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ABSTRACT: Based on the matrix splitting M = P −Q, some upper bounds for the maximum of moduli of eigenvalues
of the iteration matrix P−1Q are obtained when P is an strictly diagonally dominant (SDD) matrix or a doubly strictly
diagonally dominant (DSDD) matrix. In this paper, some new upper bounds are introduced, which is applicable to a
Dashnic-Zusmanovich (DZ) matrix P, and proved to be better than those in Huang and Gao [Int J Comput Math 80
(2003):799–803] and Li et al [Appl Math Comput 173 (2006):977–984] in certain cases.
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INTRODUCTION

Let M = (mts) be an n × n nonsingular complex
matrix and consider the following large system of
linear equations

M x = b, (1)

which plays an important role in the numerical so-
lution of elliptic partial differential equations [1, 2].
Based on the matrix splitting M = P − Q, some
basic iterative methods, such as Jacobi, Gauss-Seidel
and successive overrelaxation iterative methods, are
introduced to solve the system of linear equations
(1) [3]. The matrix splitting M = P−Q leads to the
stationary iteration scheme

xk+1 = P−1Qxk + c. (2)

The matrix P−1Q in (2) is called the iteration ma-
trix. It is well known that the iteration scheme (2)
converges for any initial vector x0 if ρ(P−1Q)< 1,
where ρ(P−1Q) denotes the spectral radius of the
matrix P−1Q, namely, maximum of moduli of eigen-
values of P−1Q.

Let Cn×n be the set of all complex matrices, and
denote [n] := {1,2, . . . , n}. A matrix P = (pts) ∈
Cn×n is called an SDD (strictly diagonally dominant)
matrix if for each t ∈ [n],

|pt t |> rt(P),

where rt(P) =
∑

s 6=t
|pts|. A matrix P = (pts) ∈ Cn×n

is called a DSDD (doubly strictly diagonally domi-

nant) matrix if for distinct t, s ∈ [n], the following
inequality holds:

|pt t ||pss|> rt(P)rs(P).

A matrix P = (pts) ∈ Cn×n is called a DZ (Dashnic-
Zusmanovich) matrix if there exists an index t ∈ [n],
for all s 6= t, s ∈ [n], the following inequality holds:

|pt t |(|pss| − r t
s (P))> rt(P)|pst |,

where r t
s (P) = rs(P) − |pst |. It has been shown

in [4] that the above three classes of matrices are
nonsingular and have the following inclusions:

{SDD} ⊆ {DSDD} ⊆ {DZ}.

One practical application of the eigenvalues of
P−1Q is that one can identify the convergence prop-
erty of the iteration scheme xk+1 = P−1Qxk + c by
the maximum of moduli of eigenvalues of P−1Q,
for more details, see [5–8]. In [5, 7], the authors
established the following result for an SDD matrix P.

Theorem 1 ([5, 7]) Let P = (pts) ∈ Cn×n be an SDD
matrix, Q = (qts) ∈ Cn×n. Then

|λ(P−1Q)|¶ω1 =max
t∈[n]

|qt t |+ rt(Q)
|pt t | − rt(P)

.

If further P = (pts)∈Cn×n is a DSDD matrix, the
result in Theorem 1 can be improved as follows.
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Theorem 2 ([8]) Let P = (pts) ∈ Cn×n be a DSDD
matrix, Q = (qts) ∈ Cn×n. Then

|λ(P−1Q)|¶ω2 = max
t,s∈[n], s 6=t

B+
p

B2−4AC
2A

,

where

A= |pt t pss| − rt(P)rs(P),
B = |pt tqss|+ |qt t pss|+ rt(P)rs(Q)+ rt(Q)rs(P),
C = |qt tqss| − rt(Q)rs(Q).

Recently, Li et al [9] presented the following
result, for a DSDD matrix P = (pts) ∈ Cn×n.

Theorem 3 ([9]) Let P = (pts) ∈ Cn×n be a DSDD
matrix, Q = (qts) ∈ Cn×n. Then

|λ(P−1Q)|¶ω3 = max
t,s∈[n], s 6=t

B+
p

B2−4AC
2A

,

where

A= |pt t pss| − rt(P)rs(P),
B′ = |pt tqss + qt t pss|+ rt(P)rs(Q)+ rt(Q)rs(P),
C ′ = −[|qt tqss|+ rt(Q)rs(Q)].

For an SDD matrix P = (pts) ∈ Cn×n, Theo-
rem 1 can be used to obtain the upper bound for
|λ(P−1Q)|. For a DSDD matrix P, Theorems 2
and 3 can be used to obtain the upper bounds for
|λ(P−1Q)|. In this paper, some new bounds for a DZ
matrix P = (pts) are introduced.

MAIN RESULTS

Before presenting our main results, we need the
following lemmas.

Lemma 1 ([4]) If P = (pts) ∈ Cn×n is a DZ matrix,
then P is nonsingular.

Lemma 2 ([4]) All eigenvalues of a matrix P =
(pts) ∈ Cn×n, n¾ 2, belong to the set

Θ(P) =
⋂

t∈[n]

⋃

s∈[n], t 6=s

Θts(P),

where

Θts(P) = {λ∈C : |λ−pt t |(|λ−pss|−r t
s (P))}¶ rt(P)|pst |.

Our first main result for a DZ matrix P is stated
as follows.

Theorem 4 Let P = (pts)∈Cn×n be a DZ matrix, Q=
(qts) ∈ Cn×n. Then

|λ(P−1Q)|¶ω4 = min
t∈[n]

max
s∈[n], s 6=t

H +
p

H2−4GK
2G

,

where

G = |pt t |(|pss| − r t
s (P))− rt(P)|pst |,

H = |pt t |(|qss|+ r t
s (Q))+ |pss||qt t |

+ rt(P)|qst |+ rt(Q)|pst |,
K = |qt t |(|qss|+ r t

s (Q))− rt(Q)|qst |.

Proof : Since P = (pts) ∈ Cn×n is a DZ matrix, by
Lemma 1, P = (pts) is nonsingular. Assume λ ∈
σ(P−1Q) (σ(P−1Q) is the set of all the eigenvalues
of P−1Q), then

det(λI − P−1Q) = 0,

which means

det(λP −Q) = 0.

By Lemma 2, for the index t ∈ [n], there is an index
s ∈ [n], s 6= t, if

|λpt t − qt t |(|λpss − qss| − r t
s (λP −Q))

> rt(λP −Q)|λpst − qst |, (3)

then λ /∈ σ(P−1Q). Therefore, if

(|λ||pt t | − |qt t |)(|λ||pss| − |qss|)
− (|λ||pt t |+ |qt t |)(|λ|r t

s (P)+ r t
s (Q))

> (|λ|rt(P)+ rt(Q))(|λ||pst |+ |qst |), (4)

then, λ /∈ σ(P−1Q). Therefore, if λ ∈ σ(P−1Q), we
have

(|λ||pt t | − |qt t |)(|λ||pss| − |qss|)
− (|λ||pt t |+ |qt t |)(|λ|r t

s (P)+ r t
s (Q))

¶ (|λ|rt(P)+ rs(Q))(|λ||pst |+ |qst |), (5)

that is,
G|λ|2−H|λ|+ K ¶ 0, (6)

where

G = |pt t |(|pss| − r t
s (P))− rt(P)|pst |,

H = |pt t |(|qss|+ r t
s (Q))+ |pss||qt t |

+ rt(P)|qst |+ rt(Q)|pst |,
K = |qt t |(|qss|+ r t

s (Q))− rt(Q)|qst |.
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Since P = (pts) ∈ Cn×n is a DZ matrix, then
|pt t |(|pss|−r t

s (P))−rt(P)|pst |> 0, then for the index
t ∈ [n], there is an index s ∈ [n], s 6= t,

|λ(P−1Q)|¶ max
s∈[n], s 6=t

H +
p

H2−4GK
2G

,

By the arbitrariness of t, we have

|λ(P−1Q)|¶ min
t∈[n]

max
s∈[n], s 6=t

H +
p

H2−4GK
2G

.

2

Remark 1 In Theorem 4 of [9], when P = (pts) ∈
Cn×n is a DSDD matrix, Q= (qts)∈Cn×n, the authors
obtained the following result:

|λ(P−1Q)|¶ max
t,s∈[n], s 6=t

{min{τ1,τ2}} ,

where τ1 =
B+
p

B2−4AC
2A , τ2 =

E+
p

E2−4DF
2D , and

D = |pt t pss|+ rt(P)rs(P),
E = |pt tqss + qt t pss| − rt(P)rs(Q)− rt(Q)rs(P),
F = |qt tqss|+ rt(Q)rs(Q).

If ∆= E2−4DF < 0, the authors take E+
p

E2−4DF
2D =

∞. There are some errors in the calculation process
of Theorem 4 in [9]. First, from inequality (7) in the
proof of Theorem 4 in [9], we have

�

|pt t pss|+ rt(P)rs(P)]|λ|2− [|pt tqss|
+ pssqt t | − rt(P)rs(Q)− rs(P)rt(Q)]|λ|

+[qt tqss + rt(Q)rs(Q)
�

¾ 0,

Obviously, by the above inequality, E should be
defined as follows:

E = |pt tqss|+ |qt t pss| − rt(P)rs(Q)− rt(Q)rs(P).

Second, from inequality (7) in the proof of Theorem
4 in [9], we have

D|λ|2− E|λ|+ F ¾ 0,

if ∆¾ 0, then

|λ|¶
E −
p

E2−4DF
2D

, or |λ|¾
E +
p

E2−4DF
2D

,

which means, the result of Theorem 4 in [9] is
incorrect.

Another upper bound for moduli of eigenvalues
|λ(P−1Q)| is incorporated in the following theorem.

Theorem 5 Let P = (pts)∈Cn×n be a DZ matrix, Q=
(qts) ∈ Cn×n. Then

|λ(P−1Q)|¶ω5 = min
t∈[n]

max
s∈[n], s 6=t

H ′+
p

H ′2−4GK ′

2G
,

where

G = |pt t |(|pss| − r t
s (P))− rt(P)|pst |,

H ′ = |pt tqss + pssqt t |+ |pt t |r t
s (Q)

+ |qt t |r t
s (P)+ rt(P)|qst |+ rt(Q)|pst |,

K ′ = −|qt t |(|qss|+ r t
s (Q))− rt(Q)|qst |.

Proof : Since P = (pts) ∈ Cn×n is a DZ matrix, by
Lemma 1, p = (pts) is nonsingular. Assume λ ∈
σ(P−1Q). Then

det(λI − P−1Q) = 0,

which implies

det(λP −Q) = 0.

By Lemma 2, for the index t ∈ [n], there is an index
s ∈ [n], s 6= t, if

|λpt t − qt t |(|λpss − qss| − r t
s (λP −Q))

> rt(λP −Q)|λpst − qst |, (7)

then λ /∈ σ(P−1Q). Therefore, if
�

|λ|2|pt t pss| − |pt tqss + pssqt t ||λ| − |qt tqss|
�

− (|λ||pt t |+ |qt t |)(|λ|r t
s (P)+ r t

s (Q))
> (|λ|rt(P)+ rt(Q))(|λ||pst |+ |qst |), (8)

then λ /∈ σ(P−1Q). Therefore, if λ ∈ σ(P−1Q), we
have
�

|λ|2|pt t pss| − |pt tqss + pssqt t ||λ| − |qt tqss|
�

− (|λ||pt t |+ |qt t |)(|λ|r t
s (P)+ r t

s (Q))
¶ (|λ|rt(P)+ rt(Q))(|λ||pst |+ |qst |), (9)

that is,
G|λ|2−H ′|λ|+ K ′ ¶ 0, (10)

where

G = |pt t |(|pss| − r t
s (P))− rt(P)|pst |,

H ′ = |pt tqss + pssqt t |+ |pt t |r t
s (Q)

+ |qt t |r t
s (P)+ rt(P)|qst |+ rt(Q)|pst |,

K ′ = −|qt t |(|qss|+ r t
s (Q))− rt(Q)|qst |.
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Since P = (pts) ∈ Cn×n is a DZ matrix, G =
|pt t |(|pss|− r t

s (P))− rt(P)|pst |> 0, and K ′ ¶ 0. Note
that for the index t ∈ [n], there is an index t 6= s,
t ∈ [n],

|λ(P−1Q)|¶ max
s∈[n], s 6=t

H ′+
p

H ′2−4GK ′

2G
,

By the arbitrariness of t, we have

|λ(P−1Q)|¶ min
t∈[n]

max
s∈[n], s 6=t

H ′+
p

H ′2−4GK ′

2G
.

2
In [9], Li et al presented ω2 ¶ ω1 when P =

diag(M). In the following, we give some com-
parison theorems. First, we give the relationships
between ω2 and ω1 without the condition P =
diag(M).

Theorem 6 Let P = (pts) ∈ Cn×n be an SDD matrix,
Q = (qts) ∈ Cn×n. Then

ω2 ¶ω1.

Proof : If |λ| ¶ ω2, from the proof of Theorem 3 in
[9], there are distinct indices t, s ∈ [n], such that

(|pt t ||λ| − |qt t |)(|pss||λ| − |qss|)
¶ (|λ|rt(P)+ rt(Q))(|λ|rs(P)+ rs(Q)).

If (|λ|rt(P)+ rt(Q))(|λ|rs(P)+ rs(Q)) = 0, then

(|pt t ||λ| − |qt t |)(|pss||λ| − |qss|))¶ 0,

which implies that, one factor in the left side of
above inequality is negative. Without loss of gener-
ality, we assume |pt t ||λ|−|qt t |¶ 0¶ |λ|rt(P)+rt(Q),
then

|λ|¶ω1 =max
t∈[n]

|qt t |+ rt(Q)
|pt t | − rt(P)

.

If (|λ|rt(P)+ rt(Q))(|λ|rs(P)+ rs(Q))> 0, then

|pt t ||λ| − |qt t |
|λ|rt(P)+ rt(Q)

|pss||λ| − |qss|
|λ|rs(P)+ rs(Q)

¶ 1.

Thus,
|pt t ||λ| − |qt t |
|λ|rt(P)+ rt(Q)

¶ 1,

or
|pss||λ| − |qss|
|λ|rs(P)+ rs(Q)

¶ 1.

Therefore,

|λ|¶ω1 =max
t∈[n]

|qt t |+ rt(Q)
|pt t | − rt(P)

.

2
Second, the relationships among ω2, ω3, ω4

and ω5 are also examined.

Theorem 7 Let P = (pts) ∈ Cn×n be a DSDD matrix,
Q = (qts) ∈ Cn×n. Assume that |pt t ||λ| + |qt t | ¶
|λ|rt(P)+ rt(Q) for all t ∈ [n], λ ∈ σ(P−1Q). Then

ω5 ¶ω3, ω4 ¶ω2.

Proof : If |λ|¶ω4, and there is an index t ∈ [n]with
|pt t ||λ|+ |qt t |¶ |λ|rt(P)+ rt(Q). From the proof of
Theorem 4, for the index t ∈ [n], there is an index
s ∈ [n], s 6= t, we have

(|λ||pt t | − |qt t |)(|λ||pss| − |qss|)
− (|λ||pt t |+ |qt t |)(|λ|r t

s (P)+ r t
s (Q))

¶ (|λ|rt(P)+ rt(Q))(|λ||pst |+ |qst |).

Then

(|λ||pt t | − |qt t |)(|λ||pss| − |qss|)
¶ (|λ|rt(P)+ rt(Q))(|λ||pst |+ |qst |)

+ (|λ||pt t |+ |qt t |)(|λ|r t
s (P)+ r t

s (Q))
¶ (|λ|rt(P)+ rt(Q))(|λ||pst |+ |qst |)

+ (|λ|rt(P)+ rt(Q))(|λ|r t
s (P)+ r t

s (Q))
¶ (|λ|rt(P)+ rt(Q))(|λ|rs(P)+ rs(Q)).

Therefore, |λ|¶ω2.
If |λ|¶ω5, and |pt t ||λ|+|qt t |¶ |λ|rt(P)+rt(Q).

From the proof of Theorem 5, for the index t ∈ [n],
there is an index s ∈ [n], s 6= t, such that

(|λ|2|pt t pss| − |pt tqss + pssqt t ||λ| − |qt tqss|)
− (|λ||pt t |+ |qt t |)(|λ|r t

s (P)+ r t
s (Q))

¶ (|λ|rt(P)+ rt(Q))(|λ||pst |+ |qst |).

Then

|λ|2|pt t pss| − |pt tqss + pssqt t ||λ| − |qt tqss|
¶ (|λ|rt(P)+ rt(Q))(|λ||pst |+ |qst |)

+ (|λ||pt t |+ |qt t |)(|λ|r t
s (P)+ r t

s (Q))
¶ (|λ|rt(P)+ rt(Q))(|λ||pst |+ |qst |)

+ (|λ|rt(P)+ rt(Q))(|λ|r t
s (P)+ r t

s (Q))
¶ (|λ|rt(P)+ rt(Q))(|λ|rs(P)+ rs(Q)).

Therefore, |λ|¶ω3. 2

Remark 2 If P is an SDD matrix, by the condition
“|pt t ||λ|+ |qt t |¶ |λ|rt(P)+ rt(Q) for all t ∈ [n]”, we
have

|λ|¶
rt(Q)− |qt t |
|pt t | − rt(P)

.

If P is a DSDD matrix and not an SDD matrix, if
|pt t | > rt(P) for some t ∈ [n], by the condition
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“|pt t ||λ|+ |qt t |¶ |λ|rt(P)+ rt(Q) for all t ∈ [n]”, we
have

|λ|¶
rt(Q)− |qt t |
|pt t | − rt(P)

.

If |pt t | ¶ rt(P), then we can take |pt t | ¶ rt(P),
|qt t |¶ rt(Q).

Remark 3 The relationship between ω4 and ω5 is
not obvious. But we can find that, if

sign(pt tqss) sign(pssqt t)< 0

for distinct t, s ∈ [n], then ω4 ¶ω5, where sign(x)
is the sign function.

NUMERICAL EXAMPLES

In this section, some numerical examples are given
to illustrate the efficiency of our proposed upper
bounds.

Example 1 Let

P =





7 2 4
1 7 1
1 1 9



 , Q =





1 0 3
1 0 2
1 2 0



 ,

Obviously, P is an SDD matrix. By a direct compu-
tation, we have

ρ(P−1Q) = 0.2985¶ min
t∈[n]

rt(Q)− |qt t |
|pt t | − rt(P)

= 0.4286,

which means that, the matrix splitting in Example 1
satisfies the condition in Theorem 7.

Example 2 Let

P =





−7 2 1
1 7 1
1 1 9



 , Q =





1 0 3
0 2 1
1 4 1



 ,

Obviously, P is an SDD matrix. By a direct compu-
tation, we have

ρ(P−1Q) = 0.4175> min
t∈[n]

rt(Q)− |qt t |
|pt t | − rt(P)

= −0.2,

which means that, the matrix splitting in Example 2
does not satisfy the condition in Theorem 7.

Example 3 Let

P =





−7 2 1
1 1.5 1
1 2 2.5



 , Q =





1 0 0.1
0 1 1
0 0 1



 ,

Obviously, P is not a DSDD matrix. Then, Theorems
1–3 can not be applied in Example 3, but P is a DZ
matrix. By a direct computation, we have

ρ(P−1Q) = 0.6993.

Example 4 Let

p =





−7 2 6
0 8 1
1 1 9



 , Q =





1 0 3
0 2 1
1 0 1



 ,

Obviously, P is not an SDD matrix. Then Theorem 1
can not be applied in Example 4, but P is a DSDD
matrix. If t = 1, |p11| ¶ r1(P), |q11| ¶ r1(Q). If t =
2,3, by a direct computation, we have

ρ(P−1Q) = 0.2437> min
t∈[n]

rt(Q)− |qt t |
|pt t | − rt(P)

= −0.1429,

which means that, the matrix splitting in Example 4
does not satisfy the condition in Theorem 7.

Example 5 Let

p =





−7 2 6
0 8 1
1 1 9



 , Q =





1 0 3
1 0 2
1 2 0



 ,

Obviously, P is not an SDD matrix. Then Theorem 1
can not be applied in Example 5, but P is a DSDD
matrix. If t = 1, |p11| ¶ r1(P), |q11| ¶ r1(Q). If t =
2,3, by a direct computation, we have

ρ(P−1Q) = 0.3011¶ min
t∈[2,3]

rt(Q)− |qt t |
|pt t | − rt(P)

= 0.4286,

which means that, the matrix splitting in Example 5
satisfies the condition in Theorem 7.

Table 1 summarizes for Examples 1–5 the per-
formance of the upper bounds proposed in this pa-
per comparing with these of [5, 7, 9]. From Table 1,
we can find that, if the matrix splitting satisfies the
condition in Theorem 7, then, the result in Theo-
rem 5 is always better than the result in Theorem 2,
and the result in Theorem 4 is always better than
the result in Theorem 3, which are illustrated in
Examples 1 and 5. If P is a DZ matrix, the upper
bound can only be obtained by Theorems 4 and 5.

CONCLUSION

It is well known that {SDD} ⊆ {DSDD} ⊆ {DZ}.
In this paper, two upper bounds for |λ(P−1Q)| (or
ρ(P−1Q)) are investigated, which is applicable to a
DZ matrix P. We also compare our results with some
existing results under certain conditions.
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Table 1 Numerical comparison between our upper bounds and those of [5, 7, 9].

Example 1 Example 2 Example 3 Example 4 Example 5

ρ(P−1Q) 0.2985 0.4087 0.6993 0.2437 0.3011
Theorem 1 4 (>1) 1 – – –
Theorem 2 1.0660 (>1) 0.9170 – 0.7166 1.0179 (>1)
Theorem 3 1.0660 (>1) 0.7794 – 0.5452 1.0179 (>1)
Theorem 4 0.9784 (<1) 1 1.1506 (>1) 0.6477 0.8515 (<1)
Theorem 5 0.9784 (<1) 0.8089 0.8410 (<1) 0.4693 0.8515 (<1)
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