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ABSTRACT: Breast cancer is female most frequent diagnosed cancer and the leading cause of cancer death. The
consumption of dietary flavonoids is reported to cause significant breast cancer risk reduction. In vitro studies often used
aglycone flavonoids rather than its conjugated form that actually present in human body. Thus its mechanism against
breast cancer has not been elucidated completely. The present study aimed to investigate the possible mechanism of
dietary flavonoids against breast cancer by in silico study. Conjugated flavonoids were docked to ER (estrogen receptor),
HER2 (human epidermal growth factor receptor 2) and EGFR (epidermal growth factor receptor) kinase domains.
The molecular docking of 22 flavonoid conjugates towards EGFR and HER2 kinase domain, and ER was successfully
performed. Potential binders to proteins: epicatechin conjugates to ER (−8.7 kcal/mol), isoflavone conjugates to
HER2 kinase domain (−10.7 kcal/mol), and epigallocatechin and epicatechin conjugates to EGFR kinase domain
(−9.2 kcal/mol), were suggested. Supported by other studies, conjugated flavonoids may exert similar inhibitory
and agonistic properties to their parent flavonoids. Taken together, the present study showed possible effects of dietary
flavonoids against various breast cancer subtypes.
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INTRODUCTION

According to GLOBOCAN 2018 database, breast
cancer is female most diagnosed cancer and the
leading cause of cancer death1. Breast cancer is het-
erogenous disease, comprised of various subtypes
observable by the presence of the predictive molec-
ular markers. Breast cancer can be categorized into:
Luminal A (ER+, PR+/–, HER–), Luminal B (ER+,
PR+/–, HER2+), HER2 (ER–, PR–, HER2+), basal like
and claudin low (triple negatives)2. Each has a dif-
ferent prognosis and responds differently to cancer
treatment. Luminal A has the best prognosis, while
HER2+ and triple negative breast cancer (TNBC)
have the poorest3. Today breast cancer endorsed
to be treated with endocrine theraphy, targeted
theraphy, and cytotoxic chemotheraphy4. Breast
cancer with high expression of estrogen receptor

(ER) and progesterone receptor (PR) is sensitive
against endocrine theraphy. ER inhibition treatment
in Luminal A and B breast cancer was proven to
be effective and safe5. While HER2+ breast can-
cer was effectively treated using targeted theraphy
with trastuzumab or lapatinib6. But different from
previous subtypes, triple negative breast cancer is
not responded very well to hormone treatment and
HER2 antibody, and often treated with systemic
chemotherapy. Previous study found that epidermal
growth factor receptor (EGFR) kinase inhibitor, gefi-
tinib, was able to halt the TNBC cell outgrowth in
vitro7. Thus ER, HER2, EGFR served as important
targets in breast cancer treatment. It is also possible
other chemical compounds found in food may also
interacts with these particular proteins. Flavonoid is
the most common phytochemical compound found
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ubiquitously in human diet8, 9 and has huge impact
in human health. In vitro studies showed that
flavonoids have wide range of biological activity
antioxidant, anti-inflammatory, anti-microbial, anti-
fungal, antiviral, and anti-cancer9, 10. Consumption
of flavonoids is related with less risk of cardiovas-
cular diseases and stroke11, 12. Other studies found
that the intake of flavonoids improved the outcome
of the gastric and lung cancer13, 14. Human study on
consumption of food rich in flavonoids, green tea,
against breast cancer showed mixed results. Case
studies has shown green tea intake was correlated
with significant breast cancer risk reduction15–17,
while recent prospective cohort studies showed no
correlation18. Soy products were rich in isoflavone
and high soy intake was modestly associated with
reduced breast cancer risk19.

It is important to note that flavonoid is quickly
metabolized in the body. After ingested, glycoside
flavonoid found in plant materials is subjected to
deglycosylation, releasing aglycone compound that
readily absorbed by the intestine lining20. Once
entered circulatory system, flavonoid is immedi-
ately transported to liver and undergoes extensive
metabolism. Phase metabolism II transformed free
aglycone onto flavonoid conjugates by adding glu-
curonides and sulphate moiety21. Because of this,
aglycone flavonoids are rarely found in plasma. Pre-
vious in vitro studies often used aglycone flavonoids
rather than its conjugated forms that present in
human body. Thus its mechanism against breast
cancer has not been elucidated completely, since
conjugation may affect how the molecules behave.
To address this, conjugated flavonoids found in
plasma after ingesting food rich in flavonoid was
subjected to molecular docking against ER, HER2,
EGFR. The present study describes possible mech-
anism how the dietary flavonoids may contribute
against breast cancer.

MATERIALS AND METHODS

Molecular docking towards EGFR, HER2, and ER

Conjugated flavonoids found in plasma after in-
gesting food rich in flavonoids as previously re-
ported from other studies were used22–24. Struc-
tural data of conjugated flavonoids were retrieved
from PubChem database (Fig. 1) (pubchem.ncbi.
nlm.nih.gov). Co-crystallized structures of ER-
4-hydroxytamoxifen (PDB ID: 3ERT)25, HER2-
SYR127063 (PDB ID: 3PP0)26, and EGFR-gefitinib
(PDB ID: 4WKQ) were obtained from RCSB
database (rcsb.org). Crystal structure data were

Table 1 Predicted binding affinity (kcal/mol) of flavonoid
conjugates and known inhibitors towards ER, HER2, and
EGFR.

Flavonoid conjugate
Binding affinity

ER HER2 EGFR

Gefitinib – – −8.8
SYR127063 – −11.0 –
4-hydroxytamoxifen −9.7 – –
(-)-Epicatechin-3-gallate −8.7 −8.5 −8.6
(-)-Epigallocatechin-3-gallate −7.0 −8.6 −9.2
(-)-Epigallocatechin-7-gallate −7.4 −8.9 −8.0
4’-Methylepicatechin-5-sulfate −7.2 −8.8 −7.7
4’-Methylepicatechin-7-sulfate −7.9 −9.6 −7.2
4’-Methyl-epigallocatechin- −7.9 −9.9 −9.1

3’-glucuronide
4’-Methyl-epigallocatechin- −6.5 −9.0 −8.2

7-glucuronide
Daidzein-4’-sulfate −7.1 −9.4 −8.5
Daidzein-7-sulfate −6.6 −9.2 −8.4
Epicatechin-3’-glucuronide −8.5 −9.5 −9.1
Epicatechin-3’-sulfate −7.7 −9.1 −8.2
Epicatechin-5-sulfate −7.1 −8.6 −8.4
Epicatechin-7-lucuronide −7.5 −9.3 −8.3
Epigallocatechin-3’-glucuronide −7.7 −9.7 −9.1
Epigallocatechin-7-glucuronide −7.2 −8.3 −8.3
Genistein-4’-O-glucuronide −8.3 −10.7 −8.0
Genistein-4’-sulfate −7.3 −9.7 −8.3
Genistein-7-O-glucuronide −6.8 −9.4 −7.7
Genistein-7-sulfate −6.4 −9.1 −8.6
Isorhamnetin-3-O-glucuronide −7.6 −8.3 −8.8
Quercetin-3’-glucuronide −8.7 −8.8 −8.7
Quercetin-3’-sulfate −8.1 −9.5 −8.4

prepared by removing solvent and extracting bound
ligand. AutoDock vina was used in molecular dock-
ing under default settings. The docking methodol-
ogy was validated by redocking the extracted bound
ligand. Chimera was used on visualization in this
study. Intramolecular analysis was performed us-
ing Pose View, available at Protein Plus (proteins.
plus)27.

RESULTS

Molecular docking analysis

Redocking was performed to evaluate software and
docking parameters used. The root mean square
deviation between docked and crystal compounds
was less than 2Å except for EGFR bound ligand
(gefitinib). This is due to the 6-propylmorpholino
moiety of gefitinib sticking out to solvent and able to
move freely28. Thus, AutoDock Vina has favourable
accuracy and proceeds the docking of flavonoid-
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Fig. 1 The 2 dimensional structure of all studied ligands: (1) gefitinib, (2) SYR127063, (3) 4-hydroxytamoxifen,
(4) (-)-epicatechin-3-gallate, (5) (-)-epigallocatechin-3-gallate, (6) (-)-epigallocatechin-7-gallate, (7) 4’-
methylepicatechin-5-sulfate, (8) 4’-methylepicatechin-7-sulfate, (9) 4’-methyl-epigallocatechin-3’-glucuronide,
(10) 4’-methyl-epigallocatechin-7-glucuronide, (11) daidzein-4’-sulfate, (12) daidzein-7-sulfate, (13) epicatechin-
3’-glucuronide, (14) epicatechin-3’-sulfate, (15) epicatechin-5-sulfate, (16) epicatechin-7-glucuronide,
(17) epigallocatechin-3’-glucuronide, (18) epigallocatechin-7-glucuronide, (19) genistein-4’-O-glucuronide,
(20) genistein-4’-sulfate, (21) genistein-7-O-glucuronide, (22) genistein-7-sulfate, (23) isorhamnetin-3-O-glucuronide,
(24) quercetin-3’-glucuronide, (25) quercetin-3’-sulfate.

conjugates. The molecular docking was performed
to assess possible binding conformation of flavonoid
conjugates towards receptors and possible biolog-
ical actions of these compounds. The molecular
docking of 22 flavonoid conjugates towards EGFR
and HER2 kinase domain, and ER was successfully
performed. The predicted binding affinity value of
flavonoid conjugates was compared to each other
and receptor bound ligand (Table 1).

In the present study, based on molecular
docking, epichatehin and quercetin conjugates ((-)-
epicatechin-3-gallate, quercetin-3’-glucuronide,
and epicatechin-3’-glucuronide) were predicted
as a potential binder towards estrogen receptor.
HER2 kinase domain was predicted to interact
strongly towards genistein and epigallocatechin
conjugates (genistein-4’-O-glucuronide, genistein-
4’-sulfate, epigallocatechin-3’-glucuronide,
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Table 2 Hydrogen bond formed by flavonoids conjugates
and known inhibitors towards EGFR, HER2, and ER.

Flavonoid conjugate Receptor Hydrogen bond

4-hydroxytamoxifen

ER

Asp394 Glu353

(-)-Epicatechin-3-gallate Leu346 Thr347 Asp351
Leu387 Glue419 Gly420

Quercetin-3’-glucuronide Asp351 Glu353

SYR127063 HER2 Met801 Asp863
Genistein-4’-O-glucuronide Ser783 Thr798

Gefitinib
EGFR

Met793
(-)-Epigallocatechin-3-
gallate

Glu762 Leu788 Met793
Arg841

Fig. 2 Superimposed binding mode between flavonoid
conjugate and known inhibitor towards ER, HER2, EGFR.
(A) and (B) the binding mode of (-)-epicatechin-3-
gallate (green), quercetin-3’-glucuronide (blue), and 4-
hydroxytamoxifen towards (magenta) ER (light gray).
(C) the binding mode of genistein-4’-O-glucuronide
(green) and SYR127063 (magenta) towards EGFR ki-
nase domain (light gray). (D) the binding mode of
(-)-epigallocatechin-3-gallate (green) and gefitinib (ma-
genta) towards HER2 kinase domain (light gray). The
protein represented as ribbon, the compound as stick,
and heteroatom represented in a different color from the
carbon atom.

and 4’-methyl-epigallocatechin-3’-glucuronide)
compared to other compounds. While several
catechin derivatives ((-)-epigallocatechin-3-
gallate, 4’-methyl-epigallocatechin-3’-glucuronide,
epicatechin-3’-glucuronide, and epigallocatechin-
3’-glucuronide) were predicted with a high affinity
toward EGFR kinase domain as these compounds

surpassed known inhibitor binding score.
Binding mode of the compound with the high-

est predicted binding affinity was visualized and
superimposed with the receptor known inhibitor
(Fig. 2). All compounds were found to occupy the
active site of the protein. (-)-Epigallocatechin-3-
gallate resembled similar binding mode with gefi-
tinib, whereas its core structure aligned with the
quinazoline and aniline moiety. While genistein-4’-
O-glucuronide, (-)-epicatechin-3-gallate, quercetin-
3’-glucuronide only shared small geometrical simi-
larity when compared with the bound ligand. Fur-
thermore, hydrogen bond inferred by Pose View
was compared and presented in (Table 2). Similar
to gefitinib, (-)-epigallocatechin-3-gallate formed
hydrogen bond with Met793. SYR127063 and
genistein-4’-O-glucuronide shared no similar in-
termolecular interaction. Quercetin-3’-glucuronide
had similar interaction with 4-hydroxytamoxifen at
Glu353. (-)-Epicatechin-3-gallate had the most hy-
drogen bond towards ESR1.

DISCUSSION

In present study, predicted binding affinity and
binding mode of conjugated flavonoids present in
plasma after ingestion of dietary flavonoids against
ER, EGFR kinase domain, and HER2 kinase do-
main were characterized in silico. The result shows
that most compounds with predicted high binding
affinity were glucuronide flavonoid conjugates. It
is interesting to point out that the predominant
flavonoid metabolite found in plasma after an hour
ingestion of radiolabelled epicatechin was its glu-
curonide conjugates29. Thus, the potential com-
pounds found in this study were likely exist in
large concentration in plasma after consumption of
dietary flavonoids.

More than 70% diagnosed breast cancer was
the overexpressed ER3. ER plays important role
in development and progression of breast cancer,
since ER drives proliferation of mammary cells upon
binding with estrogenic hormone30. ER+ breast
cancer is sensitive against endocrine therapy and
is effectively treated using selective estrogen recep-
tor modulators such as tamoxifen31. This study
found that (-)-epicatechin-3-gallate was a poten-
tial inhibitor of ER, because of its high predicted
binding affinity and similar binding mode when
compared to active metabolite of tamoxifen (4-
hydroxytamoxifen). Tamoxifen interacts with sev-
eral amino acid residues inside the binding pocket,
including Leu346, Thr347 and Leu387, forming a
van der walls interaction that stabilize the com-
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plex25. Epicatechin conjugates was predicted to
be interacted with similar manner. This finding
confirmed by other studies whereas epicatechin gal-
late was able to hamper ER activity through direct
inhibition32, 33. Quercetin conjugates also have high
predicted binding affinity towards ER. But quercetin
conjugates may act as an agonist rather than an-
tagonist, since previous study found that aglycone
quercetin induced cell proliferation of ER-positive
breast cancer cell line through ER stimulation34.

HER2 is a receptor tyrosine kinase which is over-
expressed in 30% human breast cancer3. HER2+

breast cancer characterized by its aggressive pheno-
type: high tumorigenicity and invaseness35. The
treatment involved is either by targeting the ex-
tracellular domain using trastuzumab or its kinase
domain using lapatinib4, 36. Previous study showed
that flavonoid compounds were able to inhibit hu-
man kinases37. Molecular docking study reported
that genistein-4’-O-glucuronide had predicted bind-
ing affinity close to SYR127063. SYR127063 itself is
a potent HER2 kinase domain inhibitor at IC50 of 11
nM26. From the experimental study, genistein was
able to attenuate HER2 phosphorylation in BT474
cell line through tyrosine kinase inhibition, thus
supported present finding38.

TNBC occurs approximately 10% in breast can-
cer cases3. TNBC is biologically aggressive and
has the poorest prognosis when compared to other
subtypes3. Previous study reported that EGFR is a
potential target for TNBC7. In this work, epigal-
locatechin and epicatechin metabolites had notable
predicted binding affinity towards EGFR kinase do-
main. This finding supported by another study
where epigallocatechin-3-gallate was able to inhibit
EGFR activity39. Inhibition of EGFR by epigallocat-
echin conjugate may also affect HER2 activation,
since both proteins are able to form heterodimeric
complex and activate each other.

CONCLUSION

Binding affinity and binding mode between conju-
gated flavonoids found in plasma against ER, HER2,
EGFR had been characterized in silico. Supported
by other studies, conjugated flavonoids may exert
similar inhibitory and agonistic properties to their
parent flavonoids. Our study thus confirm and offer
possible explanations how dietary flavonoids act
against various breast cancer subtypes.
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