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ABSTRACT: In common practices, heteroscedasticity and non-normality are frequently encountered when fitting linear
regression models. Several methods have been proposed to handle these problems. In this research, we applied four
different estimation methods: ordinary least squares (OLS), transform both sides (TBS), power of the mean function
(POM) and exponential variance function (VEXP), dealing with three different forms of the non-constant variances
under four symmetric distributions. In order to study the performance of the four methods in estimating the studied
model parameters, a simulation study with sample sizes of 20, 50 and 100 was conducted. Relative bias, mean squared
error (MSE) and coverage probability of the nominal 95% confidence interval for regression parameters were accessed.
The simulation results and application to real life data suggest that each estimation method performed differently
on different variance structures and different distributions whereas the sample size did not give much effect on each
estimation method. In overall, the TBS method performed best in terms of smallest bias and MSE, especially under
extreme heteroscedasticity. On the other hand, the OLS method was very accurate in maintaining the nominal coverage
probabilities although it had relatively poor performance in terms of bias.
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INTRODUCTION

In statistical analysis, linear regression has been
widely applied for modeling the relationship be-
tween the response variable and one or more predic-
tors. In order to use this approach sufficiently, four
fundamental assumptions: linearity, independence,
homoscedasticity, and normality must be verified.

In practice, however, the violations of these
properties may adversely affect performance char-
acteristics of methods of inference. For the data
with the heteroscedastic response, it has been noted
that the point estimates of the model parameters are
inefficient and hence may yield unreliable inference
for the model parameters [1]. To deal with these
problems, several possible methods have been pro-
posed. One common method that has been used
in several research [2–5] is known as data transfor-
mation using logarithm transform both sides (TBS).
This method had been used in modeling blueberry
fruits and flower buds, red raspberry growth and
yield, and Pharmacokinetics data [5–7]. Although,
the transformation has been applied in many sit-

uations, one might be uncertain of this method
because it might be difficult to make inference
about the original scale [2]. Meanwhile, two kinds
of so-called residual variance functions: power of
the mean function (POM) and exponential function
(VEXP) were also used to reduce heteroscedastic-
ity [1, 5, 6, 8, 9]. Its parameters are estimated by
generalized least square method (GLS).

To the best of our knowledge, the previous stud-
ies were only focused on heteroscedasticity where
normality assumption was assumed. Therefore,
this leads to the aim of our study to compare and
discuss four different estimation methods: OLS,
TBS, POM, and VEXP methods to deal with three
different forms of non-constant variances under four
symmetric distributions namely normal distribution,
Laplace distribution, location scale of t distribution,
and logistic distribution.

ESTIMATION METHODS

In statistical methodology, regression analysis is a
study to examine the relationship between two or
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more quantitative variables. Focusing on the rela-
tionship of two variables, the model can be stated
as follows [4]:

Yi = β0+β1 x i + εi , (1)

where Yi is the value of the response variable in
the i-th trial; β0 and β1 are parameters; x i is the
value of the predictor variable in the i-th trial which
is a known constant; εi is a random error term
which is normally distributed with mean E[εi] = 0
and constant variance Var(εi) = σ2; εi and ε j are
uncorrelated for all i 6= j, and E[Yi] = µi = β0+β1 x i
is the linear mean function.

Ordinary least squares estimation (OLS)

The method of least squares is a standard approach
to obtain the parameter estimates that minimize
the sum of the squares of the residuals. That is
under model (1), the OLS estimator β̂ = (β̂0, β̂1)T

of β = (β0,β1)T is obtained by minimizing the sum
of squared error:

n
∑

i=1

ε2
i =

n
∑

i=1

(yi −β0−β1 x i)
2. (2)

For a sample of n observations (x i , yi), the OLS
estimates are

β̂0 =
1
n

�

n
∑

i=1

yi − β̂1

n
∑

i=1

x i

�

= ȳ − β̂1 x̄

β̂1 =

n
∑

i=1
(x i − x̄)(yi − ȳ)

n
∑

i=1
(x i − x̄)2

.

The transform-both-sides estimation (TBS)

Under model (1), transform both sides model has
been used to some context in practices in order to
transform distribution, mean and variance [3, 5, 10–
12]. The TBS allows the parameters to be estimated
efficiently using OLS estimation method. In prac-
tice, the logarithmic transformation on response and
explanatory variables is commonly used and the
corresponding model (1) then become

log(Yi) = β0+β1log(x i)+ εi . (3)

Variance functions estimation

Another way to prescribe models with the variance
is by modifying the constant error variance assump-
tion [5]. A commonly applicable assumption about

the model error variance is the power of the mean
variance function model (POM) [1, 9].

Var(Yi) = σ
2 ŷθi , (4)

where σ and θ are the unknown parameters of the
variance function model. This variance function
indicates that the observed variance depends on the
predicted value, ŷi . In general, θ = 0 refers to
homoscedasticity or constant variance model; θ = 1
represents the variance proportional to mean or the
data come from a Poisson distribution; and θ = 2
corresponds to constant coefficient of variation (CV)
model [9].

Another extended variance function model is an
exponential variance function (VEXP) defined by

Var(Yi) = σ
2exp(2θ ŷi). (5)

In practice, one may have prior knowledge about the
value of θ in certain cases. Therefore, the parameter
β may be estimated by the weighted least squares
method with weights 1/ ŷθ or 1/exp(2θ ŷi) for mod-
els (4) and (5), respectively [1]. Nevertheless, [6]
stated that one must be clear about the true value of
θ , thus the right weight scheme can be incorporated
in fitting linear models.

SIMULATION STUDY

This section contains results from a simulation study
to assess and compare the performance of the three
estimation methods discussed in the previous sec-
tion. The assessment of the estimates was based
on relative bias, mean squared error (MSE) and
coverage probability at the nominal 95% confidence
interval.

In the simulation study, a random sample of
size n (20, 50 and 100) was generated and values
of X were independently drawn from the uniform
distribution over [0,1] with corresponding values of
Y given by

Yi = 3+ x i + ei , (6)

where ei were independently drawn from four sym-
metric distributions: standard normal distribution,
Laplace distribution, location scale of t-distribution,
and logistic distribution. All distributions were set
with the mean of 0 and three different variance
structures in order to form heteroscedasticity.

The three variance structures consist of power of
the predictor (sqrt(x)), exponential function of the
predictor (exp(x i)), and a constant plus fitted values
(0.5 + ŷi). The simulation process was replicated
N = 1000 times. The parameters estimates, biases,
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MSEs, and coverage probabilities were then calcu-
lated. All the simulations were achieved by using R
software [13].

The simulation results for each sample size of
20, 50, and 100, and variance structure are sum-
marized in terms of relative biases, MSEs, as well
as the 95% empirical coverage probabilities and
the average lengths of the confidence intervals (in
parentheses). Tables 1–3 show the results when
Var(εi) = sqrt(x i), Var(εi) = exp(x), and Var(εi) =
0.5+ ŷ , respectively.

The results set out in Table 1 show that when
the sample size is small with normal distribution,
all of the estimation methods produce reasonably
accurate estimates. However, under non-normal
distributions namely Laplace, location scale of t and
logistic distributions, TBS tends to have smaller bias
and MSE than the other methods. On the other
hand, the OLS estimation obviously overestimates
the slope parameter, especially under Laplace and
logistic distributions. In terms of coverage probabil-
ities, the OLS and VEXP methods seem to be better
than the others whereas the POM and TBS give the
shortest average length for β0 and β1, respectively.

Likewise, with large sample sizes of 50 and 100,
the results are similar to those in small sample size.
However, it is quite obvious in all distributions that
POM has the smallest bias and MSE for β0 and TBS
has the smallest bias and MSE for β1.

The results displayed in Table 2, where the vari-
ance is in exponential form, show that when the
sample size is small, in all distributions, VEXP pro-
vides the smallest bias and MSE for β0 whereas TBS
provides the smallest bias and MSE for β1. However,
the 95% CIs based on OLS are quite accurate in
maintaining the nominal confidence level although
it gains the accuracy with wider intervals.

When the sample size increases to 50 and 100,
the results displayed in Table 2 reveal that VEXP still
provides the smallest bias and MSE for β0 whereas
TBS provides the smallest bias and MSE for β1. In
terms of coverage probabilities, the OLS and VEXP
method gain the accuracy with wider intervals in all
cases.

The results presented in Table 3, where the
variance is a function of the fitted values, reveal
that the OLS, POM, and VEXP methods provide
severe bias and MSE in all distributions. TBS,
although considered to be the best one, still gives
small bias estimates. Moreover, TBS also performs
well in terms of coverage probabilities and the av-
erage lengths of the confidence intervals. When
the sample size increases as shown in Table 3, the

results are in agreement with those in small sample
size. However, as expected, the severity of bias and
MSE of the OLS, POM, and VEXP estimates seem to
decrease.

APPLICATION TO REAL LIFE DATA

In this section, we apply all the studied methods
to real dataset, Bike Sharing Dataset. The data
were extracted from [14]. To form the relation-
ship between the count of rental bikes (cnt) and
count of registered sers (registered) collected during
the period from 1 Jan 2011 to 31 Dec 2012 in
Washington DC, USA, the regression analysis was
used. The results are shown in Figs. 1 and 2.
The models validation of the errors assumptions by
using Shapiro-Wilk test for normality and Levene’s
test for homoscedasticity [15] was conducted. The
results, although not reported here, have shown
that this dataset is heteroscedastic with non-normal
distribution.

Fig. 1 shows the comparison of the fitted models
with prediction intervals. The OLS and VEXP mod-
els obviously overestimate the total number count
with small numbers of registered users, although,
OLS acquires the accuracy of wider prediction in-
tervals. The TBS and POM methods, however, are
considered to be the best ones among all other
models which most of the observations are within
the prediction intervals.

Fig. 2 shows the standardized residuals of the
fitted model. The OLS and VEXP methods present
the funnel effect with greater error variance corre-
sponding to larger predicted values, which indicate
that OLS and VEXP methods do not confirm the
assumption of homogeneity of variance. The POM
method, although is slightly better, still presents a
little of funnel effect whereas the TBS method does
not show the funnel effect, and thus the assumption
of homogeneity was verified.

CONCLUSION

In this article, we reviewed and compared four
estimation methods under three different forms of
non-constant variances and four symmetric distri-
butions. The assessment of the estimation meth-
ods is based on their relative bias, MSE, coverage
probability, and average length. The results given by
the simulations study indicate that each estimation
method performs differently on different variance
structures and different distributions, whereas the
sample size does not give much effect on each
estimation method.
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Table 1 Relative biases (Rel. bias), MSEs and coverage probabilities (average length) under Var(εi) = sqrt(x).

Distribution Estimator n β0 β1 Coverage probability

Rel. bias MSE Rel. bias MSE β0 β1

Normal OLS 20 0.0 0.06 0.0 0.33 0.99(1.38) 0.94(2.37)
50 0.2 0.02 −1.9 0.13 0.99(0.82) 0.95(1.41)

100 −0.1 0.01 1.0 0.07 0.99(0.57) 0.94(0.98)
TBS 20 −0.1 0.08 −0.2 0.03 0.92(0.99) 0.99(0.78)

50 −0.2 0.03 −0.3 0.01 0.92(0.58) 0.99(0.43)
100 0.1 0.01 0.1 0.00 0.92(0.40) 0.99(0.29)

POM 20 0.0 0.03 0.0 0.23 0.88(0.59) 0.94(0.59)
50 0.0 0.01 −0.7 0.07 0.89(0.50) 0.95(1.28)

100 −0.1 0.00 0.6 0.03 0.91(0.19) 0.94(0.69)
VEXP 20 0.0 0.04 0.1 0.25 0.97(0.87) 0.95(0.87)

50 0.1 0.01 −1.0 0.09 0.97(0.50) 0.97(1.28)
100 −0.1 0.01 0.5 0.04 0.98(0.35) 0.96(0.89)

Laplace OLS 20 −0.4 0.11 3.1 0.63 0.99(1.88) 0.95(3.27)
50 0.0 0.04 −0.7 0.24 1.00(1.14) 0.96(1.98)

100 0.2 0.02 −2.1 0.11 0.99(0.79) 0.97(1.37)
TBS 20 0.3 0.14 0.7 0.04 0.92(1.36) 0.99(1.07)

50 −0.2 0.06 −0.2 0.01 0.91(0.59) 0.99(0.60)
100 −0.3 0.02 −0.6 0.01 0.93(0.56) 0.99(0.41)

POM 20 −0.1 0.06 0.8 0.42 0.86(0.81) 0.94(2.49)
50 0.0 0.01 −1.1 0.14 0.88(0.42) 0.94(1.3)

100 0.1 0.00 −1.7 0.06 0.93(0.26) 0.97(0.96)
VEXP 20 −0.4 0.08 2.2 0.48 0.97(1.21) 0.96(2.91)

50 0.1 0.02 −1.7 0.18 0.98(0.71) 0.97(1.77)
100 0.1 0.01 −1.7 0.07 0.98(0.49) 0.98(1.24)

Location scale of t OLS 20 −0.1 0.07 0.6 0.37 0.99(1.42) 0.94(2.46)
50 0.0 0.02 0.9 0.14 0.99(0.83) 0.94(1.43)

100 0.1 0.01 0.3 0.06 0.99(1.02) 0.96(1.77)
TBS 20 0.1 0.08 0.6 0.03 0.93(1.03) 0.98(0.81)

50 0.2 0.03 0.3 0.01 0.92(0.59) 0.99(0.44)
100 0.0 0.01 −0.1 0.00 0.92(0.73) 0.99(0.53)

POM 20 −0.3 0.04 1.9 0.25 0.86(0.81) 0.94(2.49)
50 −0.1 0.01 1.3 0.07 0.89(0.30) 0.94(1.03)

100 0.0 0.00 0.2 0.03 0.92(0.19) 0.94(0.70)
VEXP 20 −0.3 0.04 2.4 0.28 0.97(1.21) 0.96(2.91)

50 −0.1 0.01 1.5 0.09 0.98(0.51) 0.97(1.29)
100 0.0 0.00 −0.1 0.04 0.99(0.35) 0.98(0.90)

Logistic OLS 20 −0.5 0.19 3.6 1.09 0.99(2.43) 0.95(4.23)
50 −0.3 0.06 0.9 0.38 0.99(1.47) 0.95(2.54)

100 −0.1 0.03 0.3 0.20 0.99(0.57) 0.94(0.99)
TBS 20 0.3 0.24 0.7 0.08 0.93(1.78) 0.99(1.40)

50 0.0 0.09 0.4 0.02 0.91(1.05) 0.99(0.77)
100 0.0 0.04 0.1 0.01 0.92(0.41) 0.99(0.29)

POM 20 −0.4 0.10 3.3 0.75 0.86(1.05) 0.94(3.25)
50 −0.2 0.03 0.3 0.23 0.89(0.53) 0.94(1.83)

100 −0.1 0.01 0.3 0.10 0.92(0.34) 0.95(1.24)
VEXP 20 −0.3 0.13 1.1 0.87 0.97(1.54) 0.95(3.79)

50 −0.2 0.04 0.2 0.28 0.99(0.89) 0.96(2.28)
100 −0.1 0.02 0.7 0.13 0.98(0.63) 0.96(1.60)
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Table 2 Relative biases (Rel. bias), MSEs and coverage probabilities (average length) under Var(εi) = exp(x).

Distribution Estimator n β0 β1 Coverage probability

Rel. bias MSE Rel. bias MSE β0 β1

Normal OLS 20 1.0 0.49 −8.3 2.53 0.98(3.45) 0.93(5.99)
50 0.2 0.17 0.3 0.97 0.99(2.06) 0.92(3.57)

100 −0.3 0.08 2.4 0.44 0.99(1.42) 0.93(2.47)
TBS 20 −1.2 0.50 −2.5 0.20 0.91(2.50) 0.97(1.95)

50 0.3 0.18 0.3 0.06 0.92(1.48) 0.97(1.08)
100 0.3 0.09 0.7 0.03 0.91(1.01) 0.98(0.73)

POM 20 1.2 0.45 −9.7 2.33 0.80(2.00) 0.88(4.90)
50 −0.2 0.17 2.2 0.85 0.85(1.25) 0.88(2.94)

100 −0.2 0.08 2.1 0.41 0.86(0.90) 0.89(2.05)
VEXP 20 0.9 0.42 −7.5 2.23 0.92(6.05) 0.92(5.49)

50 0.0 0.14 1.8 0.77 0.93(1.43) 0.94(3.31)
100 −0.3 0.07 2.4 0.37 0.94(0.99) 0.95(2.30)

Laplace OLS 20 −1.0 0.86 6.9 4.64 0.98(4.72) 0.94(8.20)
50 −0.7 0.31 2.9 1.69 0.98(2.88) 0.94(4.98)

100 −0.2 0.17 0.6 0.88 0.99(2.01) 0.93(3.48)
TBS 20 0.6 0.95 1.6 0.38 0.93(3.45) 0.97(2.72)

50 0.1 0.35 1.1 0.12 0.91(2.06) 0.97(1.52)
100 −0.1 0.17 0.1 0.05 0.91(1.43) 0.97(1.03)

POM 20 −1.0 0.78 7.6 4.09 0.82(2.66) 0.91(6.67)
50 −0.6 0.29 2.1 1.47 0.87(1.68) 0.89(4.04)

100 −0.2 0.15 0.7 0.75 0.86(1.23) 0.89(2.85)
VEXP 20 −0.8 0.73 4.3 4.00 0.92(3.26) 0.93(7.40)

50 −0.6 0.27 1.7 1.40 0.94(1.97) 0.94(4.55)
100 −0.3 0.14 1.5 0.69 0.93(1.40) 0.94(3.22)

Location scale of t OLS 20 −0.4 0.51 0.4 2.54 0.98(3.60) 0.94(6.24)
50 0.5 0.15 −2.4 0.80 0.99(2.10) 0.96(3.64)

100 0.1 0.44 −0.8 0.08 0.99(1.44) 0.94(2.50)
TBS 20 −0.1 0.52 0.9 0.22 0.92(2.62) 0.97(2.07)

50 0.0 0.17 −0.3 0.05 0.92(1.50) 0.99(1.11)
100 −0.1 0.09 −0.3 0.03 0.91(1.02) 0.98(0.75)

POM 20 0.0 0.47 −2.1 2.32 0.80(2.09) 0.89(5.14)
50 0.3 0.15 −1.3 0.74 0.87(1.28) 0.92(2.99)

100 −0.1 0.08 0.4 0.40 0.89(0.93) 0.89(2.08)
VEXP 20 0.0 0.43 −2.8 2.23 0.92(2.51) 0.92(5.72)

50 0.2 0.12 −0.4 0.66 0.95(1.47) 0.96(3.38)
100 0.0 0.06 0.1 0.35 0.95(1.02) 0.94(2.33)

Logistic OLS 20 0.0 1.46 −0.8 7.48 0.98(6.22) 0.95(10.80)
50 0.0 0.53 −2.3 2.73 0.99(3.70) 0.95(6.42)

100 0.0 0.28 0.5 1.45 0.99(2.60) 0.94(4.51)
TBS 20 −0.5 1.55 −0.8 0.60 0.93(4.50) 0.98(3.53)

50 −0.6 0.59 −0.8 0.18 0.91(2.65) 0.98(1.94)
100 0.0 0.26 −0.2 0.08 0.93(1.85) 0.98(1.34)

POM 20 −0.7 1.38 2.6 6.77 0.82(3.58) 0.90(8.79)
50 0.6 0.51 −5.6 2.46 0.85(2.22) 0.90(5.25)

100 0.1 0.28 −0.1 1.28 0.86(1.63) 0.91(3.73)
VEXP 20 0.1 1.27 −2.5 6.58 0.92(4.33) 0.94(9.80)

50 0.4 0.45 −5.4 2.34 0.95(2.58) 0.95(5.93)
100 0.0 0.22 0.8 1.18 0.94(1.81) 0.95(4.19)
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Table 3 Relative biases (Rel. bias), MSEs and coverage probabilities (average length) under Var(εi) = 0.5+ ŷ .

Distribution Estimator n β0 β1 Coverage probability

Rel. bias MSE Rel. bias MSE β0 β1

Normal OLS 20 −0.7 3.26 5.0 10.74 0.96(7.81) 0.95(13.57)
50 −1.9 1.16 11.1 4.15 0.98(4.62) 0.95(8.04)

100 −1.3 0.59 4.3 1.98 0.96(3.20) 0.95(5.55)
TBS 20 0.9 2.04 2.6 1.17 0.94(5.61) 0.95(4.40)

50 1.2 0.70 3.8 0.34 0.95(3.32) 0.97(2.41)
100 −0.2 0.35 0.9 0.16 0.94(2.28) 0.96(1.65)

POM 20 −2.6 3.73 15.4 12.39 0.87(6.40) 0.91(12.43)
50 −2.2 1.19 12.9 4.21 0.94(4.10) 0.94(7.64)

100 −1.3 0.61 4.4 2.01 0.93(2.88) 0.93(5.32)
VEXP 20 −1.9 3.61 14.1 12.37 0.91(6.99) 0.93(13.08)

50 −2.3 1.16 14.4 4.20 0.96(4.27) 0.95(7.94)
100 −1.4 0.58 5.0 1.97 0.95(2.96) 0.95(5.50)

Laplace OLS 20 −0.9 5.93 2.9 21.08 0.97(10.80) 0.95(18.91)
50 −0.9 2.24 4.7 7.79 0.96(6.48) 0.95(11.22)

100 1.3 1.26 −1.7 4.37 0.95(4.49) 0.94(7.80)
TBS 20 −0.2 3.99 0.5 2.13 0.95(7.89) 0.96(6.08)

50 0.5 1.40 1.9 0.65 0.95(4.61) 0.96(3.40)
100 0.7 0.74 −1.0 0.33 0.93(3.20) 0.96(2.30)

POM 20 0.2 6.46 −4.6 22.78 0.87(8.46) 0.92(16.97)
50 −0.9 2.20 4.3 7.59 0.92(5.53) 0.93(10.44)

100 1.6 1.22 −3.5 4.27 0.92(3.95) 0.89(7.38)
VEXP 20 0.3 6.28 −7.4 22.32 0.93(9.50) 0.93(17.89)

50 −0.7 2.16 3.3 7.51 0.94(5.91) 0.95(10.97)
100 1.4 1.22 −2.9 4.22 0.93(4.13) 0.94(7.69)

Location scale of t OLS 20 2.8 3.37 −10.3 11.40 0.96(8.14) 0.96(14.18)
50 1.2 1.27 −6.2 4.20 0.96(4.68) 0.96(8.12)

100 −0.8 0.60 5.8 2.10 0.96(3.22) 0.95(5.59)
TBS 20 0.7 2.10 −1.8 1.17 0.94(5.87) 0.96(4.62)

50 0.2 0.73 −0.2 0.36 0.95(3.35) 0.96(2.46)
100 0.9 0.36 2.3 0.16 0.96(2.30) 0.96(1.65)

POM 20 2.4 3.83 −6.2 12.82 0.87(6.64) 0.92(13.01)
50 1.1 1.33 −6.0 4.31 0.92(4.15) 0.89(7.71)

100 −0.9 0.62 6.3 2.12 0.92(2.90) 0.52(2.68)
VEXP 20 2.8 3.75 −8.6 12.95 0.93(7.26) 0.93(13.67)

50 1.1 1.29 −5.8 4.22 0.94(4.33) 0.95(8.00)
100 −0.9 0.60 6.6 2.08 0.94(2.98) 0.95(5.54)

Logistic OLS 20 −3.9 10.43 12.5 35.68 0.96(13.78) 0.94(24.11)
50 0.4 3.75 −15.6 13.08 0.97(8.33) 0.95(14.49)

100 −3.1 1.96 19.4 6.52 0.95(5.77) 0.95(10.01)
TBS 20 −1.4 6.80 1.6 3.84 0.93(10.02) 0.95(7.78)

50 −4.0 2.40 −5.3 1.08 0.93(5.96) 0.96(4.37)
100 −3.4 2.02 20.8 6.64 0.92(5.19) 0.94(9.58)

POM 20 −4.7 11.58 16.1 38.70 0.87(11.34) 0.91(22.13)
50 1.0 3.87 −19.6 13.44 0.92(7.22) 0.94(13.62)

100 −3.4 2.02 20.8 6.64 0.92(5.19) 0.94(9.58)
VEXP 20 −3.9 11.16 12.1 38.01 0.92(12.38) 0.93(23.16)

50 0.5 3.76 −16.9 13.23 0.95(7.62) 0.95(14.24)
100 −3.2 1.95 20.1 6.49 0.94(5.37) 0.95(9.91)
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Fig. 1 Prediction intervals of the model fitted to bike rental count daily and registered users with (a) OLS, (b) VEXP,
(c) TBS and (d) POM.
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Fig. 2 Standardized residuals of the models with (a) OLS, (b) VEXP, (c) TBS and (d) POM.
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As expected, under the power of the predictor
variance structure with normal distribution, there is
not much difference between estimation methods.
Under non-normal distribution, however, the POM
and TBS methods perform best in terms of bias and
MSE, whereas the OLS method obviously overesti-
mates the slope parameter. When the variance is in
the form of an exponential function of the predictor,
VEXP and TBS are the best methods to estimate the
intercept and slope parameters, respectively. More-
over, the TBS method also performs obviously well
under extreme heteroscedasticity such as variance
structure of fitted values function whereas the other
methods have quite poor performances under this
variance structure. In addition, it is obvious that
under non-normal distribution, the MSEs are much
higher than those under normal distribution with
the same values of biases, especially under extreme
heteroscedasticity.

In real life data, all discussed estimation meth-
ods are in agreement with the performance in sim-
ulation study. The TBS and POM methods perform
best in terms of model estimates, prediction inter-
vals, and standardized residuals.

In overall, the TBS method seems to perform
best in terms of smallest bias and MSE. On the other
hand, the OLS method is very accurate in maintain-
ing the nominal coverage probabilities although it
has relatively poor performance in terms of bias.
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