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ABSTRACT: Phosphorus (P) availability and soil water are two important environmental factors in lowland rice paddies.
They limit the ability of rice to form mutualistic associations with arbuscular mycorrhizal fungi (AMF). The dynamics of
this symbiotic interaction are intensified by phosphorus deficiency and attenuated by anaerobic conditions. However,
the effects of combined phosphorus deficiency and anaerobic conditions on AMF symbiosis in paddy soil were unproven.
The main objective of this study is to determine the influence of phosphorus and water availabilities on indigenous AMF
colonization and community in Sangyod Muang Phatthalung (SMP) rice. Rice seedlings were grown in pots containing
P-deficient organic paddy soil with or without phosphorus fertilization under non-flooded and flooded conditions for 2,
4 and 6 weeks. The application and omission of P soil fertilization influenced phosphate accumulations in rice seedlings,
producing conditions of P-sufficiency and P-deficiency, respectively, in the plants. To determine the effects of phosphorus
and water availabilities on AMF colonization and community structures, roots were analyzed microscopically and
molecularly. Flooding considerably reduced the intensity of indigenous AMF root colonization whereas the non-
enrichment of P availability did not. Reduced AMF colonization was concomitant with lower abundances of two major
Glomeromycota ASVs in roots under flooding. This result suggested that soil water availability plays the primary role in
shaping AMF communities in SMP roots. This study emphasized the primacy of water management when considering
the use of AMF in the production of SMP rice in an organic cultivation system.

KEYWORDS: arbuscular mycorrhizal fungi, phosphorus availability, flooded condition, Sangyod Muang Phatthalung
rice, lowland indica rice

INTRODUCTION

In various agro-ecosystems, phosphorus (P) defi-
ciency in the soil is one of the major constraints
limiting plant growth and productivity. To overcome
this problem, most land plants establish mutualis-
tic associations with arbuscular mycorrhizal fungi
(AMF). This symbiotic relationship enables host
plants to accumulate more P, especially in shoots, via
the mycorrhizal P uptake pathway in roots [1]. In
return, the host plants reward AMF with photosyn-

thates such as carbohydrates and lipids [2]. How-
ever, the plant-AMF symbiosis is dynamically fine-
tuned by environmental P availability. The degree of
AMF colonization varies inversely with the available
P levels in the rhizosphere [3, 4], indicating that P
availability is an essential factor in the regulation of
the AMF symbiosis.

Apart from soil P levels, gravimetric water
regimes also regulate plant-AMF symbiosis. The
intensity of AMF colonization in roots is typically
inhibited by flooding [5]. In wetland ecosystems,
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for example, the duration of flooding and under-
ground water levels limit indigenous AMF coloniza-
tion and strongly affect AMF communities in host
plants [6, 7]. Although AMF symbiosis can exist in
wetland plant species [8], it seems likely that anoxic
or hypoxic conditions as a result of flooding are un-
favorable to AMF. In paddies of lowland rice (Oryza
sativa L.), for instance, the natural colonization rate
in roots is in the mere range of 0 to 40 percent,
depending on the growth and developmental stage
of the plant [9, 10]. Even though AMF colonization
in lowland rice roots is impeded by flooding, the
remaining AMF in the roots is usually sufficient to
maintain the mycorrhizal P uptake pathway [5].
The presence of AMF in lowland rice paddies im-
proves P uptake in roots by increasing P miner-
alization in the rhizosphere [11]. Furthermore,
these fungi also ameliorated P losses in rice paddies
by preventing leaching and runoff of P from the
soil [12].

In Thailand, the practice of organic rice farming
is increasing progressively, in part thanks to its
promotion by the Thai government [13]. Typically,
only green manure and biofertilizer are applied on
organic rice paddies to improve the soil [14]. To
maximize soil nutrients, especially P, the application
of AMF can potentially be integrated. Therefore,
an understanding of AMF symbiosis in lowland rice
paddies is fundamental for organic farming manage-
ment.

AMF are ubiquitously found in lowland rice pad-
dies. However, compared to AMF communities in
upland rice fields, lowland communities are highly
influenced by water availability. Flooding in low-
land rice paddies reduces AMF abundance, species
richness and species diversity in rice roots [15].
The population of AMF in most genera is gener-
ally depleted in this type of agro-ecosystem [15].
Acaulospora was found to be the dominant AMF
genus in lowland rice paddies [16]. In Thailand, the
AMF genera Glomus and Acaulospora in rice paddies
have been reported [10].

In rice, as in other species, P deficiency and
flooding have opposing impacts on AMF symbio-
sis [4, 5]. A study on the colonization of Glomus
mosseae and Glomus intraradices in the rice cultivar
Shafagh from northern Iran under different P and
flooding regimes showed that both flooding and P
supplementation in soil additively inhibit AMF colo-
nization [11]. However, as rice-AMF symbiosis can
be specific to the conditions and genotypes of both
rice and AMF under the study, it is not known how
flooding and P availability affect the rates and com-

munity dynamics of AMF colonization in Thai rice
in natural lowland paddy soil. In this study, we in-
vestigated the interaction between P deficiency and
soil flooding on rice-AMF symbiosis in P-deficient or-
ganic paddy soil. AMF colonization and changes in
the indigenous AMF communities were determined
in seedlings of Sangyod Muang Phatthalung (SMP)
rice grown in the soil with or without P fertilization
under different water regimes. Our data demon-
strated that soil water availability plays a primary
role in shaping the landscape of AMF communities
in rice roots as flooding reduced AMF colonization
regardless of soil P availability. This emphasizes that
water management should be prioritized when the
use of AMF is considered for rice production in an
organic lowland cultivation system.

MATERIALS AND METHODS

Soil sampling and analyses

The soil used in this study was obtained from
organic rice paddies of the Phatthalung Rice Re-
search Center, Phatthalung, Thailand. For physical
property analysis, bulk soil was collected from 3
different sites (n = 3). Soil organic matter was
determined by the titration method. Total N was
determined by combustion using a C/N analyzer
CN628 (LECO, Thailand) [17]. Total P and avail-
able P were extracted from soil samples using a
nitric-perchloric solution in a 1:1 ratio and water,
respectively. The amount of P was determined
by the molybdovanadophosphate method using the
Prove 300 spectrophotometer (Merck KGaA, Ger-
many) [17]. Total potassium was determined by
the flame photometric method using inductively
coupled plasma-optical emission spectrometry (ICP-
OES, Avio 500, Perkin Elmer, USA) [17]. Soil pH
and electroconductivity were measured by a con-
ductivity meter (Orion Star A112, Thermo Fisher
Scientific, Thailand) [17].

Plant materials

SMP is an elite indica rice variety grown in
Phatthalung province in Southern Thailand with
a protected geographical indication status. The
unique geographical origin of the rice variety was a
reason for its selection as a model for the interaction
of rice with the indigenous AMF in a lowland agro-
ecosystem of Southern Thailand. The pot exper-
iment was set up in an open greenhouse during
May to July 2019. The temperature and relative
humidity, recorded by a data logger (HOBO® Pro v2,
USA), ranged from 25–35 °C and 50–90%, respec-
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tively. Seeds were sown in pots containing 1.5 kg
of organic paddy soil. The seedlings were watered
3 times a week with 150 ml of distilled water
and fertilized once a week with 150 ml of P-added
(10 mg/l P) or no P (0 mg/l P) Yoshida solution.
Flooding treatment of seedlings commenced after 2
weeks. To recreate flooded conditions, pots with
sealed drainage holes were flooded with enough
distilled water to produce 2-cm of standing water
above the soil. An equal amount of distilled water
was applied to pots with open drainage holes to
create the non-flooded control conditions. In all,
the experiment comprised 4 different growing con-
ditions: high P/non-flooded, low P/non-flooded,
high P/flooded and low P/flooded. Each condition
was applied to 6 biological replicates (n = 6), each
of which contained 6 seedlings. The seedlings were
subsequently grown in an open greenhouse for 2,
4 and 6 weeks. At each time point, tissues were
harvested, and shoot and root fresh weights were
recorded before storing the tissues at −80 °C.

Measurement of soluble inorganic P contents in
rice tissues

Soluble inorganic P (Pi) content was measured
using ferrous sulfate-ammonium molybdate
reagent [18]. Samples were taken from the pool
of homogenized leaf or root tissues of 6 individual
plants. Aliquots of 20 mg of leaf tissue and 40 mg
of root tissue were digested in 600 µl of 3% (v/v)
perchloric acid. After centrifugation at 11 000 rpm
for 5 min, the supernatant was collected and then
mixed with 400 µl of the assay reagent containing
1% (w/v) (NH4)6Mo7O24 ·4 H2O and 5% (w/v)
FeSO4 ·7 H2O in 1 N H2SO4. After shaking followed
by incubation for 10 min, absorption at 720 nm
was measured using a microplate reader (BIOTEX
PowerwaveX). The Pi content in each sample was
calculated using a KH2PO4 (5–250 nmole range)
standard.

Measurement of AMF root length colonization

Rice roots were cut into 1.5 cm sections, washed
with water and cleaned in 10% (w/v) KOH at
95 °C for 15 min. The tissues were subsequently
rinsed with deionized water and then incubated in
1% (v/v) HCl at room temperature for 10 min. The
HCl solution was replaced with 1 ml of Trypan blue
staining solution made up of 0.05% (w/v) Trypan
blue, 30% (v/v) lactic acid and 30% (v/v) glyc-
erol. The root samples were de-stained overnight
with 50% (v/v) glycerol. Approximately 15 root
sections from each replicate were mounted on a

microscope slide with 50% (v/v) glycerol. The
slide was sealed with transparent nail polish and
observed under a light microscope (100 views per
slide) using 10×magnification to quantify AMF root
length colonization.

Genomic DNA preparation

Rice root tissue for DNA analysis was collected by
pooling roots from the same pot. Root tissues were
washed 3 times in a 15 ml tube containing 5 ml
sterile PBS buffer [130 mM NaCl, 7 mM Na2HPO4,
3 mM NaH2PO4, 0.02% (v/v) Silwet L-77, pH 7.0]
and then shaken for 20 min at 180 rpm. The
cleaned roots were dried, immediately frozen in
liquid nitrogen and stored at −80 °C. Frozen tis-
sues were pulverized, and an aliquot of 100 mg
was used for genomic DNA isolation using a plant
DNA minipreparation method with some modifica-
tions [19].

Fungal community analysis

Paired-end amplicon sequencing of the internal
transcribed spacer 2 (ITS2) was performed at
Novogene (Korea) on the Illumina MiSeq plat-
form using the ITS5-1737F (5′-GGAAGTAAAAGTCG
TAACAAGG-3′) and ITS2-2043R (5′-GCTGCGTTC
TTCATCGATGC-3′) primers. Amplicon sequence
variants (ASVs) were obtained by processing se-
quences with DADA2 [20] implemented in QIIME2
(2018.4 Release) [21]. Fungal taxonomy was as-
signed to the ASVs using the Naive-Bayes classifier
trained on the UNITE database (version 7.2) [22].
The sequences were imported into the Phyloseq
package [23] in R for further processing. The
relative abundances of Glomeromycota sequence
variants in all samples were obtained by dividing
each ASV by the total number of sequences assigned
to the phylum Glomeromycota. The sequences
were rarefied at 50 000 sequences per sample, in
which the rarefaction curves were constant. The
number of observed species, evenness, Shannon
index and Bray-Curtis index were calculated us-
ing Phyloseq. Permutational multivariate analysis
of variance (PERMANOVA) was carried out with
999 permutations using the Vegan package [24].
Differential abundance analysis was performed with
DESeq2 [25] as implemented in the Phyloseq pack-
age. The data were visualized with ggplot2 [26].
Finally, ASVs belonging to Glomeromycota were
blasted on the UNITE species hypothesis database to
achieve greater taxonomic detail [22]. Sequences
from this study were made available through the

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


ScienceAsia 47 (2021) 205

European Nucleotide Archive under project code
PRJEB41021(ERP124744).

Statistical analyses

Means of shoot and root fresh weight, shoot and
root Pi concentration, root length colonization un-
der different water statuses, P availabilities and
weeks were compared by three-way ANOVA fol-
lowing Least Significant Difference (LSD) using the
agricolae package [27] in the statistical software R
(version 3.6.3).

RESULTS

Application of P in paddy soil increases internal
Pi accumulation in rice seedlings

Bulk soil from organic rice paddies was collected to
set up the greenhouse experiment. The soil compo-
sitions included dense rice roots from the previous
cycle of rice cultivation (Fig. S1). The soil contained
1.75% (w/w) organic matter, 0.06% (w/w) total N,

0.008% (w/w) total P and 0.21% (w/w) total K. Soil
pH and conductivity were 5.18 and 0.14 (ds/m),
respectively. However, no available P was detected.
Therefore, the soil used in this study was considered
P-deficient.

In this experiment, SMP seedlings were grown
in P-deficient paddy soil with or without added P.
These conditions were denoted high P and low P,
respectively. Two-week-old seedlings grown under
both conditions were subjected to flooding treat-
ment. Changes in shoot and root Pi contents were
measured after 2, 4 and 6 weeks. The results
showed that P availability, soil flooding and culture
duration had an influence on Pi accumulations in
shoots and roots (Table S1). Increases in shoot Pi
contents were greater in the rice seedlings grown in
high P conditions than in those grown in low P con-
ditions, especially after 4 weeks (Fig. 1A). Changes
in root Pi contents, however, were generally unaf-
fected by P fertilization (Fig. 1B). Concomitant to
the Pi contents, shoot fresh weight was significantly
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Fig. 1 Effect of P application on internal Pi levels in rice seedlings under non-flooded and flooded conditions. Rice
seedlings were grown for 2, 4 and 6 weeks under 4 different P and water regimes: high P with non-flooding (HP), low P
with non-flooding (LP), high P with flooding (HPF) and low P with flooding (LPF). The box plots show the distribution of
(A) shoot Pi content, (B) root Pi content, (C) shoot fresh weight and (D) root fresh weight (n= 6 biological replicates).
Statistical analysis was performed by three-way ANOVA following LSD. Different letters within the same time point
indicate significant differences (p < 0.05).
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greater in rice seedlings fertilized with P (Fig. 1C
and Fig. S2) whereas root fresh weight was mostly
unaffected by P fertilization (Fig. 1D). Regardless
of the amount of available P in the soil, flooding
resulted in a significant increase in shoot and root
fresh weights compared to the control non-flooded
conditions (Fig. 1C,1D). Additionally, increases in
shoot and root fresh weights as a result of flooding
were more apparent when seedlings were grown
in high P conditions, while the effects of flooding
on Pi accumulation were negligible in both shoot
and root tissues (Fig. 1C,1D). Together, these results
confirmed that the application of P increases the
accumulation of Pi in rice seedlings grown in P-
deficient lowland paddy soil and that this effect is
independent of soil water.

Flooding but not internal P status limits
mycorrhizal colonization in lowland rice

The observation that the application of P similarly
influenced the Pi content in rice seedlings grown
in both non-flooded and flooded conditions led us
to hypothesize that flooding might inhibit mycor-
rhizal colonization of rice roots even though the
rice seedlings are P-deficient. To test whether the
mycorrhization rate in rice roots is influenced by
soil P availability and water regime, root length col-
onization was investigated in rice seedlings grown
under the 4 different conditions (Fig. 2A,2B). The
results indicated that water status and culture du-
ration affected AMF colonization (Table S1). While
P application had minimal effect, flooding strongly
inhibited AMF colonization (Fig. 2C). In flooded
conditions, root length colonization was highest in
the first 2 weeks and progressively decreased over
the cultivation period. Nevertheless, AMF colo-
nization was still detected in the flooded condition
after 4 and 6 weeks (Fig. 2C). We further speculated
that flooding not only reduced the intensity of AMF
colonization but might also affect fungal and AMF
communities in the rice roots. Therefore, ITS2-
sequencing was performed to determine the effect
of P and water availability on fungal and AMF
communities in the rice roots.

Flooding alters fungal communities in rice roots

Due to the considerable reduction of AMF colo-
nization observed in roots at the 4th week after
flooding, we used these samples to investigate the
effects of P and water availability on fungal and AMF
communities. Species evenness, species richness
and Shannon diversity indices in the rice roots were
similar under all 4 conditions (Fig. 3A). However,

(A) (B)

(C)

Fig. 2 Mycorrhizal root length colonization in rice roots
at 2, 4 and 6 weeks after treatment. (A, B) Mycorrhizal
colonization in rice roots was observed under light micro-
scope (100 views, 10×objective magnification, scale =
200 µm); arrow heads indicate AMF spores attached to
rice roots. The colonization rates at different time points
were compared between all treatments. (C) The box plots
show the distribution of percent root length colonization
in high P with non-flooding (HP), low P with non-flooding
(LP), high P with flooding (HPF) and low P with flooding
(LPF) conditions (n = 6 biological replicates). Statistical
analysis was performed by three-way ANOVA following
LSD. Different letters indicate significant differences (p <
0.05).

analysis of beta diversity indicated that the fungal
communities in non-flooded and flooded conditions
were different (Fig. 3B and Table S2). These data
suggested that flooding affected the fungal commu-
nity in the rice roots.

Among all the fungal ASVs in the roots,
there were 8 ASVs of Glomeromycota (GlomASVs)
(Fig. 4). 75% of the AMF sequences belonged
to ASV2 (55.7%) and ASV4 (20.0%), which were
the major GlomASVs returned from blasting to the
UNITE database. All 8 GlomASVs shared sequence
similarities in the range of 94.8–100% with the
fungal ITS sequences in the family Glomeraceae.
Moreover, GlomASV1 and GlomASV7 were hypo-
thetically identified as Rhizophagus clarus at 100.0
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and 98.5% similarity, respectively (Table S3).
In the flooded condition, the abundance of

ASV2 and ASV4 was significantly reduced (Fig. 5).
Apart from AMF, the enrichment of some fun-
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non-flooded versus flooded treatments.

gal ASVs in Ascomycota and Basidiomycota was
markedly lower in the flooded condition whereas
the abundance of some fungi in Ascomycota such as
Hypocreales, Hysteriales, Sordariales and Pleospo-
rales was significantly higher. These findings sug-
gested that flooding also considerably affected the
fungal communities and AMF abundance in the rice
roots.

DISCUSSION

The soil from the organic rice paddy sampling sites
was determined as P-deficient since it contained
76 ppm P without detectable available P. This soil P
level has been previously reported in other areas of
Thailand [28, 29]. In this experiment, the applica-
tion of P fertilizer increased Pi accumulations and
fresh weight of shoots and roots of rice seedlings
(Fig. 1). Cytosolic Pi contents in rice seedlings
were reported to vary according to environmental P
availability [30], and reduced cytosolic Pi contents
were manifested as a symptom of P starvation in rice
plants [31]. Moreover, P deficiency in rice seedlings
was reflected in reductions of shoot and root fresh
weight [30]. These previous findings support the
finding in this study that the addition of P in soil
affected P status in the rice seedlings.

P treatment inhibits AMF colonization in rice
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roots [11]. However, the application of P in paddy
soil did not affect the intensity of AMF coloniza-
tion in the rice roots in either the non-flooded or
flooded condition. This result was hypothetically
unexpected (Fig. 2C), but some previous studies
demonstrated that P fertilization did not reduce
AMF colonization in the host roots [32, 33]. Per-
haps, the alteration of AMF colonization might be
undetectable within the short-term. It was reported
that P enrichment of P-deficient soils did not affect
AMF colonization in roots within the first year of soil
P improvement, but differences in AMF colonization
were found in the second year [34]. In addition,
SMP may be P-efficient since it contains Pup1-K46,
a quantitative trait locus conferring P-deficient tol-
erance in rice [30]. Therefore, the importance of
AMF symbiosis in response to P deficiency might be
attenuated in this rice variety [35].

Our data showed that AMF colonization in rice
roots was inhibited by flooding (Fig. 2C). This find-
ing is consistent with a previous study showing that
flooding arrested AMF colonization while aerobic
soil allowed fungi to colonize up to 80% of the
roots [5]. Flooding also accelerated the formation
of aerenchyma in the cortex of large lateral roots
and crown roots, collapsing the accommodation for
AMF [5]. In lowland rice paddies, the natural
range of AMF colonization in rice roots is between
0 and 40% [9, 10]. This degree of AMF colonization
was also detected in plant roots living in wetland
habitats [8], and the same colonization levels in rice
roots under flooding were induced by AMF inocula-
tion [36]. Moreover, flooding was found to reduce
but not completely block the symbiotic relationship
between lowland rice and AMF [5]. In lowland rice
cultivation in rain-fed areas of Southern Thailand,
rice seeds are sown very early in the rainy season
before the paddies become waterlogged [37]. This
growing condition may enable the concurrent estab-
lishment of rice seedlings and symbiosis with AMF
before the paddies are flooded in the following 2 to
4 weeks.

Fungal and AMF communities in plant roots
were previously identified from general fungal ITS
markers [38, 39]. Based on ITS2 sequencing anal-
ysis, flooding changed the fungal communities and
reduced AMF abundance in the studied rice roots
(Fig. 3B and Fig. 5). Previous studies have shown
that flooding was a crucial environmental factor
that shaped fungal communities in lowland paddy
soil [5, 40], and although microbial diversity and
richness in rice roots and paddy soils are not
different between lowlands and uplands, flooding

significantly reduced the abundance of AMF in
lowland paddy soil [15]. Additionally, similar to
our findings, the abundance of Ascomycota fungi
such as Hypocreales, Hysteriales, Sordariales and
Pleosporales was typically enriched in the flooded
condition [15] since their members are ecologi-
cally and functionally considered saprotrophic and
pathogenic fungi in lowland habitats [41]. Further-
more, in lowland rice roots, the enrichment of some
Ascomycetes, particularly in the genus Trichoderma,
can provide the host plants with plant growth pro-
moting substances, drought tolerance and pathogen
resistance [42–44].

All the GlomASVs identified in the studied rice
roots belonged to the family Glomeraceae (Fig. 4).
Glomeracean AMF can be found in lowlands around
the world [9, 10, 15]. In Thailand, rice paddies
under conventional cultivation have been reported
to contain AMF of the genus Glomus of Glomer-
aceae [10]. In this study, ITS2 primers were used to
evaluate fungal and AMF communities. However,
these primers might not be able to detect some
species of AMF [38, 39] because of their lower sen-
sitivity as compared to those of the Krüger set that
amplifies a 1.5 kb SSU-ITS-LSU region, which is
sufficient for AMF species identification [45].

In conclusion, our results demonstrated that
although limited, lowland rice-AMF interaction can
be present under anaerobic or flooded conditions.
All of the detected AMF in the studied organic rice
paddy soil were classified as Glomeraceae. More-
over, when the counter-effects of P deficiency and
flooding on AMF colonization in rice roots were
considered simultaneously, the negative impact of
flooding had a more inhibiting effect on the density
of native AMF colonization mainly by reducing the
abundance of major AMF to colonize the rice roots.

Appendix A. Supplementary data

Supplementary data associated with this arti-
cle can be found at http://dx.doi.org/10.2306/
scienceasia1513-1874.2021.025.
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Appendix A. Supplementary data

Fig. S1 Soil sampling. (A) The soil was randomly collected in organic rice paddies immediately after plowing. (B) The
soil contained rice roots from previous rice cultivation.

Fig. S2 Rice seedlings under different P and water availability. Two-week old seedlings were treated with low and
high levels of P under flooded and non-flooded conditions for 4 weeks. Therefore, in this experiment, there were 4
different growing conditions: (1) low P and flooded, (2) high P and flooded, (3) low P and non-flooded and (4) high
P and non-flooded. Each treatment contained 6 pots (n= 6 biological replicates).
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Table S1 Comparison of shoot and root Pi accumulations, shoot and root fresh weight and AMF colonization rate of
plants at 2, 4 and 6 weeks after treatment under non-flooded and flooded conditions with and without P fertilization.
Comparison was performed by three-way ANOVA (p < 0.05).

Parameter
Source of variance

Week (W) Flooding (F) Phosphorus (P) W×F W×P F×P W×F×P

shoot Pi content * * * n.s. * n.s. n.s.
root Pi content * * * * n.s. n.s. n.s.
shoot fresh weight * * * * * n.s. n.s.
root fresh weight * * * * * n.s. n.s.
AMF colonization * * n.s. * n.s. n.s. *

* p < 0.05, n.s. = not significant at p < 0.05.

Table S2 Comparison of fungal communities in rice roots grown under different water and phosphorus availabilities.
Comparison was performed by pair-wise PERMANOVA of Bray-Curtis distances.

Comparison R2 p-value

flooding vs. non-flooding 0.14505 0.038
high phosphorus vs. low phosphorus 0.11570 0.164
high phosphorus and non-flooding vs. low phosphorus and non-flooding 0.20796 0.5
high phosphorus and flooding vs. low phosphorus and flooding 0.23532 0.2
high phosphorus and non-flooding vs. high phosphorus and flooding 0.32974 0.1
low phosphorus and non-flooding vs. low phosphorus and flooding 0.19345 0.6

Table S3 Species hypotheses by UNITE.

GlomASV Reference Taxon name % Identity E-value

1 KM208429 Glomeraceae (Rhizophagus clarus) 100.00 2.61E-55
2 KM208092 Glomeraceae 97.10 3.11E-93
3 FR873160 Glomeraceae 94.84 3.49E-88
4 FR873160 Glomeraceae 94.88 2.70E-89
5 KM208068 Glomeraceae 99.03 1.87E-100
6 KM208084 Glomeraceae 98.06 1.44E-96
7 KM208354 Glomeraceae (Rhizophagus clarus) 98.56 1.27E-102
8 KM208092 Glomeraceae 97.12 8.76E-94
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