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ABSTRACT: For each a = 1,2, 3, . . . , 7, there exists an integer b depending on a such that

n
∑

k=1

�

k
a

�

=
�

(2n+ b)2

8a

�

for all n ∈ N.

In this article, we give some remarks on this identity. In particular, we show that the range of a cannot be extended
and the value of b is unique.
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INTRODUCTION

Recall that the floor function of a real number x ,
denoted by bxc, is defined to be the largest integer
less than or equal to x; and the fractional part of x ,
denoted by {x}, is defined by {x} = x − bxc. Sums
involving the floor function or the fractional part of
real numbers have been a popular area of research.
For example, in a proof of the quadratic reciprocity
law, Gauss shows that for relatively prime positive
integers a, b,

b−1
∑

k=1

�

ka
b

�

=
(a−1)(b−1)

2
.

Dirichlet’s divisor problem is to determine the small-
est θ ¾ 1/4 such that

∑

n¶x

j x
n

k

= x log x +(2γ−1)x +O
�

xθ+ε
�

for any ε > 0. Hermite’s identity states that for x ∈R
and n ∈ N,

n−1
∑

k=0

�

x +
k
n

�

= bnxc .

For some recent articles on sums involving the floor
function, see for example in the articles by Aursuka-
ree et al [1] for a generalization of Hermite’s iden-
tity, by Kawsumarng et al [2, 3] for the floor function
as additive bases, by Onphaeng and Pongsriiam [4]

for upper and lower bounds of Jacobsthal-Tverberg
sums, by Thanatipanonda and Wong [5] for predic-
tions on sharp bounds for Jacobsthal-Tverberg sums,
by Pongsriiam and Vaughan [6] for an improved
formula in Dirichlet’s divisor problem on arithmetic
progressions, Ruankong and Kuhapatanakul [7] for
sums involving the floor function and consecutive
integral roots, by Phunphayap and Pongsriiam [8]
for some applications of the floor function. For more
references, see the books by Graham et al [9] and by
Pongsriiam [10].

In particular, it is an exercise in Apostol’s book
[11] to show that for each a = 1,2, 3, . . . , 7, there
exists an integer b depending on a such that

n
∑

k=1

�

k
a

�

=

�

(2n+ b)2

8a

�

for all n ∈ N. (1)

In this article, we give some remarks on this identity.
In particular, we show that a simple formula for a ¾
8 does not exist and the value of b for each a ¶ 7 is
unique.

PRELIMINARIES AND LEMMAS

In this section, we give some results which are useful
in proving the main theorems. We also give a proof
of (1) for completeness. Recall that for x ∈ R and
n ∈ Z, we have bn+ xc = n+ bxc and 0 ¶ {x} < 1.
These are well-known and are often used without
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reference. Next, we prove a lemma that are applied
throughout this article.

Lemma 1 Let n ¾ 0, a ¾ 1, 0 ¶ r < a be integers,
and let n≡ r (mod a). Suppose b = 2− a. Then

n
∑

k=1

�

k
a

�

=
n(n+ b)− r(b+ r)

2a
. (2)

Proof : If a = 1, then r = 0, b = 1, and
n
∑

k=1

�

k
a

�

=
n
∑

k=1

k =
n(n+1)

2
=

n(n+ b)− r(b+ r)
2a

.

If n< a, then r = n and both sides of (2) are zero. So
we assume that n¾ a¾ 2. Since n≡ r (mod a) and
n ¾ a > r, there exists q ∈ Z+ such that n = aq+ r.
Therefore the left-hand side of (2) can be written as

aq−1
∑

k=0

�

k
a

�

+
aq+r
∑

k=aq

�

k
a

�

.

If aq¶ k¶ aq+r, then bk/ac= q, and so the second
sum above is equal to q(r+1). The first sum can be
written as
∑

0¶`<q

�

∑

a`¶k<a(`+1)

�

k
a

��

=
∑

0¶`<q

a`=
aq(q−1)

2
.

Combining the first and second sums and substitut-
ing q = n−r

a , we see that the left-hand side of (2) is
equal to

1
2

�

aq2− aq+2qr +2q
�

=
1

2a

�

a2
�n−r

a

�2−a2
�n−r

a

�

+2(n−r)r+2(n−r)
�

=
1

2a

�

n2−2nr+r2−an+ar+2nr−2r2+2n−2r
�

=
1

2a
(n(n+2− a)− r(r +2− a)) ,

which is equal to the right-hand side of (2). 2
By applying Lemma 1, we can prove (1) conve-
niently as shown in the next theorem.

Theorem 1 If a ¶ 7 is a positive integer, then we can
choose b = 2− a so that

n
∑

k=1

�

k
a

�

=

�

(2n+ b)2

8a

�

for all n ∈ N. (3)

Proof : We first consider the case a = 1. Then the
left-hand side of (3) is n(n+ 1)/2 while the right-
hand side of (3) is equal to

�

(2n+1)2

8

�

=
�

n(n+1)
2

+
1
8

�

=
n(n+1)

2
,

where the last equality is obtained from the fact that
n(n + 1)/2 is an integer. The proofs for a = 2 to
a = 7 are similar, so we show the details only in the
cases a = 6 and a = 7. So suppose that a = 6. By
Lemma 1, we obtain

n
∑

k=1

�

k
6

�

=















n(n−4)
12 , if n≡ 0,4 (mod 6);

n(n−4)+3
12 , if n≡ 1,3 (mod 6);

n(n−4)+4
12 , if n≡ 2 (mod 6);

n(n−4)−5
12 , if n≡ 5 (mod 6).

(4)

The right-hand side of (3) is equal to
�

(2n−4)2

48

�

=

�

4n2−16n+16
48

�

=
�

n(n−4)
12

+
16
48

�

.

If n ≡ 0,4, 6,10 (mod 12), then n(n − 4) ≡ 0
(mod 12), and so

�

n(n−4)
12

+
16
48

�

=
n(n−4)

12
.

If n ≡ 1,3, 7,9 (mod 12), then n(n − 4) ≡ −3
(mod 12), and therefore
�

n(n−4)
12

+
16
48

�

=
�

n(n−4)+3
12

+
4

48

�

=
n(n−4)+3

12
.

If n≡ 2, 8 (mod 12), then n(n−4)≡ −4 (mod 12),
and thus
�

n(n−4)
12

+
16
48

�

=
�

n(n−4)+4
12

�

=
n(n−4)+4

12
.

If n ≡ 5,11 (mod 12), then n(n− 4) ≡ 5 (mod 12)
and hence
�

n(n−4)
12

+
16
48

�

=
�

n(n−4)−5
12

+
36
48

�

=
n(n−4)−5

12
.

From these, we obtain
�

(2n+ b)2

8a

�

=
�

n(n−4)
12

+
16
48

�

=















n(n−4)
12 , if n≡ 0,4, 6,10 (mod 12);

n(n−4)+3
12 , if n≡ 1,3, 7,9 (mod 12);

n(n−4)+4
12 , if n≡ 2,8 (mod 12);

n(n−4)−5
12 , if n≡ 5,11 (mod 12).

(5)

Observe that n ≡ 0,4 (mod 6) if and only if n ≡
0,4, 6,10 (mod 12); n ≡ 1, 3 (mod 6) if and only if
n ≡ 1,3, 7,9 (mod 12); n ≡ 2 (mod 6) if and only
if n ≡ 2, 8 (mod 12); n ≡ 5 (mod 6) if and only if
n≡ 5, 11 (mod 12). Comparing (4) and (5), we see
that

n
∑

k=1

�

k
6

�

=

�

(2n+ b)2

8a

�

.
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So this theorem is proved for a = 6. Next, consider
a = 7. By Lemma 1, we have

n
∑

k=1

�

k
7

�

=















n(n−5)
14 , if n≡ 0, 5 (mod 7);

n(n−5)+4
14 , if n≡ 1, 4 (mod 7);

n(n−5)+6
14 , if n≡ 2, 3 (mod 7);

n(n−5)−6
14 , if n≡ 6 (mod 7).

(6)

The right-hand side of (3) is equal to
�

(2n−5)2

56

�

=

�

4n2−20n+25
56

�

=
�

n(n−5)
14

+
25
56

�

.

Similar to the case a = 6, we calculate n(n−5)mod
14 according to the residues of n modulo 14 and
obtain that
�

n(n−5)
14

+
25
56

�

=















n(n−5)
14 , if n≡ 0, 5,7, 12 (mod 14);

n(n−5)+4
14 , if n≡ 1, 4,8, 11 (mod 14);

n(n−5)+6
14 , if n≡ 2, 3,9, 10 (mod 14);

n(n−5)−6
14 , if n≡ 6, 13 (mod 14).

(7)

Comparing (6) and (7), we see that this theorem is
verified for a = 7. Hence the proof is complete. 2

MAIN RESULTS

In this section, we show that b in Theorem 1, after a
reduction, is necessarily equal to 2−a and the range
of a ¶ 7 cannot be extended to any positive integer
larger than 7.

Theorem 2 Let a ∈ N, b, c, d ∈ R, and d 6= 0. Sup-
pose that A⊆ N is an infinite set and

n
∑

k=1

�

k
a

�

=

�

(cn+ b)2

da

�

for all n ∈ A. (8)

Then

(cn+ b)2

da
=
(2n+2− a)2

8a
for all n ∈ A.

Proof : Let n ∈ A. By Lemma 1, the left-hand side
of (8) is equal to

n(n+2−a)−r(2−a+r)
2a

=
n2

2a
+

n(2−a)
2a

−
r(2−a+r)

2a
,

where 0 ¶ r < a and n ≡ r (mod a). Recall that
bxc = x − {x} and 0 ¶ {x} < 1. So the right-hand
side of (8) can be written as

n2c2

da
+

2nbc
da

+
b2

da
− f1(n, a, b, c, d),

where 0 ¶ f1(n, a, b, c, d) < 1. Dividing both sides
of (8) by n2, we obtain

1
2a
+

2− a
2an

−
r(2− a+ r)

2an2

=
c2

da
+

2bc
dan

+
b2

dan2
−

f1(n, a, b, c, d)
n2

. (9)

Since (9) holds for all n ∈ A, we can take limit as
n ∈ A and n→∞ on both sides of (9) which leads
to 1

2a =
c2

da . Therefore c2 = d
2 and (9) reduces to

2− a
2an

−
r(2− a+ r)

2an2

=
2bc
dan

+
b2

dan2
−

f1(n, a, b, c, d)
n2

. (10)

Multiplying both sides of (10) by n and taking limit
as n ∈ A and n→∞, we obtain 2−a

2a =
2bc
da . Then

(2− a)c
2

=
2bc2

d
= b.

From these, we obtain

(cn+ b)2

da
=

c2n2

da
+

2bcn
da

+
b2

da

=
n2

2a
+
(2− a)n

2a
+
(2− a)2c2

4da

=
4n2

8a
+

4(2− a)n
8a

+
(2− a)2

8a

=
(2n+2− a)2

8a
.

This completes the proof. 2
Theorem 2 immediately implies that it is necessary
to choose b = 2− a in Theorem 1.

Corollary 1 The value b = 2 − a in Theorem 1 is
unique. That is, if b ∈ R, a ∈ N, a ¶ 7, and

n
∑

k=1

�

k
a

�

=

�

(2n+ b)2

8a

�

for infinitely many n ∈ N,

then b = 2− a.

Proof : By Theorem 2, we have

(2n+ b)2

8a
=
(2n+2− a)2

8a
. (11)

Since (11) holds for infinitely many n ∈ N, we
can choose distinct positive integers n0 and n1 and
substitute n= n0 and n= n1 in (11) to obtain

4n0 b+ b2 = 4n0(2− a)+ (2− a)2, (12)

4n1 b+ b2 = 4n1(2− a)+ (2− a)2. (13)
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Subtracting (13)−(12), we obtain b = 2 − a, as
desired. 2
Next, we show that the range of a ¶ 7 in Theorem 1
cannot be extended.

Theorem 3 For each positive integer a ¾ 8 and for
any choice of b, c, d ∈ R with d 6= 0, there are in-
finitely many n ∈ N such that

n
∑

k=1

�

k
a

�

6=
�

(cn+ b)2

da

�

.

Proof : Suppose for a contradiction that there exist
a ∈ N and b, c, d ∈ R such that a ¾ 8, d 6= 0, and

n
∑

k=1

�

k
a

�

6=
�

(cn+ b)2

da

�

for only a finite number of n ∈ N. Then there exists
M ∈ N such that

n
∑

k=1

�

k
a

�

=

�

(cn+ b)2

da

�

for all n¾ M .

By Theorem 2, we have
n
∑

k=1

�

k
a

�

=

�

(2n+2− a)2

8a

�

for all n¾ M . (14)

Let n¾ M and n≡ a−1 (mod 2a).
Then n(n+ 2− a) ≡ a− 1 (mod 2a) and n ≡ a− 1
(mod a). By Lemma 1, we obtain

n
∑

k=1

�

k
a

�

=
n(n+2− a)− (a−1)

2a
∈ Z. (15)

Next, we calculate the right-hand side of (14). We
have
�

(2n+2− a)2

8a

�

=

�

n(n+2− a)− (a−1)
2a

+
a−1
2a

+
(2− a)2

8a

�

=
n(n+2−a)−(a−1)

2a
+

�

a−1
2a
+
(2−a)2

8a

�

. (16)

But a−1
2a +

(2−a)2

8a = a
8 ¾ 1, and so

�

a−1
2a

+
(2− a)2

8a

�

¾ 1. (17)

By (15), (16), and (17), we obtain
n
∑

k=1

�

k
a

�

<

�

(2n+2− a)2

8a

�

,

which contradicts (14). Hence the proof is com-
plete. 2

Remark 1 Obviously, the sum
∑n

k=1

�

k
a

�

depends
on a and n. If a = 1, 2,3, . . . , 7, then Theorem 1
simply says that a simple formula for this sum exists;
but if a is a positive integer larger than 7, then
Theorem 3 states that such a simple formula does
not exist. Nevertheless, we can always use Lemma 1
to evaluate this sum though it may lead to many
cases of residues modulo a as shown in the following
example.

Example 1 If a = 8, we can apply Lemma 1 to
obtain

n
∑

k=1

�

k
8

�

=



























n(n−6)
16 , if n≡ 0,6 (mod 8);

n(n−6)+5
16 , if n≡ 1,5 (mod 8);

n(n−6)+8
16 , if n≡ 2,4 (mod 8);

n(n−6)+9
16 , if n≡ 3 (mod 8);

n(n−6)−7
16 , if n≡ 7 (mod 8).

Questions: We have obtained the results for all
positive integers a. Can we extend them to negative
integers? What about nonzero rational numbers?
Can we say something nontrivial about the sum
∑n

k=1

�

k
a

�

when a is positive irrational? What hap-
pen if we replace the floor by the ceiling function?
We leave these questions to the interested readers.
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