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ABSTRACT: The binding number is a measure of the vulnerability of a graph. We investigate a refinement that involves
the average of this parameter. Like the binding number itself, the average binding number bindav(G) of G measures the
vulnerability of a graph, which is more sensitive. In this study, some bounds of the average binding number of some
special graphs are obtained. Furthermore some results about the average binding number of graphs obtained from
graph operations are also provided.
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INTRODUCTION

One of the most important problems which is solved
by the help of graph theory is to design a network
model whose resistance for the disruptions is more
than other networks. Graphs are often used to
model real world problems such as in a communi-
cation, computer, or spy network. In a network,
the vulnerability parameters measure the resistance
of the network to disruption of operation after the
failure of certain stations or links. Parameters used
to measure the vulnerability of networks include
connectivity4 average lower connectivity1, binding
number13, etc.

Let G be a finite simple graph with vertex set
V (G) and edge set E(G). The neighbourhood of
a vertex u ∈ V (G) is the set N(u) := {v ∈ V (G) |
uv ∈ E(G)}. This is more commonly called the open
neighbourhood of a vertex. The neighbourhood of
a set S ⊆ V (G) is N(S) = ∪u∈SN(u). Let d(u) denote
the degree of the vertex u in G. The maximum
degree of a graph G is the largest vertex degree of G,
denoted ∆(G), and similarly, the minimum vertex
degree is the smallest vertex degree of G, denoted
δ(G). The distance d(u, v) between two vertices u
and v of a finite graph is the minimum length of the
paths connecting them, i.e., the length of a graph
geodesic. The diameter d of a graph is the greatest
distance between any pair of vertices. A minimum
vertex cover is a vertex cover having the smallest
possible number of vertices for a given graph. The
size of a minimum vertex cover of a graph G is
known as the vertex cover number and is denoted

α(G). An independent vertex set of a graph G is a
subset of the vertices such that no two vertices in
the subset represent an edge of G. Given a vertex
cover of a graph, all vertices not in the cover define
a independent vertex set. A maximum independent
vertex set is an independent vertex set containing
the largest possible number of vertices for a given
graph. The independence number of G, denoted
by β(G), is the number of vertices in a maximum
independent set of G. A spanning subgraph of G is
a subgraph that contains every vertex of G.

Aslan1 introduced the concept of average lower
connectivity. For a vertex v of a graph G, the lower
connectivity at v, denoted sv(G), is the smallest
number of vertices in a set that contains v whose
deletion from G produces a disconnected or a trivial
graph. The average lower connectivity denoted
by κav(G), is the value Σv∈V (G)sv(G)/n, where n
denotes the number of vertices in the graph G and
Σv∈V (G)sv(G) denotes the sum over all vertices of G.

Woodall13 defined the binding number of a
graph G as

bind(G) = min
S∈F(G)

§

|N(S)|
|S|

ª

,

where F(G) = {S ⊆ V (G) | S 6= ∅, N(S) 6= V (G)}. A
binding set of G is any set S such that bind(G) =
|N(S)|/|S|.

The study of binding number in graphs is an
important research area, perhaps also the fastest-
growing area within graph theory. The reason for
the steady and rapid growth of this area may be
the diversity of its applications to both theoretical
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Fig. 1 The graph G.

and real world problems. More recently interest
has been rearoused, yielding a succession of results
covering inter alia product graphs7, 11, 12, cliques
and cycles as subgraphs, and the range of possible
values of binding numbers8. Linzhung et al9 have
extended the binding number to the edges and the
studied the edge-binding number of some plane
graph.

The average parameters have been found to
be more useful in some circumstances than the
corresponding measures based on worst-case situ-
ations2, 3, 6, 10. Thus incorporating the concept of
the binding number and the idea of the average
lower connectivity introduces a new graph param-
eter called the average binding number, bindav(G).

For v ∈ V (G), the local binding number of v is

bindv(G) = min
S∈Fv(G)

§

|N(S)|
|S|

ª

,

where Fv(G) = {S ⊆ V (G) | v ∈ S, S 6= ∅, N(S) 6=
V (G)}. Clearly,

bind(G) = min
v∈V (G)

{bindv(G)}.

A local binding set of v in G is S ∈ Fv(G) such that
bindv(G) = |N(S)|/|S|. Furthermore, the average
binding number of G is defined as

bindav(G) =
1
n

∑

v∈V (G)

bindv(G),

where n is the number of vertices in graph G.

Example 1 Consider the graph G in Fig. 1, where
|V (G)| = 5 and |E(G)| = 4. Note that bindv1

= 1
2 ,

bindv2
= 1

2 , bindv3
= 4

4 = 1, bindv4
= 2

3 , and bindv5
=

2
3 . It follows that

bindav(G) =
1
5

�

1
2
+

1
2
+1+

2
3
+

2
3

�

=
2
3

.

G 1 G G2 3

Fig. 2 The graphs G1, G2 and G3.

Fig. 3 The graphs G4 and G5.

The following examples show that the average
binding number is more efficient than the con-
nectivity, the average lower connectivity, and the
binding number in measuring the vulnerability of
some graphs.

Example 2 It is easy to see that connectivity of a
star K1,4 and a path P5 are equal,

κ(K1,4) = κ(P5) = 1.

however, the average binding number of a star K1,4
and a path P5 are different,

bindav(K1,4) = 1, bindav(P5) =
14
15

.

Example 3 Let G1, G2, and G3 be the graphs in
Fig. 2. It is easy to see that the connectivity and
binding number of G1, G2, and G3 are equal;

κ(G1) = κ(G2) = κ(G3) = 1,

bind(G1) = bind(G2) = bind(G3) =
1
2

.

However, the average binding number of G1, G2,
and G3 are different,

bindav(G1) =
3
5

, bindav(G2) =
81
120

, bindav(G3) =
2
3

.

Example 4 Let G4 and G5 be the graphs in Fig. 3. It
is easy to check that the average lower connectivity
of G4 and G5 are equal,

κav(G4) = κav(G5) =
3
2

.

However, the average binding number of G1 and G2
are different,

bindav(G4) =
2
3

, bindav(G5) = 1.
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BOUNDS FOR AVERAGE BINDING NUMBER

In this study, some bounds of the average bind-
ing number are obtained for some special graphs.
Furthermore some results of the average binding
number of graphs generated by graph operations
are also given. The related theorems of the average
binding number and other graph parameters are
provided as the followings.

Theorem 1 If G is a graph of order n with the
minimum degree δ(G), then

bindav(G)¾
δ(G)

n−δ(G)
.

Proof : Let v ∈ V (G) and Sv be a local binding set at
v. Certainly |N(Sv)| ¾ d(v) ¾ δ(G). Since N(Sv) 6=
V (G), Sv omit all the neighbours of some vertex w,
and |Sv |¶ n− d(w)¶ n−δ(G). Thus

bindv(G) =
|N(Sv)|
|Sv |

¾
δ(G)

n−δ(G)
.

Hence

bindav(G) =
1
n

∑

v∈V (G)

bindv(G)¾
δ(G)

n−δ(G)
.

2

Theorem 2 If G is a graph of order n with covering
number α(G) and independence number β(G), then

bindav(G)¶
α(G) (β(G)+ n−1)

nβ(G)
.

Proof : Let v ∈ V (G) and M be a maximum indepen-
dent set of G.

If v ∈ V (M), then there is a local binding set
Sv ∈ Fv(G) that contains all vertices in the maxi-
mum independent set of G, and |Sv | = β(G). Then
|N(Sv)|= α(G) and bindv(G) = α(G)/β(G).

If v /∈ V (M), then for S ∈ Fv(G), |S| ¾ β(G)
and |N(S)| ¶ n−1. Thus bindv(G) ¶ (n−1)/β(G).
Hence

bindav(G)¶
β(G)

�

α(G)
β(G)

�

+α(G)
�

n−1
β(G)

�

n

=
α(G) (β(G)+ n−1)

nβ(G)
.

2

Theorem 3 If G is a graph of order n with the
minimum degree δ(G) and maximum degree ∆(G),
then

bindav(G)¾
δ(G)
∆(G)+1

.

Proof : Let v ∈ V (G). For Sv ∈ Fv(G), |Sv |¶∆(G)+1
and |N(Sv)|¾ δ(G), hence

bindv(G) = min
Sv∈Fv(G)

|N(Sv)|
|Sv |

¾
δ(G)
∆(G)+1

.

Thus

bindav(G) =
1
n

∑

v∈V (G)

bindv(G)¾
δ(G)
∆(G)+1

.

2
Theorem 3 implies that bindav(T ) ¾ 1/(∆(T ) + 1)
for a tree T .

Theorem 4 If H is a spanning subgraph of G, then

bindav(H)¶ bindav(G).

Proof : Let v ∈ V (G)∩ V (H) with a local binding set
S∗v ∈ Fv(G) of G. Let denote NG(S∗v) = N(S∗v)∩V (G)
and NH(S∗v) = N(S∗v)∩V (H). Then NH(S∗v)⊆ NG(S∗v)
and

bindv(H)¶
|NH(S∗v)|
|S∗v |

¶
|NG(S∗v)|
|S∗v |

= bindv(G).

Thus by the definition, bindav(H)¶ bindav(G). 2

Theorem 5 If G is a graph of order n, then

bind(G)¶ bindav(G).

Proof : From the definitions it is clear that for v ∈
V (G), bind(G)¶ bindv(G). Thus

bind(G)¶
1
n

∑

v∈V (G)

bindv(G) = bindav(G).

2

AVERAGE BINDING NUMBER OF CLASSES OF
GRAPHS

Theorem 6 If Pn is a path of order n¾ 3, then

bindav(Pn) =

¨

1, n even,
2n2−5n+3

2n2−4n , n odd.

Proof : Let v ∈ V (Pn) and Sv ∈ Fv(Pn).
Case 1: n is even. Since |N(Sv)| ¾ |Sv | with the

equality holds when Sv is a maximum independent
set of Pn, therefore, bindv(Pn) = 1 for all v, which
implies bindav(Pn) = 1.

Case 2: n is odd. Let the vertices of Pn be
p1, p2, . . . , pn in order along the path. There is a
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maximum independent set that gives the unique
independence number β(Pn) =

1
2 (n+1).

For any v in the maximum independent set con-
taining 1

2 (n+ 1) vertices, the bindv(Pn) is obtained
when |Sv |= β(Pn) =

1
2 (n+1) and |N(Sv)|=

1
2 (n−1).

Thus bindv(Pn) = (n−1)/(n+1).
For any v not in a maximum independent set

of 1
2 (n− 1) vertices, to obtain bindv(Pn) we require

Sv as large as possible without N(Sv) being the
whole of V (Pn), i.e., |Sv | = n− 2, for example, Sv =
{p3, p4, . . . , pn}). Thus bindv(Pn) = (n−1)/(n−2).

Hence, by the definition

bindav(Pn) =
1
n

�

(n+1)(n−1)
2(n+1)

+
(n−1)(n−1)

2(n−2)

�

=
2n2−5n+3

2n2−4n
.

2

Theorem 7 If Cn is a cycle of order n¾ 4, then

bindav(Cn) =

¨

1, n even,
n−1
n−2 , n odd.

Proof : Let v ∈ V (Cn) and Sv ∈ Fv(Cn).
Case 1: n is even. For all v ∈ V (Cn), if |Sv | = r

then |N(Sv)| ¾ r, therefore, bindv(Cn) ¾ 1. Since
there is a local binding set S∗v of Cn such that |S∗v |=
1
2 n, when S∗v is a maximum independent set of Cn,
and |N(S∗v)| =

1
2 n. Hence bindv(Cn) = 1, for v ∈

V (Cn), and therefore, bindav(Cn) = 1
Case 2: n is odd. For |Sv | = r, then r ¶

n − δ(Cn) = n − 2 and |N(Sv)| ¾ r + 1. Thus
|N(Sv)|/|Sv | ¾ (r + 1)/r. is a decreasing function
of r that has the minimum value when r = n− 2.
Hence bindv(Cn) ¾ (n− 1)/(n− 2). Since there is
a binding set S∗v of Cn such that |S∗v | = n − 2 and
|N(Sv)| = n− 1, thus bindv(Cn) = (n− 1)/(n− 2),
and therefore, bindav(Cn) = (n−1)/(n−2). 2

Theorem 8 If Kn is a complete graph of order n¾ 2,
then bindav(Kn) = n−1.

Proof : Let v ∈ V (Kn) and Sv ∈ Fv(Kn). If |Sv | ¾ 2,
then N(Sv) = V (Kn), which contradicts with Sv ∈
Fv(Kn). Thus |Sv | = 1 and |N(Sv)| = n− 1. Hence
bindv(Kn) = n−1 for all v ∈ V (Kn) and bindav(Kn) =
n−1. 2

Theorem 9 If Ka,b is a complete bipartite graph of
order a+ b with 1¶ a ¶ b, then

bindav(Ka,b) = 1.

Proof : Let V (Ka,b) = V (G1) ∪ V (G2) be the vertex
set of Ka,b, where the set V (G1) contains a vertices
having degree b and the set V (G2) contains b ver-
tices having degree a. For v ∈ V (Ka,b) and Sv ∈
Fv(V (Ka,b)), if |Sv ∩V (G1)| 6= 0 and |Sv ∩V (G2)| 6= 0
then N(Sv) = V (Ka,b), a contradiction. This im-
plies that Sv ⊆ V (G1) to have N(Sv) = V (G2), or
Sv ⊆ V (G2) to have N(Sv) = V (G1). Since for a
vertices of v ∈ V (G1), |Sv |¶ a and |N(Sv)|= b, i.e.,
bindv(Ka,b) = b/a, and for b vertices of v ∈ V (G2),
|Sv | ¶ b and |N(Sv)| = a, i.e., bindv(Ka,b) = a/b.
Therefore,

bindav(Ka,b) =
1

a+ b

�

a
b
a
+ b

a
b

�

= 1.

2

Corollary 1 If K1,n is a star graph, then

bindav(K1,n) = 1.

GRAPH OPERATIONS

This section provides some results of the average
binding number of graphs obtained from graph
operators.

Power of a graph

Definition 1 [Ref. 5] The kth power, Gk, of a con-
nected graph G is the graph with V (Gk) = V (G) for
which uv ∈ E(Gk) if 1¶ d(u, v)¶ k.

Theorem 10 If G is a graph of order n and diameter
d, then

bindav(G)¶ bindav(G
2)¶ · · ·¶ bindav(G

d) = n−1.

Proof : Since for positive integer i, G i is a subgraph
of G i+1, it follows from Theorem 4 that

bindav(G)¶ bindav(G
2)¶ · · ·¶ bindav(G

d).

Since G is connected with diameter d, then Gd is a
complete graph, thus bindav(Gd) = n−1. 2

Join of graphs

Definition 2 [Ref. 5] The join G1+G2 of graphs G1
and G2 with disjoint vertex sets V (G1) and V (G2) is
the graph consists of G1, G2, and all edges joining
V (G1) and V (G2).

For a join graph G+H, it is easy to see that
∑

v∈V (G+H)

bindv(G+H) =
∑

v∈V (G)

bindv(G+H)

+
∑

v∈V (H)

bindv(G+H).
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Theorem 11 Let G and H be two connected graphs
of order m and n, respectively. Then

bindav(G+H)¾
m · bind(G)+ n · bind(H)

m+ n
.

Proof : Let v ∈ V (G + H) and Sv ∈ Fv(G + H). Let
denote NG(Sv) = N(Sv)∩V (G) and NH(Sv) = N(Sv)∩
V (H). Since every vertex of G is connected to all
vertices of H, and vice versa, then N(Sv) = NG(Sv)∪
V (H) or N(Sv) = NH(Sv) ∪ V (G). Since N(Sv) 6=
V (G+H), v ∈ V (G) implies Sv ⊆ V (G), or v ∈ V (H)
implies Sv ⊆ V (H).

For v ∈ V (G), let A∗v be its local binding set in G.
Since Sv ⊆ V (G), Sv ∈ Fv(G+H)∩ Fv(G), thus

|N(Sv)|
|Sv |

=
|NG(Sv)|+ |V (H)|

|Sv |
¾
|NG(A∗v)|
|A∗v |

+
|V (H)|
|Sv |

,

|N(Sv)|
|Sv |

= bindv(G)+
|V (H)|
|Sv |
¾ bind(G). (1)

Similarly, for v ∈ V (H),

|N(Sv)|
|Sv |

¾ bind(H). (2)

Hence by (1) and (2),

bindav(G + H) ¾
m · bind(G)+ n · bind(H)

m+ n
.

2

Lemma 1 Let G and H be two connected graphs. If
v ∈ V (G) or v ∈ V (H) and Sv is local binding set of
G+H, then Sv is either a local binding set of G or H.

Proof : Suppose that v ∈ V (G). Let NG(Sv) = N(Sv)∩
V (G). Since all vertices of G is connected to all
vertices of H, N(Sv) = NG(Sv)∪V (H), which implies
that Sv ⊂ V (G). Hence Sv is a local binding set of G.
Similarly, if v ∈ V (H), then Sv is a local binding set
of H. 2

Theorem 12 Let m and n be positive integers. Then

bindav(Km+ Pn)

=

¨

m+1, n even,
2n2m+2m2n+2n2−4m2−3mn−5n−m+3

2n2+2mn−4m−4n , n odd.

Proof : Let v ∈ V (Km+ Pn) and Sv ∈ Fv(Km+ Pn). By
Lemma 1, if Sv∩V (Km) 6=∅ and Sv∩V (Pn) 6=∅, then
N(Sv) = V (Km + Pn), a contradiction. Hence either
Sv ⊆ V (Km) or Sv ⊆ V (Pn).

If v ∈ V (Km), then |Sv | = 1 otherwise N(Sv) =
V (Km+ Pn). Thus bindv(Km+ Pn) = (m+ n−1) and

∑

v∈V (Km)

bindv(Km+ Pn) = m(m−1+ n).

If v ∈ V (Pn), we consider two cases.
Case 1: n is even. There is a local binding set

Sv of Pn such that |Sv | = n/2, when Sv contains all
vertices in a maximum independent set of Pn. Then
|N(Sv)|=m+n/2 and bindv(Km+Pn) = (n+2m)/n.
Thus

∑

v∈V (Pn)

bindv(Km+ Pn) = n
�

n+2m
n

�

= n+2m.

Hence

bindav(Km+ Pn) =
m(m−1+ n)+ n+2m

m+ n

=
(m+1)(m+ n)

m+ n
= m+1.

Case 2: n is odd. If v is in a maximum inde-
pendent set of Pn, then there is a local binding set
Sv ⊂ V (Pn) such that |Sv | = β(Pn) = (n+ 1)/2 and
|N(Sv)| = m + (n − 1)/2. Thus bindv(Km + Pn) =
(2m+ n− 1)/(n+ 1) for these (n+ 1)/2 vertices v
in a maximum independent set of Pn.

If v is not in a maximum independent set of
Pn. To obtain bindv(Pn), we require Sv as large as
possible that N(Sv) 6= V (Pn), when |Sv |= n−2, e.g.,
Sv = {p3, p4, . . . , pn}, and |N(Sv)|= n−1+m. Thus
bindv(Km+Pn) = (n−1+m)/(n−2) for these 1

2 (n−1)
vertices. Therefore

∑

v∈V (Pn)

bindv(Km+ Pn)

=
n+1

2

�

2m+ n−1
n+1

�

+
n−1

2

�

n−1+m
n−2

�

=
2n2+3mn−5n−5m+3

2n−4
.

This implies that

∑

v∈V (Km+Pn)

bindv(Km+ Pn)

= m(m−1+ n)+
2n2+3mn−5n−5m+3

2n−4

=
2n2m+2m2n+2n2−4m2−3mn−5n−m+3

2n−4
.
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Hence

bindav(Km+ Pn) =

∑

v∈V (Km+Pn)
bindv(Km+ Pn)

m+ n

=
2n2m+2m2n+2n2−4m2−3mn−5n−m+3

2n2+2mn−4m−4n
.

The proof is completed. 2

Theorem 13 Let m and n be positive integers. Then

bindav(Km+ Cn)

=

¨

m+1, n even,
n2m+m2n−2m2+n2−2mn+2m−n

n2+mn−2m−2n , n odd.

Proof : Let G = Km + Cn, v ∈ V (G), and Sv ∈ Fv(G).
If Sv∩V (Km) 6=∅ and Sv∩V (Cn) 6=∅, then N(Sv) =
V (G), a contradiction. Thus Sv ⊆ V (Km) or Sv ⊆
V (Cn).

If v ∈ V (Km), then |Sv |= 1, |N(Sv)|= m−1+n,
and bindv(G) = m−1+ n. Thus

∑

v∈V (Km)

bindv(G) = m(m−1+ n).

If v ∈ V (Cn), we consider two cases.
Case 1: n is even. In this case there is a local

binding set S∗v of Cn and also G such that |S∗v |= n/2
and |N(S∗v)|=m+n/2. Thus bindv(G) = (n+2m)/n,
and

∑

v∈V (Cn)

bindv(G) = n
�

n+2m
n

�

= n+2m.

Hence

bindav(G) =
m(m−1+ n)+ (n+2m)

m+ n
= m+1.

Case 2: n is odd. In this case there is a local
binding set S∗v of Cn and also G such that |S∗v |= n−2,
|N(S∗v)|= n−1+m, and bindv(G) = (n−1+m)/(n−
2). Thus

∑

v∈V (Cn)

bindv(G) = n
�

n−1+m
n−2

�

=
n2− n+mn

n−2

and

∑

v∈V (G)

bindv(G) = m(m−1+ n)+
n2− n+mn

n−2

=
n2m+m2n−2m2+ n2−2mn+2m− n

n−2
.

Consequently,

bindav(G)

=
n2m+m2n−2m2+ n2−2mn+2m− n

(m+ n)(n−2)

=
n2m+m2n−2m2+ n2−2mn+2m− n

n2+mn−2m−2n
.

The proof is completed. 2

Corollary 2 If Wn is a wheel graph order n+1, n¾ 4,
then

bindav(Wn) =

¨

2, n even,
2n2−2n
n2−n−2 , n odd.

Proof : Since Wn = K1 + Cn, Theorem 13 gives
bindav(Wn) = bindav(K1+ Cn) and the proof is com-
pleted. 2

Corona of graphs

Definition 3 [Ref. 5] The corona G ◦ H of two
graphs G and H is the graph obtained by taking one
copy of G of order n and n copies Hi of H, and then
joining the ith vertex of G to every vertex of Hi .

Theorem 14 Let G and H be two connected graphs
of order m and n, respectively, and A∗ a binding set of
H. Then

bindav(G ◦H)¾
(m−1)(n+1)+ |N(A∗)|+1
(m−1)(n+1)+ |A∗|

.

Proof : Let Sv ∈ Fv(G ◦ H). For v ∈ V (H), let
Av denote a local binding set of H and note
that |N(A∗)|/|A∗| ¶ |N(Av)|/|Av |, i.e., bind(H) ¶
bindv(H). Assume |A∗|= a.

If v ∈ V (G) or v ∈ A∗ then

|Sv |= (m−1)n+m−1+ |A∗|= (m−1)(n+1)+ |A∗|,
|N(Sv)|= (m−1)(n+1)+ |N(A∗)|+1.

If v ∈ V (H) and v /∈ A∗ then

|Sv |= (m−1)n+m−1+ |Av |= (m−1)(n+1)+ |Av |
|N(Sv)|= (m−1)(n+1)+ |N(Av)|+1.

It is easy to see that

(m−1)(n+1)+ |N(A∗)|+1
(m−1)(n+1)+ |A∗|

¶
(m−1)(n+1)+ |N(Av)|+1
(m−1)(n+1)+ |Av |

.
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So we have
∑

v∈V (G◦H)

bindv(G ◦H)

= ((m−1)(n+1)+ a)
(m−1)(n+1)+ |N(A∗)|+1
(m−1)(n+1)+ |A∗|

+(n− a)
(m−1)(n+1)+ |N(Av)|+1
(m−1)(n+1)+ |Av |

¾ (mn+m)×
(m−1)(n+1)+ |N(A∗)|+1
(m−1)(n+1)+ |A∗|

.

Thus

bindav(G ◦H) =
1

mn+m

∑

v∈V (G◦H)

bindv(G ◦H)

¾
(m−1)(n+1)+ |N(A∗)|+1
(m−1)(n+1)+ |A∗|

.

2
The lower bound in Theorem 14 is the best possible
for some graphs as in Corollary 3 and 4.

Corollary 3 Let G be a connected graph of order m.
Then

bindav(G ◦ Kn) =
(m−1)(n+1)+ n
(m−1)(n+1)+1

.

Corollary 4 Let G be a connected graph of order m.
If n is even, then

bindav(G ◦ Pn) =
(m−1)(n+1)+ n

2 +1

(m−1)(n+1)+ n
2

,

bindav(G ◦ Cn) =
(m−1)(n+1)+ n

2 +1

(m−1)(n+1)+ n
2

.

Cartesian product of graphs

Definition 4 [Ref. 5] The Cartesian product G1×G2
of graphs G1 and G2 has the vertex set V (G1) ×
V (G2), where (u1, u2) is adjacent to (v1, v2) if either
u1 = v1 and u2 is adjacent to v2 or u2 = v2 and u1 is
adjacent to v1.

Theorem 15 (Ref. 11) For graphs G and H, if
bind(G)¾ 1, then bind(G×H)¾ 1.

Theorem 16 For graphs G and H, if bind(G) ¾ 1,
then bindav(G×H)¾ 1.

Proof : By Theorem 15, if bind(G) ¾ 1, then
bind(G × H) ¾ 1. It follows from Theorem 5 that
bindav(G×H)¾ bind(G×H)¾ 1. 2

The lower bound in Theorem 16 is the best
possible for come graphs as in Corollary 5.

Corollary 5 Let m and n be even integers. Then
(i) bindav(Pm× Pn) = 1.
(ii) bindav(Pm× Cn) = 1.
(iii) bindav(Cm× Cn) = 1.

CONCLUSIONS

In this study, a new graph theoretical parameter,
namely, the average binding number, as the aver-
age of the local binding number of every vertex
of a graph, has been presented for the network
vulnerability. Additionally, the stability of popular
interconnection networks has been studied and the
average binding numbers have been computed. The
average binding number gives the meaning that, if
bindav(G) is large, then the vertices of G are well
bound together in the sense that G has a lot of fairly
well distributed edges.
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