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ABSTRACT: In this paper, we propose the barycentric interpolation collocation method for the Burgers equation.
Firstly, Burgers equation is transformed into the heat conduction equation by the Hopf-Cole transformation. Then
we use the barycentric interpolation collocation method to discretize the equation in the time and space directions.
The collocation scheme of the Burgers equation is constructed and the corresponding linear algebraic equations are
derived. Moreover, the consistency analysis of barycentric Lagrange interpolation method is given. Numerical examples
validate the efficiency of our scheme.
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INTRODUCTION

In 1915, Bateman [1] proposed the Burgers equa-
tion in nonlinear partial differential equations when
studying fluid motion. Burgers equation has the
characteristics of both the wave equation and heat
conduction equation. It maintains the basic charac-
teristics of the Navier-Stokes equation in fluid dy-
namics and is an ideal simplified model for complex
fluid dynamics problems. Burgers equation plays an
important role in many fields such as fluid mechan-
ics, quantum field theory, transport and dispersion
of pollutants in rivers and sediment transport, etc.
Therefore, it is of great significance to discuss its
numerical solution.

Due to the shock wave phenomenon of Burgers
equation, it is difficult to obtain the analytical so-
lutions. Therefore, it is necessary to discuss its nu-
merical solution. At present, the main methods are
the finite difference method, finite element method
and so on. The Hopf-Cole transformation was
firstly proposed by Hopf [2]. Kadalbajoo et al [3]
proposed the Hopf-Cole transformation to the heat
conduction equation with the Neumann boundary,
and gave an unconditionally stable second-order
implicit difference scheme. Ram [4] developed
Haar wavelet basis functions and Euler’s implicit
scheme to solve Burgers equation. Zhang et al [5]
presented a nonlinear implicit difference scheme to

solve Burgers equation and gave the corresponding
error analysis. Sari [6] developed a cubic B-spline
Galerkin finite element method combined with op-
erator splitting technique to solve Burgers equation.
Wang et al [7] introduced the weak Galerkin (WG)
finite element method to study a class of time frac-
tional generalized Burgers equation.

The above methods are all based on mesh gener-
ation for the Burgers equation. Recently, some stud-
ies [8–10] proposed the barycentric interpolation
collocation method. Many researchers extended
this method to solve boundary value problems [11]
and various differential/integral equations, such as
the coupled reaction-diffusion equation [12], auto-
convolution Volterra integral equations [13], lin-
ear and nonlinear high-dimensional Fredholm inte-
gral equations [14], generalized Abel integral equa-
tions [15] and parabolic partial differential equa-
tions [16, 17]. The barycentric interpolation collo-
cation method is a high-precision numerical scheme
that does not depend on mesh generation. When
the number of nodes increases, the approximate
function constructed by the Lagrange interpolation
formula will lead to Runge phenomenon, which has
great numerical instability. Fortunately, if the nodes
obey the density proportion (1− x2)−1/2 such as the
families of Chebyshev points that are the simplest
clustered point sets, the barycentric Lagrange inter-
polation has a good numerical stability.
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To our knowledge, the works of the error analy-
sis for barycentric interpolation collocation method
are relatively sparse. Recently, Yi and Yao [18] put
forward a steady barycentric Lagrange interplotaion
method and presented error analysis of system
for solving the time-fractional telegraph equation.
Li [19] provided the error estimate of the barycen-
tric rational interpolation collocation method for
the heat conduction equation. Based on the above
work, we focus on the collocation scheme of the
Burgers equation and transform it into a linear prob-
lem through the Hopf-Cole transformation, which
avoids the solution of nonlinear discretized equa-
tions. Moreover, we give a consistency analysis of
the collocation scheme.

BARYCENTRIC INTERPOLATION COLLOCATION
METHOD

Hopf-Cole transformation of Burgers equation

In this article, we consider the Burgers equation
with Dirichlet boundary and initial conditions as
follows






















∂ u
∂ t
+u
∂ u
∂ x
= v

∂ 2u
∂ x2

, a < x < b, 0< t ¶ T,

u(x , 0) = g(x), a ¶ x ¶ b,

u(0, t) = θ (t), 0¶ t ¶ T,

u(1, t) =ω(t), 0¶ t ¶ T.

(1)

where v = 1/Re > 0 is a viscosity coefficient, and
g(x), θ (t),ω(t) are given functions. The Hopf-Cole
transformation [2] is as follows

u(x , t) = −2v
ϕx

ϕ
. (2)

The nonlinear Burgers equation is transformed into
a linear heat conduction equation


























∂ ϕ

∂ t
= v

∂ 2ϕ

∂ x2
, 0< x < 1, 0< t ¶ T,

ϕ(x , 0) = e−
1
2v

∫ x
0 g(s)ds, 0¶ x ¶ 1,

θ (t)ϕ(0, t)+2vϕx(0, t) = 0, 0¶ t ¶ T,

ω(t)ϕ(1, t)+2vϕx(1, t) = 0, 0¶ t ¶ T.

(3)

To find the numerical solution of the Eq. (3), the
numerical solution of the original Burgers equation
can be obtained by the Hopf-Cole inverse transfor-
mation.

Barycentric Lagrange interpolation with the
Chebyshev points

Let p(x) approximate the function ϕ(x) on interval
[a, b]with partition a= x0 < x1 < · · ·< xm = b. The

Lagrange interpolation function of ϕ(x) is given as

p(x) =
m
∑

j=0

L j(x)ϕ j , (4)

where

L j(x) =
m
∏

i=0,i 6= j

(x − x i)
(x j − x i)

, j = 0, 1, . . . , m,

∑m
j=0 L j(x) = 1, and ϕ j = ϕ(x j).

Let l(x) = (x − x0)(x − x1) · · · (x − xm) and
w j = 1/

∏m
i=0,i 6= j (x j − x i), j = 0,1, . . . , m, then the

interpolation basis function can be expressed as

L j(x) = l(x)
w j

x − x j
, j = 0,1, . . . , m. (5)

Taking Eq. (5) into (4), we have

p(x) = l(x)
m
∑

j=0

w j

x − x j
ϕ j . (6)

Combining the Eqs. (4)–(6), the barycentric La-
grange interpolation function is obtained as follows

p(x) =

∑m
j=0

w j

x−x j
ϕ j

∑m
j=0

w j

x−x j

. (7)

The barycentric Lagrange interpolation is ill-
conditioned for equidistant nodes. Choosing a node
family with a density ratio of (1− x2)−1/2 can make
it numerically stable. The simplest node distribution
is the Chebyshev point family.

Therefore we choose the Chebyshev points

x j = cos
�

j
m
π

�

, j = 0,1, . . . , m (8)

to ensure the numerical stability of the Barycentric
Lagrange interpolation. Then we find

w j = (−1) jϑ j , ϑ j =

¨

1/2, j = 0 or n,

1, otherwises.
(9)

BARYCENTRIC INTERPOLATION COLLOCATION
SCHEME OF HEAT CONDUCTION EQUATION

For distinct nodes (x0, t), (x1, t), . . . , (xm, t), the
value of the unknown function ϕ(x , t) of the node
(x , t) is expressed as ϕ(x i , t), i = 0,1, . . . , m.

The Barycentric Lagrange interpolation func-
tion is

ϕ(x , t) =
m
∑

j=0

L j(x)ϕ j(t), (10)

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


760 ScienceAsia 47 (2021)

taking the points x0, x1, . . . , xm into (10) and taking
(10) into (3), we have for i = 0, 1, . . . , m,

m
∑

j=0

L j(x i)ϕ̇ j(t) = v
m
∑

j=0

L′′j (x i)ϕ j(t), (11)

where ϕ̇ j(t) is the first order derivative of ϕ j(t).
Then we have

m
∑

j=0

δi jϕ̇ j(t) = v
m
∑

j=0

C (2)i j (x i)ϕ j(t), (12)

δi j = L j(x i) =

¨

1, i = j,
0, i 6= j,

(13)

where C (p) = (C (p)i j )m×m is the p-order differential
matrix of the function. By deriving L j(x), and
then using mathematical induction, the recursive
formula of C (p) can be obtained.























C (p)i j = p

 

C (p−1)
ii C (1)i j −

C (p−1)
i j

x i − x j

!

, i 6= j,

C (p)ii = −
m
∑

j=0, j 6=i

C (p)i j .

Combining the Eqs. (12) and (13), the matrix
forms can be expressed as follows





ϕ̇0(t)
...

ϕ̇m(t)



= v







C (2)00 · · · C (2)0m
...

. . .
...

C (2)m0 · · · C (2)mm











ϕ0(t)
...

ϕm(t)



 . (14)

Similarly as the discrete formula as space variable
x , we get the discrete formula of time variable t as

ϕi(t j) = ϕ(x i , t j) = ϕi j ,

i = 0, 1, . . . , m, j = 0,1, . . . , n, and

ϕi(t) =
n
∑

k=0

Lk(t)ϕik, i = 0,1, . . . , m. (15)

Taking Eq. (15) into Eq. (14), and taking the points
t0, t1, . . . , tn into Eq. (14), we have for j = 0,1, . . . , n





∑n
k=0 L̇k(t j)ϕ0k

...
∑n

k=0 L̇k(t j)ϕmk



=

v







C (2)00 · · · C (2)0m
...

. . .
...

C (2)m0 · · · C (2)mm











∑n
k=0 Lk(t j)ϕ0k

...
∑n

k=0 Lk(t j)ϕmk.



 (16)

Eq. (16) can be written as matrix form

(Im+1⊗ D(1))ϕ = v(C (2)⊗ In+1)ϕ, (17)

which can be written as the simple forms as

Lϕ = 0, (18)

where L =
�

Im+1⊗ D(1)
�

− v(C (2) ⊗ In+1), and ⊗ is

the Kronecher product of matrix, L̇k(t j) = D(1)jk , ϕ =
[ϕ00, . . . ,ϕ0n,ϕ10, . . . ,ϕ1n, . . . ,ϕm0, . . . ,ϕmn]T.

The discrete form of the initial condition is

ϕ(x i , 0) = ϕi0 =ψ(x i), i = 0, 1, . . . , m.

The corresponding matrix form is









ϕ(x0, 0)
ϕ(x1, 0)

...
ϕ(xm, 0)









=









ϕ00
ϕ10

...
ϕm0









= (Im+1⊗ e1
n+1)ϕ

=ψ(x i) =









ψ(x0)
ψ(x1)

...
ψ(xm)









, (19)

where e1
n+1 represents the first row of the identity

matrix of order n+ 1, Im+1 represents the identity
matrix of order m+1.

The discrete form of the boundary conditions is,
for 0¶ k ¶ n,


















θ (tk)ϕ(x0, tk)+2v
m
∑

j=0

L(1)j (x0)ϕ(x0, tk) = 0,

ω(tk)ϕ(xm, tk)+2v
m
∑

j=0

L(1)j (xm)ϕ(xm, tk) = 0.

(20)

Then Eq. (20) can be written as matrix form

C1⊗θ ·ϕ+2v(C1⊗ In+1) ·(C (1)⊗ In+1) ·ϕ = 0, (21)

C2⊗ω ·ϕ+2v(C2⊗ In+1) ·(C (1)⊗ In+1) ·ϕ = 0, (22)

where

C1 =









1
0

...
0









, C2 =









0
...

0
1









θ =





θ (t0)
. . .

θ (tn)



 , ω=





ω(t0)
. . .

ω(tn)



 .

To deal with the boundary conditions of the
Eq. (3), we derived the matrix form (21)–(22) for
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the discretization of boundary conditions. Here
we use the replacement method to deal with the
boundary conditions. We respectively replace the
first n+ 1 rows of Eq. (21) and the last n+ 1 rows
of Eq. (22) with the corresponding number of rows
in Eq. (18) to deduce the linear algebraic equation
system.

CONSISTENCY ANALYSIS

In this part, we present consistency estimates of the
scheme (18) with the collocation method. Accord-
ing to interpolation remainder theorem, we have

e(x) := ϕ(x)− p(x) =
ϕ(m+1)(ε)
(m+1)!

m
∏

k=0

(x− xk). (23)

Estimates of (23) are considered by the follow-
ing lemma that have been proved in Yi [18].

Lemma 1 ([18]) If ϕ(x , t) ∈ Cm+1([a, b]), then the
following estimates for function e(x) defined in (23)
hold































|e(x)|¶ C
�

e(b− a)
2m

�m

,

|ex(x)|¶ C
�

e(b− a)
2(m−1)

�m−1

,

|ex x(x)|¶ C
�

e(b− a)
2(m−2)

�m−2

.

(24)

For the function ϕ(x , t), we define the error
function as follows.

e(x , t) = ϕ(x , t)− p(xm, tn)

=
ϕ(m+1)(ε1, t)
(m+1)!

m
∏

k=0

(x − xk)

+
ϕ(n+1)(x ,ε2)
(n+1)!

n
∏

k=0

(t − tk). (25)

Based on Lemma 1, we get the following approxi-
mation properties.

Theorem 1 For the consistency analysis e(x , t), and
the function ϕ(x , t) ∈ Cm+1[a, b] × Cn+1[0, T], we
have

|e(x , t)|¶ C
�

e(b− a)
2m

�m

+ C
�

eT
2n

�n

,

|ex(x , t)|¶ C
�

e(b− a)
2(m−1)

�m−1

+ C
�

eT
2n

�n

,

|ex x(x , t)|¶ C
�

e(b− a)
2(m−2)

�m−2

+ C
�

eT
2n

�n

.

In order to give the consistency analysis of the
numerical scheme of the barycentric interpolation
collocation method, firstly we define the operator

D :=
∂

∂ t
− v

∂ 2

∂ x2
.

and let ϕ(xm, tn) be the numerical solution of
ϕ(x , t).

From the above results, we can get the con-
sistency analysis of the barycentric interpolation
collocation method as follows.

Theorem 2 If ϕ ∈ Cm+1[a, b]×Cn+1[0, T], we have

|ϕ(x , t)−ϕ(xm, tn)|¶

C

�

�

e(b− a)
2(m−2)

�m−2

+
�

eT
2(n−1)

�n−1
�

. (26)

Proof : From Eq. (3), we have

Dϕ(x , t)− Dϕ(xm, tn)
=ϕt(x , t)−vϕx x(x , t)−[ϕt(xm, tn)− vϕx x(xm, tn)]
= ϕt(x , t)−ϕt(xm, tn)− v[ϕx x(x , t)−ϕx x(xm, tn)]
= R1−R2, (27)

where

R1 = ϕt(x , t)−ϕt(xm, tn),
R2 = v [ϕx x(x , t)−ϕx x(xm, tn)] .

For R1, we have

R1 = ϕt(x , t)−ϕt(xm, tn)
= ϕt(x , t)−ϕt(xm, t)+ϕt(xm, t)−ϕt(xm, tn)

= et(x , tn)+ et(xm, tn), (28)

where ϕt(xm, t) indicates that Lagrange interpola-
tion is used only for the spatial direction. Moreover,

|R1|¶ |et(x , tn)+ et(xm, tn)|

¶ C1

�

e(b− a)
2m

�m

+ C2

�

eT
2(n−1)

�n−1

. (29)

Similarly, for R2, we have

R2 = v [ϕx x(x , t)−ϕx x(xm, tn)]
= v [ex x(x , tn)+ ex x(xm, tn)] , (30)

and

|R2|¶ |vex x(x , tn)+ vex x(xm, tn)|

¶ C∗1

�

e(b− a)
2(m−2)

�m−2

+ C∗2

�

eT
2n

�n

. (31)
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Combining the Eqs. (29) and (31), we have

|R1+R2|¶ C1

�

e(b− a)
2m

�m

+ C2

�

eT
2(n−1)

�n−1

+ C∗1

�

e(b− a)
2(m−2)

�m−2

+ C∗2

�

eT
2n

�n

¶ C

�

�

e(b− a)
2(m−2)

�m−2

+
�

eT
2(n−1)

�n−1
�

, (32)

where
C := 2max(C1, C2, C∗1 , C∗2).

It can be seen from the error estimate that the
numerical scheme is exponentially convergent, and
the order of the differential operator determines the
order of convergence of the algebraic equation. 2

NUMERICAL EXPERIMENTS

In this section, two examples are provided to verify
the high accuracy and numerical stability of the
proposed scheme. We define the symbol of the
maximum absolute error as follows.

E∞ = ‖U −u‖∞ , (33)

where U and u denote the numerical solution and
the exact solution of the problem, respectively, and
‖·‖∞ is the L∞ norm. In the following table, M +1
is the number of nodes in space and N + 1 is the
number of time nodes.

Example 1 Consider the Burgers equation with the
condition

u(0, t) = u(1, t) = 0, 0< t ¶ T, (34)

and

u(x , 0) =
2vπ sinπx
α+ cosπx

, 0< x < 1, (35)

where α > 1. Let α = 2 in this example. The exact
solution of this problem is

u(x , t) =
2vπe−π

2 vt sinπx
α+ e−π2 vt cosπx

. (36)

The initial value condition obtained by Hopf-Cole
transformation is

ϕ(x , 0) = α+ cosπx , 0¶ x ¶ 1. (37)

The boundary conditions are
�

θ (t)ϕ0, t)+2vϕx(0, t) = 0, 0< t ¶ T

ω(t)ϕ(1, t)+2vϕx(1, t) = 0, 0< t ¶ T.
(38)

Table 1 The error of barycentric interpolation collocation
method and two difference schemes.

BICM CN CD
(M , N) E∞ (M , N) E∞ E∞
(5,5) 8.9060 E-05 (10,10) 5.77030 E-04 1.9456 E-05
(8,8) 6.4717 E-07 (20,20) 1.47316 E-04 2.4010 E-06

(10,10) 4.8313 E-09 (40,40) 3.70799 E-05 3.2562 E-07
(13,13) 1.7696 E-13 (80,80) 9.29913 E-06 5.7168 E-08
(15,15) 1.5479 E-14 (160,160) 2.32793 E-06 1.5802 E-08

Table 2 Error norms under different v in Example 1.

v L1 L2 L∞

2 2.1808 E-03 2.8150 E-04 1.0755 E-04
1 1.0734 E-06 1.4084 E-07 5.4031 E-08
0.1 1.2956 E-11 3.7933 E-12 3.0918 E-12
0.01 7.4383 E-13 9.7579 E-14 3.7290 E-14
0.001 1.4404 E-13 2.2732 E-14 1.8889 E-14
0.0001 6.2295 E-15 5.6827 E-16 1.3024 E-16

Table 1 shows the error comparison of the
barycentric interpolation collocation (BICM),
Crank-Nicolson (CN), and compact finite difference
methods (CD) when v = 0.01 and T = 1. It can be
seen that the barycentric interpolation collocation
method reaches the high precision, as it only uses
10 × 10 mesh nodes can achieve the accuracy of
compact difference method with 80 × 80 mesh
nodes. It reflects the advantages of the barycentric
interpolation collocation method.

Choose M = N = 15 for different viscosity coef-
ficients. Table 2 indicates that as v decreases, the
error gradually decreases. This shows that when
v is small, the barycentric interpolation collocation
method can maintain the stability of the numerical
solution.

Fig. 1 shows the numerical solution and the
exact solution by the barycentric interpolation col-
location method. It can be seen from Fig. 1 that
the numerical solution and the exact solution are
very consistent. Fig. 2(a) shows the absolute er-
ror at M = 20, N = 10 and v = 0.01, T = 1.
Fig. 2(b) shows the convergence order of the three
numerical schemes when v = 0.01. The figure
shows that the barycentric interpolation collocation
method converges exponentially while the Crank-
Nicolson converges in the second order and the
compact difference method converges in the fourth
order. It indicates that the barycentric interpolation
collocation method can reach the higher accuracy.
Fig. 3(a) shows the numerical solution when final
time T = 1,4, 8,16, and Fig. 3(b) shows the numer-
ical solution for Re= 10, 20,50, 100 (Re = 1/v).
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(a) (b)

Fig. 1 Numerical solution (a) and exact solution (b) of Example 1 at M = 20, N = 10 and v = 0.01.
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Image with maximum absolute error varying with the number of nodes

exponential decline

Crank-Nicolson
Compact difference
Barycentric interpolation collocation

(b)

Fig. 2 (a) The absolute error at M = 20, N = 10, and v = 0.01 and (b) convergence rate of Example 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.05

0.1

0.15

0.2

0.25

0.3

u

T=1
T=4
T=8
T=16

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.05

0.1

0.15

0.2

0.25

u

Re=10

Re=20

Re=50

Re=100

(b)

Fig. 3 Numerical solution of the model under different T (a) and Re (b) of Example 1 at M = N = 32.
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Fig. 4 Numerical solution (a) and exact solution (b) of
Example 2 at M = N = 32 and v = 0.1.

Table 3 The error of barycentric interpolation collocation
method and two difference schemes.

BICM CN CD
(M , N) E∞ (M , N) E∞ E∞
(15,15) 1.4926 E-06 (10,10) 3.20999 E-03 2.6151 E-03
(18,18) 1.2589 E-08 (20,20) 9.04298 E-04 3.1646 E-04
(20,20) 1.7086 E-09 (40,40) 2.40032 E-04 8.3901 E-05
(23,23) 1.4039 E-11 (80,80) 6.18768 E-05 3.4015 E-05
(25,25) 1.0839 E-12 (160,160) 1.57064 E-05 1.6054 E-05

Example 2 Consider the following Burgers equa-
tion for 0< x < 2, 1¶ t ¶ T ,

u(x , t) =
x/t

1+
p

t/t0 exp(x2/4εt)
. (39)

The initial value condition obtained by Hopf-Cole
transformation is

ϕ(x , 1) = exp(−
x2

4ε
+ ln(1+

Æ

1/t exp(x2/4ε))),

0< x < 2. (40)
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Fig. 5 Numerical solution of different T (a) and Re (b) of
Example 2 at M = N = 32.

The boundary conditions are

�

θ (t)ϕ(0, t)+2vϕx(0, t) = 0, 1< t < T,

ω(t)ϕ(2, t)+2vϕx(2, t) = 0, 1< t < T.
(41)

Table 3 shows the error of the barycentric La-
grange interpolation collocation, Crank-Nicolson,
and compact difference methods when v = 0.01
and T = 2. From Table 3, it can be seen that,
compared with the Crank-Nicolson and compact
finite difference methods, the barycentric Lagrange
interpolation collocation method can achieve the
higher accuracy.

Fig. 4 shows the contour of the numerical so-
lution and the exact solution. Fig. 5(a) shows the
numerical solution when final time T = 2, 4,8,16,
and Fig. 5(b) shows the numerical solution for Re =
10,20, 50,100 (Re= 1/v). Fig. 6 shows the absolute
error at M = N = 25, v = 0.1, and T = 2.
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Fig. 6 Absolute error of Example 2 at M = N = 25 and
v = 0.1.

CONCLUSION

In this paper, with the help of Hopf-Cole trans-
formation and barycentric interpolation collocation
method, an efficient numerical scheme for Burgers
equation is developed. Besides, the consistency
analysis for the barycentric interpolation colloca-
tion method is derived. Numerical examples show
that our proposed scheme can achieve the higher
accuracy with small nodes and error results are
consistent with the analysis. In future work, we plan
to extend the barycentric interpolation collocation
method for the high-dimensional Burgers equations
and combine it with other methods to discuss the
high-order numerical scheme of the Burgers equa-
tion.
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