st}|, \quad (7)$$

then $\lambda \notin \sigma(P^{-1}Q)$. Therefore, if

$$\begin{aligned} \left(|\lambda|^2 |p_{tt} p_{ss}| - |p_{tt} q_{ss} + p_{ss} q_{tt}| |\lambda| - |q_{tt} q_{ss}| \right) \\ - \left(|\lambda| |p_{tt}| + |q_{tt}| \right) \left(|\lambda| r_s^t(P) + r_s^t(Q) \right) \\ > \left(|\lambda| r_t(P) + r_t(Q) \right) \left(|\lambda| |p_{st}| + |q_{st}| \right), \quad (8) \end{aligned}$$

then $\lambda \notin \sigma(P^{-1}Q)$. Therefore, if $\lambda \in \sigma(P^{-1}Q)$, we have

$$\begin{aligned} \left(|\lambda|^2 |p_{tt} p_{ss}| - |p_{tt} q_{ss} + p_{ss} q_{tt}| |\lambda| - |q_{tt} q_{ss}| \right) \\ - \left(|\lambda| |p_{tt}| + |q_{tt}| \right) (|\lambda| r_s^t(P) + r_s^t(Q)) \\ &\leq \left(|\lambda| r_t(P) + r_t(Q) \right) (|\lambda| |p_{st}| + |q_{st}|), \quad (9) \end{aligned}$$

that is,

$$G|\lambda|^2 - H'|\lambda| + K' \le 0, \tag{10}$$

where

$$G = |p_{tt}|(|p_{ss}| - r_{s}^{t}(P)) - r_{t}(P)|p_{st}|,$$

$$H' = |p_{tt}q_{ss} + p_{ss}q_{tt}| + |p_{tt}|r_{s}^{t}(Q)$$

$$+ |q_{tt}|r_{s}^{t}(P) + r_{t}(P)|q_{st}| + r_{t}(Q)|p_{st}|,$$

$$K' = -|q_{tt}|(|q_{ss}| + r_{s}^{t}(Q)) - r_{t}(Q)|q_{st}|.$$

Since $P = (p_{ts}) \in \mathbb{C}^{n \times n}$ is a DZ matrix, $G = |p_{tt}|(|p_{ss}| - r_s^t(P)) - r_t(P)|p_{st}| > 0$, and $K' \leq 0$. Note that for the index $t \in [n]$, there is an index $t \neq s$, $t \in [n]$,

$$|\lambda(P^{-1}Q)| \leq \max_{s \in [n], s \neq t} \frac{H' + \sqrt{H'^2 - 4GK'}}{2G},$$

By the arbitrariness of t, we have

$$|\lambda(P^{-1}Q)| \leq \min_{t \in [n]} \max_{s \in [n], s \neq t} \frac{H' + \sqrt{H'^2 - 4GK'}}{2G}.$$

In [9], Li et al presented $\omega_2 \leq \omega_1$ when P = diag(M). In the following, we give some comparison theorems. First, we give the relationships between ω_2 and ω_1 without the condition P = diag(M).

Theorem 6 Let $P = (p_{ts}) \in \mathbb{C}^{n \times n}$ be an SDD matrix, $Q = (q_{ts}) \in \mathbb{C}^{n \times n}$. Then

 $\omega_2 \leq \omega_1.$

Proof: If $|\lambda| \le \omega_2$, from the proof of Theorem 3 in [9], there are distinct indices $t, s \in [n]$, such that

$$(|p_{tt}||\lambda| - |q_{tt}|)(|p_{ss}||\lambda| - |q_{ss}|) \\ \leq (|\lambda|r_t(P) + r_t(Q))(|\lambda|r_s(P) + r_s(Q)).$$

If
$$(|\lambda|r_t(P) + r_t(Q))(|\lambda|r_s(P) + r_s(Q)) = 0$$
, then

$$(|p_{tt}||\lambda| - |q_{tt}|)(|p_{ss}||\lambda| - |q_{ss}|)) \le 0$$

which implies that, one factor in the left side of above inequality is negative. Without loss of generality, we assume $|p_{tt}||\lambda|-|q_{tt}| \le 0 \le |\lambda|r_t(P)+r_t(Q)$, then

$$\begin{split} |\lambda| &\leq \omega_1 = \max_{t \in [n]} \frac{|q_{tt}| + r_t(Q)}{|p_{tt}| - r_t(P)}.\\ \text{If } (|\lambda|r_t(P) + r_t(Q))(|\lambda|r_s(P) + r_s(Q)) > 0, \text{ then} \end{split}$$

$$\frac{|p_{tt}||\lambda| - |q_{tt}|}{|\lambda|r_t(P) + r_t(Q)} \frac{|p_{ss}||\lambda| - |q_{ss}|}{|\lambda|r_s(P) + r_s(Q)} \le 1.$$

Thus,

$$\frac{|p_{tt}||\lambda| - |q_{tt}|}{|\lambda|r_t(P) + r_t(Q)} \leq 1,$$

or

$$\frac{|p_{ss}||\lambda| - |q_{ss}|}{|\lambda|r_s(P) + r_s(Q)} \leq 1.$$

Therefore,

$$|\lambda| \leq \omega_1 = \max_{t \in [n]} \frac{|q_{tt}| + r_t(Q)}{|p_{tt}| - r_t(P)}$$

Second, the relationships among ω_2 , ω_3 , ω_4 and ω_5 are also examined.

Theorem 7 Let $P = (p_{ts}) \in \mathbb{C}^{n \times n}$ be a DSDD matrix, $Q = (q_{ts}) \in \mathbb{C}^{n \times n}$. Assume that $|p_{tt}||\lambda| + |q_{tt}| \leq |\lambda|r_t(P) + r_t(Q)$ for all $t \in [n]$, $\lambda \in \sigma(P^{-1}Q)$. Then

 $\omega_5 \leq \omega_3, \quad \omega_4 \leq \omega_2.$

Proof: If $|\lambda| \le \omega_4$, and there is an index $t \in [n]$ with $|p_{tt}||\lambda| + |q_{tt}| \le |\lambda|r_t(P) + r_t(Q)$. From the proof of Theorem 4, for the index $t \in [n]$, there is an index $s \in [n]$, $s \neq t$, we have

$$\begin{aligned} (|\lambda||p_{tt}| - |q_{tt}|)(|\lambda||p_{ss}| - |q_{ss}|) \\ - (|\lambda||p_{tt}| + |q_{tt}|)(|\lambda|r_s^t(P) + r_s^t(Q)) \\ \leqslant (|\lambda|r_t(P) + r_t(Q))(|\lambda||p_{st}| + |q_{st}|) \end{aligned}$$

Then

$$\begin{aligned} (|\lambda||p_{tt}| - |q_{tt}|)(|\lambda||p_{ss}| - |q_{ss}|) \\ &\leq (|\lambda|r_t(P) + r_t(Q))(|\lambda||p_{st}| + |q_{st}|) \\ &+ (|\lambda||p_{tt}| + |q_{tt}|)(|\lambda|r_s^t(P) + r_s^t(Q)) \\ &\leq (|\lambda|r_t(P) + r_t(Q))(|\lambda||p_{st}| + |q_{st}|) \\ &+ (|\lambda|r_t(P) + r_t(Q))(|\lambda|r_s^t(P) + r_s^t(Q)) \\ &\leq (|\lambda|r_t(P) + r_t(Q))(|\lambda|r_s(P) + r_s(Q)). \end{aligned}$$

Therefore, $|\lambda| \leq \omega_2$.

If $|\lambda| \le \omega_5$, and $|p_{tt}||\lambda| + |q_{tt}| \le |\lambda|r_t(P) + r_t(Q)$. From the proof of Theorem 5, for the index $t \in [n]$, there is an index $s \in [n]$, $s \neq t$, such that

$$\begin{aligned} (|\lambda|^{2}|p_{tt}p_{ss}| - |p_{tt}q_{ss} + p_{ss}q_{tt}||\lambda| - |q_{tt}q_{ss}|) \\ - (|\lambda||p_{tt}| + |q_{tt}|)(|\lambda|r_{s}^{t}(P) + r_{s}^{t}(Q)) \\ \leq (|\lambda|r_{t}(P) + r_{t}(Q))(|\lambda||p_{st}| + |q_{st}|). \end{aligned}$$

Then

$$\begin{aligned} |\lambda|^{2}|p_{tt}p_{ss}| &- |p_{tt}q_{ss} + p_{ss}q_{tt}||\lambda| - |q_{tt}q_{ss}| \\ &\leq (|\lambda|r_{t}(P) + r_{t}(Q))(|\lambda||p_{st}| + |q_{st}|) \\ &+ (|\lambda||p_{tt}| + |q_{tt}|)(|\lambda|r_{s}^{t}(P) + r_{s}^{t}(Q)) \\ &\leq (|\lambda|r_{t}(P) + r_{t}(Q))(|\lambda||p_{st}| + |q_{st}|) \\ &+ (|\lambda|r_{t}(P) + r_{t}(Q))(|\lambda|r_{s}^{t}(P) + r_{s}^{t}(Q)) \\ &\leq (|\lambda|r_{t}(P) + r_{t}(Q))(|\lambda|r_{s}(P) + r_{s}(Q)). \end{aligned}$$

Therefore,
$$|\lambda| \leq \omega_3$$
.

Remark 2 If *P* is an SDD matrix, by the condition " $|p_{tt}||\lambda| + |q_{tt}| \le |\lambda|r_t(P) + r_t(Q)$ for all $t \in [n]$ ", we have

$$|\lambda| \leq \frac{r_t(Q) - |q_{tt}|}{|p_{tt}| - r_t(P)}.$$

If *P* is a DSDD matrix and not an SDD matrix, if $|p_{tt}| > r_t(P)$ for some $t \in [n]$, by the condition

ScienceAsia 47 (2021)

" $|p_{tt}||\lambda| + |q_{tt}| \le |\lambda|r_t(P) + r_t(Q)$ for all $t \in [n]$ ", we have

$$|\lambda| \leq \frac{r_t(Q) - |q_{tt}|}{|p_{tt}| - r_t(P)}.$$

If $|p_{tt}| \leq r_t(P)$, then we can take $|p_{tt}| \leq r_t(P)$, $|q_{tt}| \leq r_t(Q)$.

Remark 3 The relationship between ω_4 and ω_5 is not obvious. But we can find that, if

$$\operatorname{sign}(p_{tt}q_{ss})\operatorname{sign}(p_{ss}q_{tt}) < 0$$

for distinct $t, s \in [n]$, then $\omega_4 \leq \omega_5$, where sign(x) is the sign function.

NUMERICAL EXAMPLES

In this section, some numerical examples are given to illustrate the efficiency of our proposed upper bounds.

Example 1 Let

$$P = \begin{bmatrix} 7 & 2 & 4 \\ 1 & 7 & 1 \\ 1 & 1 & 9 \end{bmatrix}, \quad Q = \begin{bmatrix} 1 & 0 & 3 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix},$$

Obviously, P is an SDD matrix. By a direct computation, we have

$$\rho(P^{-1}Q) = 0.2985 \le \min_{t \in [n]} \frac{r_t(Q) - |q_{tt}|}{|p_{tt}| - r_t(P)} = 0.4286,$$

which means that, the matrix splitting in Example 1 satisfies the condition in Theorem 7.

Example 2 Let

$$P = \begin{bmatrix} -7 & 2 & 1 \\ 1 & 7 & 1 \\ 1 & 1 & 9 \end{bmatrix}, \quad Q = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 2 & 1 \\ 1 & 4 & 1 \end{bmatrix},$$

Obviously, P is an SDD matrix. By a direct computation, we have

$$\rho(P^{-1}Q) = 0.4175 > \min_{t \in [n]} \frac{r_t(Q) - |q_{tt}|}{|p_{tt}| - r_t(P)} = -0.2,$$

which means that, the matrix splitting in Example 2 does not satisfy the condition in Theorem 7.

Example 3 Let

$$P = \begin{bmatrix} -7 & 2 & 1 \\ 1 & 1.5 & 1 \\ 1 & 2 & 2.5 \end{bmatrix}, \quad Q = \begin{bmatrix} 1 & 0 & 0.1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix},$$

Obviously, P is not a DSDD matrix. Then, Theorems 1–3 can not be applied in Example 3, but P is a DZ matrix. By a direct computation, we have

$$\rho(P^{-1}Q) = 0.6993.$$

Example 4 Let

$$p = \begin{bmatrix} -7 & 2 & 6 \\ 0 & 8 & 1 \\ 1 & 1 & 9 \end{bmatrix}, \quad Q = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix},$$

Obviously, *P* is not an SDD matrix. Then Theorem 1 can not be applied in Example 4, but *P* is a DSDD matrix. If t = 1, $|p_{11}| \le r_1(P)$, $|q_{11}| \le r_1(Q)$. If t = 2, 3, by a direct computation, we have

$$\rho(P^{-1}Q) = 0.2437 > \min_{t \in [n]} \frac{r_t(Q) - |q_{tt}|}{|p_{tt}| - r_t(P)} = -0.1429,$$

which means that, the matrix splitting in Example 4 does not satisfy the condition in Theorem 7.

Example 5 Let

$$p = \begin{bmatrix} -7 & 2 & 6\\ 0 & 8 & 1\\ 1 & 1 & 9 \end{bmatrix}, \quad Q = \begin{bmatrix} 1 & 0 & 3\\ 1 & 0 & 2\\ 1 & 2 & 0 \end{bmatrix},$$

Obviously, *P* is not an SDD matrix. Then Theorem 1 can not be applied in Example 5, but *P* is a DSDD matrix. If t = 1, $|p_{11}| \le r_1(P)$, $|q_{11}| \le r_1(Q)$. If t = 2, 3, by a direct computation, we have

$$\rho(P^{-1}Q) = 0.3011 \le \min_{t \in [2,3]} \frac{r_t(Q) - |q_{tt}|}{|p_{tt}| - r_t(P)} = 0.4286,$$

which means that, the matrix splitting in Example 5 satisfies the condition in Theorem 7.

Table 1 summarizes for Examples 1–5 the performance of the upper bounds proposed in this paper comparing with these of [5, 7, 9]. From Table 1, we can find that, if the matrix splitting satisfies the condition in Theorem 7, then, the result in Theorem 5 is always better than the result in Theorem 2, and the result in Theorem 4 is always better than the result in Theorem 3, which are illustrated in Examples 1 and 5. If *P* is a DZ matrix, the upper bound can only be obtained by Theorems 4 and 5.

CONCLUSION

It is well known that $\{\text{SDD}\} \subseteq \{\text{DSDD}\} \subseteq \{\text{DZ}\}$. In this paper, two upper bounds for $|\lambda(P^{-1}Q)|$ (or $\rho(P^{-1}Q)$) are investigated, which is applicable to a DZ matrix *P*. We also compare our results with some existing results under certain conditions.

I	Example 1	Example 2	Example 2	Example 4	Example 5
	Example 1		Example 5	Example 4	Example 5
$\rho(P^{-1}Q)$	0.2985	0.4087	0.6993	0.2437	0.3011
Theorem 1	4 (>1)	1	_	_	_
Theorem 2	1.0660 (>1)	0.9170	_	0.7166	1.0179 (>1)
Theorem 3	1.0660 (>1)	0.7794	_	0.5452	1.0179 (>1)
Theorem 4	0.9784 (<1)	1	1.1506 (>1)	0.6477	0.8515 (<1)
Theorem 5	0.9784 (<1)	0.8089	0.8410 (<1)	0.4693	0.8515 (<1)

Table 1 Numerical comparison between our upper bounds and those of [5, 7, 9].

Acknowledgements: This work is supported by NSF of China (71461027, 11661084), Innovative talent team in Guizhou Province (Qian Ke He Pingtai Rencai[2016]5619), New academic talents and innovative exploration fostering project(Qian Ke He Pingtai Rencai[2017]5727-21), Guizhou Province Natural Science Foundation in China (Qian Jiao He KY[2020]094), Science and Technology Foundation of Guizhou Province (Qian Ke He Ji Chu ZK[2021]Yi Ban 014).

REFERENCES

- Horn R, Johnson C (1985) Matrix Analysis, Cambridge University Press, Cambridge, UK.
- 2. Berman A, Plemmons R (1994) *Nonnegative Matrices in Mathematical Sciences*, SIAM, Philadelphia, PA.
- 3. Varga R (2000) *Matrix Iterative Analysis*, Springer, Berlin, Heidelberg.

www.scienceasia.org

- Cvetković L (2006) H-matrix theory vs. eigenvalue localization. Numer Algorithms 42, 229–245.
- 5. Wang X (1994) The upper bound of the spectral radius of $M^{-1}N$ and convergence of some iterative methods. *Int J Comput Math* **53**, 203–217.
- 6. Wang X (1997) Convergence theory for the general GAOR type iterative method and the MSOR iterative method applied to *H*-matrices. *Linear Algebra Appl* **250**, 1–19.
- Hu J (1986) The upper and lower bounds of the eigenvalues M¹N. Math Numer Sin 8, 41–46. [in Chinese]
- Huang T, Gao Z (2003) A new upper bound for moduli of eigenvalues of iterative matrices. *Int J Comput Math* 80, 799–803.
- 9. Li H, Huang T, Li H (2006) An improvement on a new upper bound for moduli of eigenvalues of iterative matrices. *Appl Math Comput* **173**, 977–984.