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ABSTRACT: Based on the matrix splitting M = P —Q, some upper bounds for the maximum of moduli of eigenvalues
of the iteration matrix P~1Q are obtained when P is an strictly diagonally dominant (SDD) matrix or a doubly strictly
diagonally dominant (DSDD) matrix. In this paper, some new upper bounds are introduced, which is applicable to a
Dashnic-Zusmanovich (DZ) matrix P, and proved to be better than those in Huang and Gao [Int J Comput Math 80
(2003):799-803] and Li et al [Appl Math Comput 173 (2006):977-984] in certain cases.
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INTRODUCTION

Let M = (m,,) be an n x n nonsingular complex
matrix and consider the following large system of
linear equations

Mx =Db, (D

which plays an important role in the numerical so-
lution of elliptic partial differential equations [1, 2].
Based on the matrix splitting M = P —Q, some
basic iterative methods, such as Jacobi, Gauss-Seidel
and successive overrelaxation iterative methods, are
introduced to solve the system of linear equations
(1) [3]. The matrix splitting M = P —Q leads to the
stationary iteration scheme

Xps1 = P71Qx, +c. 2

The matrix P~'Q in (2) is called the iteration ma-
trix. It is well known that the iteration scheme (2)
converges for any initial vector x, if p(P7!Q) < 1,
where p(P7!Q) denotes the spectral radius of the
matrix P~'Q, namely, maximum of moduli of eigen-
values of P71Q.

Let C™" be the set of all complex matrices, and
denote [n] :={1,2,...,n}. A matrix P = (p,,) €
C™" is called an SDD (strictly diagonally dominant)
matrix if for each t € [n],

Ipeel > 7 (P),
where r,(P) = D |p;|. A matrix P = (p,,) € C™"
7

t
is called a DSDD (doubly strictly diagonally domi-

nant) matrix if for distinct t,s € [n], the following
inequality holds:

|ptt||pss| > rt(P)rs(P)~

A matrix P = (p,,) € C™" is called a DZ (Dashnic-
Zusmanovich) matrix if there exists an index t € [n],
for all s # t, s € [n], the following inequality holds:

Pl (Ipss| — rst(P)) > r,(P)|ps:ls

where r{(P) = ry(P) — |p,|. It has been shown
in [4] that the above three classes of matrices are
nonsingular and have the following inclusions:

{SDD} C {DSDD} C {DZ}.

One practical application of the eigenvalues of
P~1Q is that one can identify the convergence prop-
erty of the iteration scheme x;,; = P~'Qx + ¢ by
the maximum of moduli of eigenvalues of P71Q,
for more details, see [5-8]. In [5, 7], the authors
established the following result for an SDD matrix P.

Theorem 1 ([5,7]) Let P =(p,;) € C"*" be an SDD
matrix, Q = (q,,) € C"*". Then

IA(P_lQ)l < w; = max G| + rt(Q)'
teln] |pee| — 1 (P)

If further P = (p,,) € C™" is a DSDD matrix, the
result in Theorem 1 can be improved as follows.
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Theorem 2 ([8]) Let P = (p,,) € C™" be a DSDD
matrix, Q = (q,,) € C™". Then

B+ +/B2—4AC
IAMP!Q)<wy,= max ———,
t,s€ln],s#t 2A

where

A= Ipttpss| - rt(P)rs(P):
B = |peeqss| + 1qeepss| + 1 (P)rs(Q) + 1 (Q)rs(P),
C= |qttqss| - rt(Q)rs(Q)-

Recently, Li et al [9] presented the following
result, for a DSDD matrix P = (p,,) € C"™".

Theorem 3 ([9]) Let P = (p,;) € C™" be a DSDD
matrix, Q = (q.,) € C™". Then

B+ +v/B2—4AC
AP Q)| < ws= max DT VE THAC
t,seln],s#t 2A

where

A= |pttpss| - rt(P)rs(P):
B' = IPeeQss + qeeDss| + 1. (P)rg(Q) + 1 (Q)r(P),
C'= _[lqttqss| + rt(Q)rs(Q)]-

For an SDD matrix P = (p,;) € C™", Theo-
rem 1 can be used to obtain the upper bound for
[A(P7'Q)|. For a DSDD matrix P, Theorems 2
and 3 can be used to obtain the upper bounds for
|A(P1Q)|. In this paper, some new bounds for a DZ
matrix P = (p,,) are introduced.

MAIN RESULTS

Before presenting our main results, we need the
following lemmas.

Lemma 1 ([4]) If P = (p,,) € CY" is a DZ matrix,
then P is nonsingular.

Lemma 2 ([4]) Al eigenvalues of a matrix P =
(pss) € CYM, n = 2, belong to the set

e(p) = ﬂ U 0,(P),

te[n] s€[n), t#s

where

O (P) ={A € C:|A—p( [(1A=pys|—r; (P))} < 1:(P)Ipgl.

Our first main result for a DZ matrix P is stated
as follows.
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Theorem 4 Let P =(p,,) € C"*" be a DZ matrix, Q =
(q;5) € C™". Then

H+ vH2—4GK
|A(P‘1Q)| S wys=min max ——————,
te[n]se[n], s#t 2G

where

G = |pecl(Ipss| =7 (P)) — 1 (P)Ipycl,

H = |pee|(lgss| + rst(Q)) +Dss11qee|
+1(P)lge| + 7 (Q)Ipsel,

K =1q¢|(1gss] + 1 (Q) — 1 (Q)lgsc |-

Proof: Since P = (p,,) € C**" is a DZ matrix, by
Lemma 1, P = (p,,) is nonsingular. Assume A €
o(P7'Q) (o(P71Q) is the set of all the eigenvalues
of P71Q), then

det(AI —P71Q) =0,
which means
det(AP—Q) =0.
By Lemma 2, for the index t € [n], there is an index
s€[n], s#t,if
|Aptt _qttl(lxpss - qss| - T'st()LP _Q))
> 1 (AP —Q)|Apse —qsel,  (3)

then A ¢ o(P~1Q). Therefore, if

(|A||ptt| - |qtt|)(|x||pss| - |qss|)
—(Allpeel +1qeeDUAIr (P) +1{(Q))
> (Al (P) + r (@DAlIpse | + 1gsc D, (D

then, A ¢ o(P~!Q). Therefore, if A € o(P71Q), we
have

(|A||ptt| - |qtt|)(|l||pss| - |qss|)
= Allpeel +1gee DU (P) +71(Q))
S (A (P) + r(@)DUADse | + g5, (5)
that is,
GIA>—H|A|+K <0, 6)

where

G = Ipee|(Ipss| =7 (P)) = 1(P)Ipyc,

H = |pe|(1qss| + 7, (Q)) + pssl g |
+ re(P)Igse| + re(Q)Ipse s

K =1q.|(Iqss| + rst(Q))_ e (Q)Igse -
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Since P = (p,) € C™" is a DZ matrix, then
pecl(Ipss| =1 (P))—r(P)Ips| > O, then for the index
t € [n], there is an index s € [n], s # ¢,

H+ vH2—4GK
A(P!Q)|< max —————,
s€[n],s#t 2G

By the arbitrariness of t, we have

H+ +vH2—4GK
A(P'Q)| € min max ——M———.
teln]se[n], s#t 2G

Remark 1 In Theorem 4 of [9], when P = (p,,) €
C™" is a DSDD matrix, Q = (q,,) € C™", the authors
obtained the following result:

IA(PT'Q)I < max {min{7y,7,}},
t,s€[n],s#t
where 7, = BB C ) = EREADE and

D= |pttpss| + T‘I(P)T‘S(P),
E = |p¢tQss + Qe Pss| — 1 (P (Q) — 1 (Q)r(P),
F =1q:¢qs| + . (Q)rs(Q).

If A = E2 —4DF < 0, the authors take E*—W =
00. There are some errors in the calculation process
of Theorem 4 in [9]. First, from inequality (7) in the
proof of Theorem 4 in [9], we have

[|pttpss| +rt(P)rs(P):”MZ_[Ipttqss|
+ DssQeel — 1 (P)r(Q) — (P (Q)]|A]
+[qeeqss + 1 (Qr(Q)] >0,

Obviously, by the above inequality, E should be
defined as follows:

E= |pttqss| + |qttpss| - rt(P)rs(Q) - rt(Q)rs(P)-

Second, from inequality (7) in the proof of Theorem
4 in [9], we have

DIA2—E|A|+F =0,

if A >0, then

E—+E%2—4DF E+ vE2—4DF
|A,| < T, or |A| = T’

which means, the result of Theorem 4 in [9] is
incorrect.
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Another upper bound for moduli of eigenvalues
|IA(P1Q)| is incorporated in the following theorem.

Theorem 5 Let P =(p,,) € C"*" be a DZ matrix, Q =
(q;5) € C™". Then

, H'+ vVH2—4GK'
IA(P7Q)| € ws = min max s
te[n]s€[n],s#t 2G

where

G = |pecl(Ipss| =7 (P)) — 1 (P)Ipycl,
H' = IPeeQss + PssQeel + |ptt|rst(Q)
+ |qtt|rst(P) + 1 (P)|qse| + 1 (Q)Ipse |,
K" = —q.(Igss| + Q) — 1 (Q)lgy -

Proof: Since P = (p,,) € C™" is a DZ matrix, by
Lemma 1, p = (p,,) is nonsingular. Assume A €
o(P71Q). Then

det(AI —P71Q) =0,
which implies
det(AP—Q) =0.

By Lemma 2, for the index t € [n], there is an index
s€[n], s #t,if
M’ptt _qttl(lkpss _qss| - rst()LP _Q))

> 1 (AP —Q)|Apsy —qsel,  (7)
then A ¢ o(P~'Q). Therefore, if

(|A|2|pttpss| —IPeeGss + PssQee| 1A — |qttqss|)
—(AMpeel +1ge e DUAFL(P) +1E(Q))
> (A (P) + 1 (Q)Alpse| + 151D, (8)

then A ¢ o(P71Q). Therefore, if A € o(P71Q), we
have

(|A|2|pttpss| - |pttqss +pssqtt||)'| - |qttqss|)
—(Allpeel + e DUAIF (P) +1(Q))
< (Al (P) + r (@)UAlIpse | + g5, (9

that is,

GIA>P—H'|A|+K' <0, (10)

where
G = |pee|(Ipss| =7 (P)) =1 (P)Ipsc],
H' = IP¢¢Gss + PssQee| + |pn|rst(Q)

+ |qtt|r5[(P) +1(P)Igse | + 1 (Q)pse
K" = —q,|(Iqss| + (@) — 1 (Q)Ise |-
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Since P = (p,) € CY" is a DZ matrix, G =
Ipee|(Ipss| =75 (P))—7(P)Ips| > 0, and K’ < 0. Note
that for the index t € [n], there is an index t # s,
t€[n],

H'+ VHZ—4GK'
IA(P1Q)| < max 4eK"
s€[n],s#t 2G

By the arbitrariness of t, we have

H'+ VH?—4GK’
IA(P7'Q)| < min max )
te[n]sen], s#t 2G

a

In [9], Li et al presented w, < w; when P =

diag(M). In the following, we give some com-

parison theorems. First, we give the relationships

between w, and w; without the condition P =
diag(M).

Theorem 6 Let P = (p,;) € C™" be an SDD matrix,
Q=(q,) € C™". Then
wy < Wy

Proof: If |A| < w,, from the proof of Theorem 3 in
[9], there are distinct indices t,s € [n], such that

UpeelIA =g DCpss Al =155 1)
< (Al (P) + r (@) Al (P) + 1,(Q)).
If (|Alr (P) + r,(Q)(|A|rs(P) + r,(Q)) = O, then

Upee 1A =g D(Upss Al = 1g55 1)) < O,

which implies that, one factor in the left side of
above inequality is negative. Without loss of gener-
ality, we assume |p,||A|—|q,| <O <[A|r (P)+7.(Q),
then
+
4| < w; = max |q..| rt(Q).
teln] |py| —1.(P)

If (|Alr(P) + 1 (Q))([Alrs(P) +15(Q)) > 0, then

|ptt||kl_|qtt| |pss|lkl_|qss| <
[Alre(P)+1,(Q) IAlry(P)+1,(Q)

Thus,
IDeel Al = 1G4l <
Alr(P)+7r.(Q) 7
or
|Pss||?\|—|q55|
[Alr(P)+14(Q)
Therefore,

4| < w; = max gl + rt(Q).
teln] [pee| =1 (P)
O
Second, the relationships among w,, w3, wy
and wg are also examined.
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Theorem 7 Let P = (p,,) € C™" be a DSDD matrix,
Q = (q;s) € C™". Assume that |p.||A| + g, <
IAlr(P)+r.(Q) forall t € [n], A € c(P'Q). Then

wWsg < w3, (1)4<C()2.

Proof: If |A| < w,, and there is an index t € [n] with
IPecl A + 1] < A (P) + r(Q). From the proof of
Theorem 4, for the index t € [n], there is an index
s €[n], s # t, we have

(|A||ptt| - |qtt|)(|l||pss| - |qss|)
—(Allpeel + 1geeDUAIT (P) +1(Q))
< (IAlre(P) + r (@Q)UAlIpse | + g5 -

Then

UAllpeel = 1ge DUAlIPs | = lgss D
< (|Are(P) + r (@)UAlpsel + 1gse 1)
+(Allpeel +1ge DU (P) +1(Q))
< (IAlr (P) + r (@)UAlIPse| + 1gs: 1)
+(Alr(P) + r(@)UAIr (P) +1{(Q))
< (IAlr (P) + r (@A (P) + r4(Q)).
Therefore, |A]| < w,.
If[A] < ws, and |p.|[Al+]qee| < [Ar(P)+1.(Q).

From the proof of Theorem 5, for the index t € [n],
there is an index s € [n], s # t, such that

(Iklzlpttpss| - Ipttqss +pssqtt||}\'| - |qttqss|)
—(Allpeel + e DUAIT (P) +1(Q))
< (IAre(P) + r (Q@)UAlIpse | + 1gse -

Then

|)L|2|pttpss| —|PeeQss + PssQee|IA — g s
< (AP (P) +r (Q)DUAPse | + 1gse )
+(AIpec] +1ge DU (P) +1{(Q))
< (A (P) + r (@)UAlpse | + g D
+ (1Al (P) + r (@)(AIr (P) + 1 (Q))
< (Alr (P) +r (@Al (P) + 1(Q)).

Therefore, |A| < ws. ]

Remark 2 If P is an SDD matrix, by the condition
“IPecllAl+1geel < A (P)+1,(Q) for all ¢ € [n]”, we

have
r(Q 14wl
Pl =7, (P)
If P is a DSDD matrix and not an SDD matrix, if
|p¢e| > r.(P) for some t € [n], by the condition

Al <
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“IPeellAl+ gl < [A|r(P)+7,(Q) forall t € [n]”, we

have
Al < rt(Q)_IqttI.
Ipeel —1¢(P)
If |p,| < r.(P), then we can take |p,| < r.(P),
qee| < 7:(Q).

Remark 3 The relationship between w, and ws is
not obvious. But we can find that, if

sign(p;.qss) sign(pssqec) <O

for distinct t,s € [n], then w4 < ws, where sign(x)
is the sign function.

NUMERICAL EXAMPLES

In this section, some numerical examples are given
to illustrate the efficiency of our proposed upper
bounds.

Example 1 Let

P= . Q=

I
=N
O~ N
e
O N W

0

0

2

Obviously, P is an SDD matrix. By a direct compu-
tation, we have

_ . T(Q) =gyl
p(P7'Q) =0.2985 < min ————
teln] |pe| —1(P)

which means that, the matrix splitting in Example 1
satisfies the condition in Theorem 7.

= 0.4286,

Example 2 Let
-7

P=|1
1

=N
= O =
AN O
=W

1
I, Q=
9

[a N

Obviously, P is an SDD matrix. By a
tation, we have

irect compu-

_ . T(Q) =gl
p(P71Q)=0.4175 > min ——— =
tefn] |pye| —1(P)

which means that, the matrix splitting in Example 2
does not satisfy the condition in Theorem 7.

—0.2,

Example 3 Let

-7 2 1 1 0 01
p=|1 15 1|, @q=]0 1 1|,
1 2 25 00 1

Obviously, P is not a DSDD matrix. Then, Theorems
1-3 can not be applied in Example 3, but P is a DZ
matrix. By a direct computation, we have

p(P71Q) = 0.6993.
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Example 4 Let

O —= O
[S)
I
= O =
oSN O
=W

Obviously, P is not an SDD matrix. Then Theorem 1
can not be applied in Example 4, but P is a DSDD
matrix. If t =1, [py;| < (P, g1l < (Q). If t =
2,3, by a direct computation, we have

p(P7'Q) = 0.2437 > min r(@=lael _ —0.1429,

teln] |pee| =7 (P) B

which means that, the matrix splitting in Example 4
does not satisfy the condition in Theorem 7.

Example 5 Let

O — O
Q
I
[ -
N O O
o W

Obviously, P is not an SDD matrix. Then Theorem 1
can not be applied in Example 5, but P is a DSDD
matrix. If t =1, |py;| < i (P), g1l < r1(Q). If t =
2,3, by a direct computation, we have

p(P1Q) = 0.3011 < min D =lul _ ¢ 41006

te[23] |pee| =7 (P)

which means that, the matrix splitting in Example 5
satisfies the condition in Theorem 7.

Table 1 summarizes for Examples 1-5 the per-
formance of the upper bounds proposed in this pa-
per comparing with these of [5,7,9]. From Table 1,
we can find that, if the matrix splitting satisfies the
condition in Theorem 7, then, the result in Theo-
rem 5 is always better than the result in Theorem 2,
and the result in Theorem 4 is always better than
the result in Theorem 3, which are illustrated in
Examples 1 and 5. If P is a DZ matrix, the upper
bound can only be obtained by Theorems 4 and 5.

CONCLUSION

It is well known that {SDD} € {DSDD} C {DZ}.
In this paper, two upper bounds for |A(P71Q)| (or
o(P71Q)) are investigated, which is applicable to a
DZ matrix P. We also compare our results with some
existing results under certain conditions.
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Table 1 Numerical comparison between our upper bounds and those of [5, 7, 9].

| Example 1 Example 2 Example 3 Example 4 Example 5
p(P7Q) 0.2985 0.4087 0.6993 0.2437 0.3011
Theorem 1 4 (>1) 1 - - -
Theorem 2 1.0660 (>1) 0.9170 - 0.7166 1.0179 (1)
Theorem 3 1.0660 (>1) 0.7794 - 0.5452 1.0179 (1)
Theorem 4 0.9784 (<1) 1 1.1506 (>1) 0.6477 0.8515 (<1)
Theorem 5 0.9784 (<1) 0.8089 0.8410 (<1) 0.4693 0.8515 (<1)
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