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ABSTRACT: In this note, we prove that some of recent Rotfel’d type inequalities are equivalent, which is an extension
of Huang, Wang and Zhang [Linear Multilinear Algebra 66 (2018) 1626–1632]. Among other results, it is shown that
if f : [0,∞)→ [0,∞) is a concave function and A ∈M2(Mn) is a normal matrix with its numerical range contained
in a sector: Sα = {z ∈ C : Re z ¾ 0, |Im z|¶ (Re z) tanα} for some α ∈ [0, π2 ), then ‖ f (|A|)‖¶ 2





 f
�

secα
2 |A11 +A22|

�



 for
any unitarily invariant norm ‖·‖. This inequality improves a recent result of Zhao and Ni [Linear Multilinear Algebra
66 (2018) 410–417].
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INTRODUCTION

Throughout this paper, let Mn be the set of all
n × n complex matrices. For A ∈ Mn, its singular
values are always arranged in decreasing order:
σ1(A)¾σ2(A)¾ · · ·¾σn(A). We denote by ‖A‖ the
unitarily invariant norm of A, and |A| = (A∗A)1/2. If
A is Hermitian, we enumerate eigenvalues of A in
non-increasing order: λ1(A) ¾ λ2(A) ¾ · · · ¾ λn(A).
Note that tr is the usual trace functional. For two
Hermitian matrices A, B ∈Mn, we use A¾ B (A¶ B)
to mean that A− B is a positive (negative) semidef-
inite matrix. A matrix A ∈ Mn is called accretive-
dissipative if in its Cartesian (or Toeptliz) decompo-
sition, A= Re A+ i Im A, the matrices Re A and Im A
are positive semidefinite, where ReA = 1

2 (A+ A∗),
Im A = 1

2i (A− A∗). From Ref. 18 we know, for the
Cartesian decomposition of A, that A is normal if and
only if Re A Im A= Im A Re A.

The numerical range of A∈Mn is defined by

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1}.

For α ∈ [0, π2 ), Sα and S′α denote, respectively, the
sector regions in the complex plane as follows.

Sα = {z ∈ C : Re z ¾ 0, |Im z|¶ (Re z) tanα}

and

S′α = {z ∈ C : Re z ¾ 0, 0¶ Im z ¶ (Re z) tanα}.

Recent studies on matrices with numerical ranges in
a sector can be found in Refs. 5, 6, 11–13, 15, 19 and
references therein.

Consider a partitioned matrix A ∈ Mn in the
form

A=
�

A11 A12
A21 A22

�

, (1)

where A11 and A22 are square matrices. ByM2(Mn)
we mean

M2(Mn) =
§�

A11 A12
A21 A22

�

: Ai j ∈Mn, i, j = 1,2
ª

. (2)

Similarly, we can defineMn(Mk).
In the late 1960s, Rotfel’d proved a famous trace

inequality: let A, B ¾ 0 and let f be a non-negative
concave function on [0,∞). Then

tr f (A+ B)¶ tr f (A)+ tr f (B).

Lee extended the Rotfel’d theorem to a partitioned
positive semidefinite matrix10.

Theorem 1 Let A ∈ Mn be a positive semidefinite
matrix partitioned as in (1) and let f : [0,∞) →
[0,∞) be a concave function. Then

‖ f (A)‖¶ ‖ f (A11)‖+ ‖ f (A22)‖.

As a further extension of the classic Rotfel’d theo-
rem, Zhang16 extended Theorem 1 to matrices with
W (A) ⊆ Sα for α ∈ [0, π2 ) as follows.

Theorem 2 Let f : [0,∞) → [0,∞) be a concave
function and let A∈Mn with W (A)⊆ Sα for α∈ [0, π2 )
be partitioned as in (1). Then

‖ f (|A|)‖¶ ‖ f (|A11|)‖+ ‖ f (|A22|)‖

+2
�

‖ f (tan(α)|A11|)‖+ ‖ f (tan(α)|A22|)‖
�

.
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Later, Fu and Liu6 obtained another generalization
of Theorem 1 as follows.

Theorem 3 Let f : [0,∞) → [0,∞) be a concave
function and let A∈Mn with W (A)⊆ Sα for α∈ [0, π2 )
be partitioned as in (1). Then

‖ f (|A|)‖¶




 f
�

sec2(α)|A11|
�



+




 f
�

sec2(α)|A22|
�



 .

Hou and Zhang7 considered the case: W (A)⊆ S′α for
α ∈ [0, π2 ). They derived the following result.

Theorem 4 Let f : [0,∞) → [0,∞) be a concave
function and let A∈Mn with W (A)⊆ S′α for α∈ [0, π2 )
be partitioned as in (1). Then

‖ f (|A|)‖¶ ‖ f (|A11|)‖+ ‖ f (|A22|)‖
+ ‖ f (tan(α)|A11|)‖+ ‖ f (tan(α)|A22|)‖ .

Let A be normal and W (A) ⊆ Sα, α ∈ [0, π2 ). Zhao
and Ni17 derived the following result.

Theorem 5 Let f : [0,∞) → [0,∞) be a concave
function and A ∈Mn be normal with W (A) ⊆ Sα for
α ∈ [0, π2 ), and let A be partitioned as in (1). Then

‖ f (|A|)‖¶ ‖ f (|A11|)‖+ ‖ f (|A22|)‖
+ ‖ f (tan(α)|A11|)‖+ ‖ f (tan(α)|A22|)‖ .

Huang et al8 derived the following inequality.

Theorem 6 Let A∈Mn be partitioned as in (1) and
let f : [0,∞)→ [0,∞) be a concave function. If A+
A∗ ¾ 0, then





 f
�

A+A∗

2

�



¶ ‖ f (|A11|)‖+ ‖ f (|A22|)‖ .

Recently, Yang et al15 presented a new refinement
of Rotfel’d type inequality as follows.

Theorem 7 Let f : [0,∞) → [0,∞) be a concave
function and A ∈Mn be normal with W (A) ⊆ Sα for
α ∈ [0, π2 ) and let A be partitioned as in (1). Then

‖ f (|A|)‖¶ ‖ f (sec(α)|A11|)‖+ ‖ f (sec(α)|A22|)‖ .

Zhao and Ni presented an extension of Rotfel’d
theorem as follows17.

Theorem 8 Let f : [0,∞) → [0,∞) be a concave
function, and A ∈M2(Mn) be a positive semidefinite
matrix, and let A be partitioned as in (2). Then

‖ f (2A)‖¶ 2‖ f (A11)+ f (A22)‖.

In this note, we show that Theorems 1–7 are equiv-
alent, which is an an extension of Huang et al8. In
addition, we present a new inequality that can be
viewed as a generalization of Theorem 8.

MAIN RESULTS

We observe that. If f : [0,∞)→ [0,∞) is concave,
then

0¶ A¶ B =⇒ ‖ f (A)‖¶ ‖ f (B)‖. (3)

Before we give the main results, let us present the
following lemmas that will be useful later.

Lemma 1 (Ref. 3) Let A∈Mn. Then

λ j(Re A)¶ σ j(A), j = 1,2, . . . , n.

The above inequality implies that there exists a
unitary matrix U ∈Mn such that

Re A¶ U |A|U∗.

Zhao and Ni17 presented a decomposition lemma as
follows.

Lemma 2 Let A∈M2(Mn) be a positive semidefinite
matrix, and let A be partitioned as in (2). Then there
exist unitary matrices U , V ∈M2(Mn) such that

A=
1
2

§

U
�

A11+A22 0
0 0

�

U∗+V
�

0 0
0 A11+A22

�

V ∗
ª

.

The next lemma was obtained by Aujla and Bourin2.

Lemma 3 Let f : [0,∞) → [0,∞) be a concave
function, and A, B ∈Mn be positive semidefinite ma-
trices. Then there exist unitary matrices U , V ∈ Mn
such that

f (A+ B)¶ U f (A)U∗+ V f (B)V ∗.

Bourin and Lee4 obtained the following important
inequality.

Lemma 4 Let A, B ¾ 0 and f : [0,∞)→ [0,∞) be
a concave function. Then

‖ f (A+ B)‖¶ ‖ f (A)+ f (B)‖.

The following lemma was obtained by Yang et al15.

Lemma 5 Let A= R+ iS be the Cartesian decompo-
sition of A with W (A) ⊆ Sα for α ∈ [0, π2 ). If RS = SR
(i.e., A is normal), then

|A|¶ sec(α)R.

Now we are ready to give the first main result.
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Theorem 9 Let f : [0,∞) → [0,∞) be a concave
function and A ∈ M2(Mn) with W (A) ⊆ Sα for α ∈
[0, π2 ), and let A be partitioned as in (2). If A= R+ iS
is the Cartesian decomposition of A with RS = SR,
then

‖ f (|A|)‖¶ 2




 f
�

secα
2 |A11+A22|

�



 . (4)

Proof : We suppose f (0) = 0, the general case fol-
lows directly by using Lee’s approach10. Consider
the Cartesian decomposition A= R+ iS, where

R=
�

R11 R12
R21 R22

�

and S =
�

S11 S12
S21 S22

�

.

As RS = SR, It follows from Lemma 5 that
|A|¶ sec(α)R. This gives

|A|¶
secα

2

�

U1

�

R11+R22 0
0 0

�

U∗1+V1

�

0 0
0 R11+R22

�

V ∗1

�

¶
secα

2

�

U1U2

�

|R11 +R22 + i(S11 + S22)| 0
0 0

�

U∗2 U∗1

+ V1V2

�

0 0
0 |R11 +R22 + i(S11 + S22)|

�

V ∗2 V ∗1

�

=
secα

2

�

U1U2

�

|A11 +A22| 0
0 0

�

U∗2 U∗1

+ V1V2

�

0 0
0 |A11 +A22|

�

V ∗2 V ∗1

�

= U1U2

� secα
2 |A11 +A22| 0

0 0

�

U∗2 U∗1

+ V1V2

�

0 0
0 secα

2 |A11 +A22|

�

V ∗2 V ∗1 ,

where the first and the second equalities are ob-
tained by Lemma 2 and Lemma 1, with correspond-
ing unitary matrices U1, V1, and U2, V2, respectively.

By (3), Lemma 3 and the triangle inequality,

‖ f (|A|)‖¶












U3U1U2

�

f
�

secα
2 |A11 +A22|

�

0
0 0

�

U∗2 U∗1 U∗3

+ V3V1V2

�

0 0
0 f

�

secα
2 |A11 +A22|

�

�

V ∗2 V ∗1 V ∗3













¶












�

f
�

secα
2 |A11 +A22|

�

0
0 0

�











+













�

0 0
0 f

�

secα
2 |A11 +A22|

�

�











= 2




 f
�

secα
2 |A11 +A22|

�



 ,

where U3, V3 are unitary matrices in Lemma 3. 2

Remark 1 In Theorem 9, we can present another
form of (4) as

‖ f (2|A|)‖¶ 2‖ f (sec(α)|A11+A22|)‖ . (5)

For a positive semidefinite matrix A, (5) and
Lemma 4 give

‖ f (2A)‖¶ 2‖ f (A11+A22)‖¶ 2‖ f (A11)+ f (A22)‖.

Thus Theorem 9 can be considered as a natural
generalization of Theorem 8.

Remark 2 Putting f (t) = t in Theorem 9, we ob-
tain the inequalities

‖ f (|A|)‖= ‖|A|‖

¶ 2




 f
�

secα
2 |A11+A22|

�





= sec(α)‖|A11+A22|‖= sec(α)‖A11+A22‖

¶ sec(α) (‖A11‖+ ‖A22‖)

= sec(α) (‖|A11|‖+ ‖|A22|‖)

= ‖ f (sec(α)|A11|)‖+ ‖ f (sec(α)|A22|)‖ .

Under this condition, Theorem 9 is a refinement of
Theorem 7.

We borrow an example from Ref. 15 to show
that the equality in (4) may happen.

Example 1 Let f (t) = t be concave and

A=
�

cosα sinα
− sinα cosα

�

, α ∈ [0,
π

2
).

By simple calculation, we have

σ1(A) = σ2(A) = 1.

Specifying the unitarily invariant norm in this exam-
ple to the trace norm ‖·‖tr. Thus we have ‖|A|‖tr=
σ1(A)+σ2(A) = 2 and ‖|A11+A22|‖tr= 2cosα, which
leads to

‖ f (|A|)‖tr = ‖|A|‖tr = 2






secα
2 |A11+A22|







tr = 2.

Corollary 1 Let f : [0,∞) → [0,∞) be a concave
function, and A ∈ M2(Mn) with W (A) ⊆ Sα for α ∈
[0, π2 ), and let A be partitioned as in (2). If A= R+
iS is the Cartesian decomposition of A with RS = SR,
then

‖ f (|A|)‖¶ 2
�



 f
�

secα
2 |A11|

�



+




 f
�

secα
2 |A22|

�





�

.

Proof : It follows from Theorem 9 that there exists
unitary matrices U , V ∈M2(Mn) such that

‖ f (|A|)‖¶ 2




 f
�

secα
2 |A11+A22|

�





¶ 2




 f
�

secα
2 (U |A11|U∗+ V |A22|V ∗)

�





¶ 2




U f
�

secα
2 |A11|

�

U∗+ V f
�

secα
2 |A22|

�

V ∗






¶ 2
�



 f
�

secα
2 |A11|

�



+




 f
�

secα
2 |A22|

�





�

,
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where the third inequality is from Lemma 4. 2
We can also obtain Corollary 1 by utilizing The-

orem 7 as follows.

‖ f (|A|)‖¶ ‖ f (sec(α)|A11|)‖+ ‖ f (sec(α)|A22|)‖

¶ 2
�



 f
�

secα
2 |A11|

�



+




 f
�

secα
2 |A22|

�





�

.

Note that matrix A is accretive-dissipative if and only
if W (e−π/4A) ⊂ Sπ/4. Let α= π/4 be in Corollary 1,
we obtain

‖ f (|A|)‖¶ 2
�







 f
�p

2
2 |A11|

�








+







 f
�p

2
2 |A22|

�










�

,

which coincides with (3.1) in Ref. 16. If we put α=
π/4 in Theorem 9, then

‖ f (|A|)‖¶ 2







 f
�p

2
2 |A11+A22|

�








 .

We give a refinement of Corollary 1 without the nor-
mality assumption on A in the following theorem.

Theorem 10 Let f : [0,∞)→ [0,∞) be a concave
function, and A∈Mn with W (A) ⊆ Sα for α ∈ [0, π2 ),
and let A be partitioned as in (1). Then

‖ f (|A|)‖¶ 2
�



 f
�

secα
2 |A11|

�



+




 f
�

secα
2 |A22|

�





�

.

Proof : Let A= U |A| be the polar decomposition of A,
and A= R+ iS be the Cartesian decomposition of A
with R, S being partitioned as in (1). Thus by Ref. 4,
there exist unitary matrices U1, V1 such that

R=
�

U1

�

R11 0
0 0

�

U∗1 + V1

�

0 0
0 R22

�

V ∗1

�

,

which gives

|A|¶
secα

2
(R+U∗RU)

=
secα

2

�

U1

�

R11 0
0 0

�

U∗1 + V1

�

0 0
0 R22

�

V ∗1

+U∗U1

�

R11 0
0 0

�

U∗1 U +U∗V1

�

0 0
0 R22

�

V ∗1 U

�

¶
secα

2

�

U1U2

�

|R11 + iS11| 0
0 0

�

U∗2 U∗1

+ V1V2

�

0 0
0 |R22 + iS22|

�

V ∗2 V ∗1

+U∗U1U2

�

|R11 + iS11| 0
0 0

�

U∗2 U∗1 U

+U∗V1V2

�

0 0
0 |R22 + iS22|

�

V ∗2 V ∗1 U

�

=
secα

2

�

U1U2

�

|A11| 0
0 0

�

U∗2 U∗1 + V1V2

�

0 0
0 |A22|

�

V ∗2 V ∗1

+U∗U1U2

�

|A11| 0
0 0

�

U∗2 U∗1 U +U∗V1V2

�

0 0
0 |A22|

�

V ∗2 V ∗1 U

�

= U1U2

� secα
2 |A11| 0

0 0

�

U∗2 U∗1+V1V2

�

0 0
0 secα

2 |A22|

�

V ∗2 V ∗1

+U∗U1U2

� secα
2 |A11| 0

0 0

�

U∗2 U∗1 U

+U∗V1V2

�

0 0
0 secα

2 |A22|

�

V ∗2 V ∗1 U ,

where the first inequality is obtained by the previous
equality1 and the second inequality is obtained by
Lemma 1 with unitary matrices U1, V1, and U2, V2,
respectively.

By (3) and Lemma 3, we have

‖ f (|A|)‖¶












U3U1U2

�

f
�

secα
2 |A11|

�

0
0 0

�

U∗2 U∗1 U∗3

+ V3V1V2

�

0 0
0 f

�

secα
2 |A22|

�

�

V ∗2 V ∗1 V ∗3

+U3U∗U1U2

�

f
�

secα
2 |A11|

�

0
0 0

�

U∗2 U∗1 UU∗3

+ V3U∗V1V2

�

0 0
0 f

�

secα
2 |A22|

�

�

V ∗2 V ∗1 UV ∗3













,

‖ f (|A|)‖¶ 2













�

f
�

secα
2 |A11|

�

0
0 0

�











+2













�

0 0
0 f

�

secα
2 |A22|

�

�











= 2
�



 f
�

secα
2 |A11|

�



+




 f
�

secα
2 |A22|

�





�

,
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in which U3, V3 correspond to the unitary matrices
in Lemma 3. 2

Letting f (t) = t in Theorem 10, we obtain the
following corollary.

Corollary 2 Let A be partitioned as in (2) with
W (A) ⊆ Sα for α ∈ [0, π2 ). If A is normal, then

‖A‖¶ sec(α)‖A11+A22‖ . (6)

Next we shall extend inequality (6) to a higher
number of blocks. First of all, let us introduce some
relevant conceptions.

A matrix A = (Ai j)ni, j=1 ∈ Mn(Mk) is said to
be positive partial transpose (PPT) if A is positive
semidefinite, and its partial transpose Aτ = (A ji)ni, j=1
is also positive semidefinite.

In Ref. 9, Kuai defined a new conception called
sectorial partial transpose (SPT). A matrix A =
(Ai j)ni, j=1 ∈Mn(Mk) is said to be SPT if W (A) ⊆ Sα
and W (Aτ) ⊆ Sα.

Lemma 6 (Ref. 9) If A is SPT, then Re A is PPT.

Lemma 7 (Ref. 19) Let A∈Mn be such that W (A)⊆
Sα. Then

‖A‖¶ sec(α)‖Re A‖.

Lemma 8 (Ref. 14) Let A= (Ai j)ni, j=1 ∈Mn(Mk) be
a PPT matrix. Then

‖A‖¶
















n
∑

i=1

Aii
















.

We note that the following theorem is an extension
of Corollary 2 and Lemma 8 to sector matrices.

Theorem 11 Let A= (Ai j)ni, j=1 ∈Mn(Mk) be an SPT
matrix. Then

‖A‖¶ sec(α)
















n
∑

i=1

Aii
















.

Proof : As A is SPT, we obtain by Lemma 6 that Re A
is PPT. Hence we have

‖A‖¶ sec(α)‖Re A‖ (by Lemma 7)

¶ sec(α)
















n
∑

i=1

Re Aii
















(by Lemma 8)

= sec(α)
















Re

�

n
∑

i=1

Aii

�
















¶ sec(α)
















n
∑

i=1

Aii
















.

2
Next we give our second main result, which proves
the equivalence of some recent Rotfel’d type theo-
rems.

Theorem 12 Let f : [0,∞)→ [0,∞) be a concave
function and A ∈ Mn be partitioned as in (1). The
following statements are equivalent.

(a) If A ∈ Mn be a positive semidefinite matrix,
then10

‖ f (A)‖¶ ‖ f (A11)‖+ ‖ f (A22)‖.

(b) If A+A∗ ¾ 0, then8





 f
�

A+A∗

2

�



¶ ‖ f (|A11|)‖+ ‖ f (|A22|)‖ .

(c) If W (A) ⊆ S′α for α ∈ [0, π2 ), then7

‖ f (|A|)‖¶ ‖ f (|A11|)‖+ ‖ f (|A22|)‖
+ ‖ f (tan(α)|A11|)‖+ ‖ f (tan(α)|A22|)‖ .

(d) If A is normal and W (A) ⊆ Sα for α ∈ [0, π2 ),
then17

‖ f (|A|)‖¶ ‖ f (|A11|)‖+ ‖ f (|A22|)‖
+ ‖ f (tan(α)|A11|)‖+ ‖ f (tan(α)|A22|)‖ .

(e) If W (A) ⊆ Sα for α ∈ [0, π2 ), then19

‖ f (|A|)‖¶ ‖ f (|A11|)‖+ ‖ f (|A22|)‖
+2(‖ f (tan(α)|A11|)‖+ ‖ f (tan(α)|A22|)‖).

(f) If A is normal and W (A) ⊆ Sα for α ∈ [0, π2 ),
then15

‖ f (|A|)‖¶ ‖ f (sec(α)|A11|)‖+‖ f (sec(α)|A22|)‖ .

(g) If W (A) ⊆ Sα for α ∈ [0, π2 ), then6

‖ f (|A|)‖¶




 f (sec2(α)|A11|)




+




 f (sec2(α)|A22|)




 .

Proof : The equivalence from (a)–(e) was shown by
Huang et al8, we thus only need to prove (b)=⇒ (f),
(b)=⇒ (g), (f)=⇒ (a), and (g)=⇒ (a).

(b) =⇒ (f): Consider the Cartesian decomposi-
tion A= R+ iS. It follows from Lemma 5 that

|A|¶ sec(α)R.

Then, by (3) and (b), we have

‖ f (|A|)‖¶ ‖ f (sec(α)R)‖

=













f
�

(sec(α)A)+ (sec(α)A)∗

2

�













¶ ‖ f (sec(α)|A11|)‖+ ‖ f (sec(α)|A22|)‖ .
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(b) =⇒ (g): For the Cartesian decomposition
A = R+ iS, it follows from Ref. 5 that there exists
a unitary matrix U ∈Mn such that

|A|¶ sec2(α)URU∗,

and the rest of the proof is the same as above.
(f) =⇒ (a): For a positive semidefinite matrix

A, we have α = 0 in (f), which implies (a) directly.
Similarly, we obtain (g)=⇒ (a). 2

Apparently, Theorem 12 is an extension of
Huang et al8 (Theorem 3.1).
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