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ABSTRACT: In Ou and Lin [Int J Comput Math 93(2016):1899–1920], a continuous method model for solving general
variational inequality problems with convex constraints was proposed. However, only the convergence property of the
proposed model was established, while the stability property was not analyzed. In this paper, we further study the
proposed model and establish its exponential stability property under some mild conditions. Furthermore, the stability
results on two special cases are also obtained under weaker conditions.
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INTRODUCTION

In this paper, we are concerned with the following
general variational inequality problem with convex
constraints, denoted by GVI(F, G, X ) [1]: Find a
point x such that

G(x) ∈ X , (y −G(x))T F(x)¾ 0, ∀y ∈ X , (1)

where F and G are continuous mappings from Rn

into Rn, and X is a nonempty closed convex subset
of Rn. For simplicity, we denote the solution set of
GVI(F, G, X ) by X ∗.

The general variational inequality problem with
convex constraints originates in many applications,
see [2, 3] for instance. These various applications
have provoked many scholars to study efficient
methods for solving GVI(F, G, X ) (1). Up to now,
these methods are divided into two categories: One
is the iterative methods, see [2, 4, 5] for instance;
The other is the the continuous method (or termed
‘neurodynamical approach’ by Liao et al [6]), which
combines the attractive features in both dynamical
system and neural network approaches. Here, we
only focus on some theoretical analysis of the latter.

Based on the projection operator, Xia and
Wang [7] studied the GVI(F, G, X ) (1) and proposed
a general projection neural network with its dynam-
ical system (GPNN)






dx
dt
= Λ{PX [G(x)− F(x)]−G(x)},

x(t0) = x0,
(2)

where F and G are continuously differentiable
mappings, Λ is a positive diagonal matrix, and
PX : Rn→ X is a projection operator defined as

PX (x) = arg min
y∈X

{‖y − x‖}. (3)

However, the convergence and stability properties
of GPNN (2) are established under the assumptions
that the Jacobian matrices of F(x) and G(x) exist
and ∇F(x)+∇G(x) has an upper bound in Rn, and
thus the applicable scope of GPNN (2) is reduced.
To avoid using any form of matrix information
in convergence analysis, Ou and Lin [8] recently
investigated the GVI(F, G, X ) (1) and developed a
continuous method model with its dynamical system
(GPCM)






dx
dt
= {PX [G(x)−βF(x)]−G(x)},

x(t0) = x0, ∀β > 0,
(4)

where F and G are only assumed to be continuous
mappings. It should be mentioned that the conver-
gence property of GPCM (4) is established without
requiring the existence of Jacobian matrices of F(x)
and G(x), and thus it can be applied to analyze a
much wider range of dynamical system.

Although the preliminary numerical simulation
results in [8] indicate that the proposed GPCM (4)
is more efficient than the GPNN (2) in terms of
the CPU time and the final norm of E(x ,β) (see its
definition in the next section), the stability property
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of dynamical system GPCM (4) was not analyzed in
[8]. As we know, the dynamical stability property
is an important issue in designing a continuous
method model [6]. Therefore, it is essential for us
to study the stability property of GPCM (4), which
is the motivation behind the present study.

Based on the above observations, in this paper,
we further study the system GPCM (4) and discuss
its stability property. Under some mild conditions,
it is shown that the proposed model possesses expo-
nential stability property.

MAIN RESULT

In this section, we will establish the exponential
stability property of GPCM (4). For this purpose,
we first introduce several definitions and lemmas,
which are useful for our later discussions. For
details, see [8, 9] for instance.

Definition 1 [8] The mapping F : Rn → Rn is said
to be:

(1) G-monotone at u∗ ∈ Rn if ∀u ∈ Rn

[F(u)− F(u∗)]T[G(u)−G(u∗)]¾ 0. (5)

(2) G-monotone on Rn if ∀u, v ∈ Rn

[F(u)− F(v)]T[G(u)−G(v)]¾ 0. (6)

(3) G-strongly monotone at u∗ if there exists a
constant ω> 0 such that ∀u ∈ Rn

[F(u)− F(u∗)]T[G(u)−G(u∗)]¾ω‖u−u∗‖2. (7)

Definition 2 [9] The mapping H : Rn → Rn is said
to be monotone if ∀x , y ∈ Rn

[H(x)−H(y)]T(x − y)¾ 0. (8)

Especially, H is said to be strongly monotone with
modulus µ > 0 if ∀x , y ∈ Rn

[H(x)−H(y)]T(x − y)¾ µ‖x − y‖2. (9)

Lemma 1 [9] Assume that f : D ⊂Rn→R is differ-
entiable on an open set D, and that S ⊂ D is a convex
subset. Then f is strongly convex on S if and only if
its gradient ∇ f is strongly monotone.

Lemma 2 [8] The point x∗ solves GVI(F, G, X ) (1)
if and only if x∗ is the equilibrium solution of
GPCM (4), i.e., E(x∗,β) = 0, where

E(x ,β) = G(x)− PX [G(x)−βF(x)]. (10)

Lemma 3 [8] Let x∗ is a solution of
GVI(F, G, X ) (1). Then ∀x ∈ Rn

[G(x)−G(x∗)+β[F(x)−F(x∗)]]T E(x ,β)¾

‖E(x ,β)‖2+β [F(x)−F(x∗)]T[G(x)−G(x∗)] .
(11)

Obviously, it follows from (10) that GPCM (4)
is equivalent to the following dynamical system

dx
dt
= −E(x ,β), x(t0) = x0. (12)

To analyze the exponential stability property of
(12), we define a merit function

V (x) = −(x − x∗)T[βF(x∗)+G(x∗)]

+

∫ 1

0

(x−x∗)T[βF(x∗+τ(x−x∗))+G(x∗+τ(x−x∗))]dτ,

(13)

and its level set

L (x0) = {x ∈ Rn|V (x)¶ V (x0)},

where x∗ is a solution to GVI(F, G, X ) (1), and thus
an equilibrium point of (12) due to Lemma 2.

Lemma 4 Let x∗ is a solution to GVI(F, G, X ) (1).
Assume that the following conditions hold:

(a) The function F is G-monotone at x∗;

(b) The functions F and G are Lipschitz continuous;

(c) The level set L (x0) is bounded.

Then, for any initial point x(t0) = x0 ∈Rn, the trajec-
tory x(t) corresponding to the system (12) converges
to this unique solution x∗, i.e.,

lim
t→∞

x(t) = x∗.

Proof : Similar to the proof of Theorem 3.4 in
[8]. 2

We now begin to establish the stability property
of the dynamic system (12).

Theorem 1 Let x∗ be an equilibrium point of the
system (12). Assume that the following conditions
hold:

(a) F(x) is a G-strongly monotone function at x∗;

(b) G(x) + βF(x) is a strongly monotone function
with modulus µ > 0;
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(c) The functions F and G are continuously differen-
tiable;

(d) The matrix ∇G(x)+β∇F(x) is symmetric.

Then, the solution trajectory x(t) of (12) is globally
exponentially stable at x∗, i.e., there exist two positive
constants c1 and c2 such that

‖x(t)− x∗‖¶ c2e−c1(t−t0), ∀t ¾ t0,

where c2 is dependent of the initial point x0.

Proof : From (13) and the condition (d), it follows
that

∇V (x) = βF(x)+G(x)−βF(x∗)−G(x∗). (14)

Then, by (7), (11), (14), and the condition (a), we
have

dV (x(t))
dt

=∇V (x(t))T
dx(t)

dt
= − [β[F(x)− F(x∗)]+G(x)−G(x∗)]T E(x ,β)

¶ −‖E(x ,β)‖2−β [F(x)−F(x∗)]T[G(x)−G(x∗)]

¶ −β [F(x)− F(x∗)]T [G(x)−G(x∗)]

¶ −βω‖x − x∗‖2 . (15)

This inequality further implies that V (x(t)) is mono-
tonically decreasing along the trajectory x(t) in t
(¾ t0), and thus

{x(t)|t ¾ t0} ⊆ L (x0). (16)

Using the condition (b), it follows from (14) and
Definition 2 that ∇V (x) is also strongly mono-
tone with modulus µ > 0. This fact together with
Lemma 1 implies that V (x) is a strongly convex
function with modulus µ > 0, and hence the level
set L (x0) ia a bounded and closed convex set.

SinceL (x0) is a bounded and closed convex set,
by (16), the conditions (a) and (c), we deduce from
Lemma 4 that

lim
t→∞

x(t) = x∗, x∗ ∈ X ∗ ∩L (x0).

Furthermore, by the boundedness of L (x0), it fol-
lows from (16) and the condition (c) that the matrix
∇G(x) + β∇F(x) is bounded, i.e., there exists a
constant c > 0 such that

‖∇G(x(t))+β∇F(x(t))‖¶ c, t ¾ t0. (17)

Combining (17) with (13) yields

V (x) =

∫ 1

0

τ(x − x∗)T×

�

∫ 1

0

[β∇F(xθ )+∇G(xθ )](x − x∗)dθ
�

dτ

¶
∫ 1

0

∫ 1

0

τ‖β∇F(xθ )+∇G(xθ )‖‖x−x∗‖2 dθ dτ

¶
∫ 1

0

τ

�

∫ 1

0

c‖x − x∗‖2 dθ
�

dτ

=
1
2

c‖x − x∗‖2. (18)

This together with (15) implies that

dV (x(t))
dt

¶ −βω‖x − x∗‖2 ¶ −
2βω

c
V (x), (19)

and thus

V (x)¶ V (x0)ex p[−λ(t − t0)], ∀t ¾ t0, (20)

where λ = 2βω/c. Note that V (x) is a strongly
convex function with modulus µ > 0, then

V (x)−V (x∗)¾∇V (x∗)+µ‖x− x∗‖2 = µ‖x− x∗‖2.
(21)

Combining this inequality with (20) and V (x∗) = 0
yields

‖x − x∗‖¶
r

V (x)
µ ¶
r

V (x0)
µ e
�

− λ(t−t0)
2

�

, ∀t ¾ t0,

and the desired assertion follows with c1 = λ/2 and
c2 =
p

V (x0)/µ. This proof is completed. 2

Remark 1 From Theorem 1, we see that the sta-
bility property of GPCM (4) is established without
requiring an upper bound of the matrix ∇G(x(t))+
β∇F(x(t)), while the condition is assumed to prove
the stability property of GNPP (2) in [7]. Therefore,
the system GPCM (4) can be applied to analyze a
much wider range of dynamical system, and thus it
is more practical.

Obviously, for any β > 0, it follows from Defini-
tion 2 that the function βF(x) + x (or β x + G(x))
is strongly monotone if F(x) (or G(x)) is mono-
tone. Thus, we obtain the following stability results,
which are immediate corollaries of Theorem 1.

Corollary 1 Let G(x) = x. Assume that the function
F is continuously differentiable and monotone. If the
matrix ∇F(x) is symmetric, then the dynamic system
(12) with any initial point x0 ∈ X converges to the
unique solution x∗ of GVI(F, G, X ) (1) exponentially.
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Corollary 2 Let F(x) = x. Assume that the function
G is continuously differentiable and monotone. If the
matrix ∇G(x) is symmetric, then the dynamic sys-
tem (12) with any initial point x0 ∈ X converges to the
unique solution x∗ of GVI(F, G, X ) (1) exponentially.

Remark 2 Compared with the conclusions of Corol-
lary 1 (or Corollary 2) in [7], the exponential sta-
bility of GPCM (4) in Corollary 1 (or Corollary 2)
here is established without requiring the strong
monotonicity of F (or G) and an upper bound of
the matrix∇F(x) (or∇G(x)), but the monotonicity
of F (or G). Therefore, our conclusions are more
practical.
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