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ABSTRACT: This paper is concerned with a nonlinear complementarity problem, the related functions of which
are locally Lipschitzian. As is well known, the nonlinear complementarity problem is reformulated as a system of
nonsmooth equations based on complementarity functions, and Levenberg-Marquardt methods are often used to solve
it. However, an element of the nonlinear complementarity functions’ B-differential is required in these methods, which
is always difficult or time consuming to obtain for a locally Lipschitzian function. By introducing a new subdifferential,
rather than the B-differential of the nonlinear complementarity function, a modified Levenberg-Marquardt method is
presented, and the local behaviour of this method under the local error bound condition, which is less strong than
nonsingular, is shown. Finally, the numerical tests illustrate the effectiveness of the given algorithm.
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INTRODUCTION

The general nonlinear complementarity problem

F(x)¾ 0, Z(x)¾ 0, F(x)T Z(x) = 0, (1)

where F :Rn→Rn and Z :Rn→Rn, is to find a solu-
tion x ∈Rn which satisfies (1). It plays an important
role in the study of the nonlinear programming
problems, the variational inequality, equilibrium
problems, engineering mechanics and so on. In
what follows, we denote F(x) = ( f1(x), . . ., fn(x)),
Z(x) = (z1(x), . . ., zn(x)) for convenience.

There has been extensive research on the non-
linear complementarity problems, especially for the
case that F(x) and Z(x) in (1) are smooth1–7.
Others8–13 have considered the case that F(x) is
locally Lipschitzian and z(x) = x . In Refs. 8–10 they
transformed (1) into an unconstrained optimiza-
tion and then solved it by nonsmooth optimization
methods. In Refs. 11–13 they reformulated (1) as a
nonsmooth equation and solved it by Newton-type
methods. As far as we know, the case that the two
functions F(x) and Z(x) are locally Lipschitzian and
may be both nonsmooth has only been studied in
Ref. 14.

As is well known, the problem (1) is equivalent

to the nonsmooth equation

G(x) := (ϕ( f1(x), z1(x)), . . .,ϕ( fn(x), zn(x))) = 0,
(2)

where ϕ : R2 → R is a nonlinear complementarity
function, such as ϕmin(a, b) = min{a, b} 15, or the
Fischer-Burmeister function ϕFB(a, b) =

p
a2+ b2−

a− b 16. Newton-type methods are popular ones to
solve it. However, at least one nonsingular element
in the subdifferential of G in the Newton method
and an available element in the B-subdifferential
of G in the Levenberg-Marquardt methods are re-
quired at each iteration point, which are difficult
or time consuming to obtain for locally Lipschitzian
functions. With these in mind, by introducing
another subdifferential of G, rather than the B-
subdifferential, we propose a modified Levenberg-
Marquardt method and focus on its local behaviour
under the local error bound, which is less strong
than nonsingular. The problem we consider here is
the case that the two functions F(x) and Z(x) are
locally Lipschitzian.

PRELIMINARIES

In this section, we recall some basic concepts and
propositions in nonsmooth analysis, and give a brief
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review of the Levenberg-Marquardt method.
In nonsmooth analysis, there are various gener-

alized differentials with different forms such as the
B-differential17, the Clarke generalized Jacobian18,
and the C-differential19. Let H :Rn→Rm be locally
Lipschitzian at x ∈Rn and let ΩG be a set where H is
differentiable. The B-differential of H at x is defined
by

∂BH(x) = {lim JH(x ′) : x ′→ x , x ′ ∈ ΩH},

where J denotes the Jacobian. The Clarke general-
ized Jacobian of H at x is defined by

∂ClH(x) = conv∂BH(x),

where conv denotes the convex hull. The C-
subdifferential of H at x is defined by

∂CH(x) = ∂ClH1(x)× · · · × ∂ClHm(x),

where Hi is the ith component of H.
The function H : Rn → R is said to be sub-

differentially regular at x if it is locally Lipschitz
continuous at x and for all d ∈ Rn, the classical
directional derivative H ′(x; d) exists and

H ′(x; d) = Ho(x; d),

where Ho(x; d) is the generalized derivative.
Let Hi : Rn→ R be locally Lipschitz continuous

and subdifferentially regular at x for all i = 1, . . . , m.
Then the function

H(x) :=min{Hi(x) : i = 1, . . ., m}

is also subdifferentially regular at x and

∂ClH(x) = conv{∂ClHi(x) : i ∈ I(x)},

where

I(x) := {i ∈ {1, . . ., m} : Hi(x) = H(x)}.

Let H : Rn → Rm be locally Lipschitzian at x ∈
Rn. It is semismooth if the following limit exists:

lim
V∈∂ClH(x+td ′)

d ′→d, t→0+

V d ′.

The class of semismooth functions is very broad
and includes many functions, such as smooth func-
tions, convex functions, and maximum functions. In
addition, the sums, differences and composites of
semismooth functions are also semismooth.

Let H : Rn → Rm be locally Lipschitzian and
semismooth at x ∈ Rn.

(i) There exists V ∈ ∂ClH(x) such that

H ′(x; d) = V d.

(ii) H(x +h)−H(x)−H ′(x; d) = o(‖h‖).
In what follows, we take ϕ(a, b) =min{a, b} in

(2). The Levenberg-Marquardt (LM) method20, 21

is a classical and popular approach for solving non-
linear equations. It is used to solve the nonsmooth
equations as follows22, 23

xk+1 = xk − (ξT
kξk +λk I)−1ξT

k G(xk),

where ξk := ξ(xk) ∈ ∂BG(xk),λk > 0 is called the
LM parameter. Let

Φ(x) = 1
2‖G(x)‖

2,

Φ(x) is semismooth when F(x) and Z(x) are semis-
mooth.

ALGORITHM AND CONVERGENCE ANALYSIS

In this section, we present a modified LM method
and show its local convergence result under local
error bound.

As mentioned in Refs. 22, 23, the LM method
can be used to solve (2) directly. Since it is necessary
to calculate an element in the B-differential of G or
ϕ at each iteration, which is difficult or time con-
suming in general, inspired by a new subdifferential
proposed by Gao24, we set a set-valued mapping
x → V (x) from Rn→ 2m×n as follows:

V (x) = V1(x)× · · · × Vn(x), (3)

where

Vi(x) =

¨

∂B fi(x), i ∈ α(x)∪β(x),
∂Bzi(x), i ∈ γ(x),

(4)

and α(x) = {i : fi(x) < zi(x)}, β(x) = {i : fi(x) =
zi(x)}, γ(x) = {i : fi(x)> zi(x)}.

Evidently, V (x) defined above can be calculated
by determining the index sets α(x), β(x), γ(x), and
evaluating one element in the B-differential of fi(x)
or zi(x). In particular, if fi(x) or zi(x) is smooth, we
can take Vi(x) in (4) correspondingly as follows:

Vi(x) =

¨

∇ fi(x), i ∈ α(x)∪β(x),
∂Bzi(x), i ∈ γ(x),

or

Vi(x) =

¨

∂B fi(x), i ∈ α(x)∪β(x),
∇zi(x), i ∈ γ(x).
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However, it should be mentioned that V may be
not the B-differential of G and not even upper-
semismooth as a set-valued mapping. In what
follows, we take the differential V as a tool instead
of the B-differential of G.

Let the LM parameter λk = µk‖G(xk)‖2, where
µk is adjusted by the trust region technology. We
now present the LM method for solving (2) as
follows:

xk+1 = xk − (ξT
kξk +λk I)−1ξT

k G(xk), (5)

where ξk ∈ V (xk).

Algorithm 1
Step 1: Give an initial point x0 ∈ Rn and parame-

ters ε > 0,µ0 > 0, 0 < m < 1,0 < M <∞, k :=
0.

Step 2: If ‖G(xk)‖¶ ε, stop.
Step 3: Set λk = µk‖G(xk)‖2. Solve the following

nonlinear equations to obtain dk,

(ξT
kξk +λk I)dk = −ξT

k G(xk),

where ξk ∈ V (xk).
Step 4: Compute rk = A/P, where

A := Φ(xk + dk)−Φ(xk),

P := G(xk)
Tξkdk +

1
2 dT

k ξ
T
kξkdk.

Step 5: Update the parameter µk using

µk+1 =







min{4µk, M}, rk < 0.25,

µk, rk ∈ [0.25,0.75],
max{0.25µk, m}, rk > 0.75.

(6)
Step 6: Set xk+1 = xk+dk, k := k+1. Go to Step 2.

Remark 1 The trust region strategy for the param-
eter µk is useful in Algorithm 1 as it can improve
the numerical results. On the other hand, the lower
bound m and the upper bound M is necessary in the
next convergence analysis.

Remark 2 Actually, we can replace λk =
µk‖G(xk)‖2 by λk = µk‖G(xk)‖

δk in Algorithm 1 to
improve the numerical results25, where

δk =

¨

1
‖G(xk)‖

, ‖G(xk)‖¾ 1,

1+ 1
k , otherwise.

In what follows, we investigate the local con-
vergence of the given algorithm under the local
error bound condition. We define the following
assumptions.

(A1) The solution set X of problem 2 is nonempty.
(A2) The functions fi(x) and zi(x) are semismooth

and regular.
(A3) ‖G‖ provides a local error bound on some

neighbourhood of x∗ ∈ X . That is, there exist
constants r > 0, c > 0 such that

‖G(x)‖¾ c ·dist(x , X ), ∀x ∈ N(x∗, r).

Lemma 1 Let A2 hold. Then, there exist constants
c1 > 0, p > 0 such that

G(x)−G(x ′)−ξ(x − x ′)¶ c1‖x − x ′‖1+p,

for any x , x ′ ∈ Rn, where ξ ∈ V (x).

Proof : Denote gi(x) = min{ fi(x), zi(x)}. We start
by proving V (x) ⊆ ∂CG(x). Actually, since A2 holds
and

∂CG(x) = Ṽ1(x)× . . .. . .× Ṽn(x),

where

Ṽi(x) =







∂B fi(x), i ∈ α(x),
conv{∂B fi(x),∂Bzi(x)}, i ∈ β(x),
∂Bzi(x), i ∈ γ(x),

(7)

there is Vi(x) ⊆ Ṽi(x) ⊆ ∂Cl gi(x). Hence V (x) ⊆
∂CG(x) holds clearly.

For i = 1, . . . , n, there exists a constant pi ¾ 0
such that

gi(x)− gi(x
′)−ξ′i(x − x ′) = O(‖x − x ′‖1+pi ),

where ξ′i = Vi(x) ⊆ ∂Cl gi(x). Hence one has that

G(x)−G(x ′)−ξ(x − x ′) = O(‖x − x ′‖1+p), (8)

where ξ = (ξ′1, . . .,ξ′n) ∈ V (x), p = min{p1, . . ., pn}
which implies the statement. 2

Lemma 2 Let A1, A2, and A3 hold. If {xk} is gen-
erated by Algorithm 1 then dist(xk, X ) = ‖xk − x̄k‖,
where x̄k ∈ X . Then, we have

‖dk‖¶ O(‖xk − x̄k‖α),

where α=min{p, 1}.

Proof : Let dk be the optimal solution of the problem
as follows:

min
d∈Rn

q(d) = ‖G(xk)+ξkd‖2+λk‖d‖2, ∀ξk ∈ V (xk).

(9)
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We obtain

‖dk‖2 ¶
1
λk

q(dk)¶
1
λk

q( x̄k − xk)

=
‖G(xk)+ξk( x̄k − xk)‖2

λk
+ ‖ x̄k − xk‖2.

Then, from (6) and (8),

‖dk‖2 ¶
c2(1+p)

1 ‖ x̄k − xk‖2(1+p)

µk‖G(xk)‖2
+ ‖ x̄k − xk‖2

¶ m−1c−1c2(1+p)
1 ‖ x̄k − xk‖2(1+p)−2

+ ‖ x̄k − xk‖2,

which implies the statement. 2

Theorem 1 Let A1, A2, and A3 hold. If x∗ is a solu-
tion of the problem (2), the iteration (5) generates the
sequence {xk} converging to x∗ with the convergence
order q, where q = p2(1+ p) when p < 1, and q = 2
when p ¾ 1. In particular, if fi(x) and zi(x) are
strongly semismooth, the sequence {xk} converges to
x∗ quadratically.

Proof : Let dist(xk, X ) = ‖xk− x̄k‖. Since G is locally
Lipschitzian, there exists a constant L > 0 such that

‖G(xk)‖¶ L‖xk − x̄k‖. (10)

According to A1 and Lemma 1,

c‖xk+1− x̄k+1‖
¶ ‖G(xk+1)‖

¶ ‖G(xk)+ξkdk‖+O(‖dk‖1+p)

¶ ‖G(xk)+ξkdk‖+ L1‖dk‖1+p,

where L1 > 0 is a constant, ξk ∈ V (x). From (8) and
(9),

‖G(xk)+ξkdk‖2

¶ ‖G(xk)+ξk( x̄k − xk)‖2+λk‖ x̄k − xk‖2

= ‖G(xk)−G( x̄k)−ξk(xk − x̄k)‖2

+µk‖G(xk)‖2‖xk − x̄k‖2

¶ c2
1‖xk − x̄k‖2(1+p)+M L2‖xk − x̄k‖4,

which means that, for k large enough,

‖G(xk)+ξkdk‖¶
�

c1+
p

M L
�

‖xk − x̄k‖β ,

where β =min{1+p, 2}. Hence, for k large enough,

‖xk+1− x̄k+1‖¶ O(‖xk − x̄k‖γ), (11)

Table 1 Numerical results for Example 1.

Initial point G(xk) k CPU (s)
1
2 9.6927×10−13 3 0.95
3
4 7.0541×10−9 3 1.03
1 6.2892×10−20 4 1.02
3
2 4.6613×10−12 4 1.05
5
2 5.5108×10−18 5 1.03

where γ=min{β ,α(1+ p)}, i.e.,

γ=

¨

p(1+ p), p < 1,

2, p ¾ 1.

On the other hand, it is clear that

‖ x̄k − xk‖¶ ‖ x̄k+1− xk+1‖+ ‖dk‖.

The above inequality and Lemma 2 imply that, for k
large enough,

‖ x̄k − xk‖¶ 2‖dk‖. (12)

Hence, from (11), (12), and Lemma 2,

‖dk+1‖¶ O(‖dk‖q),

where

q = αγ=

¨

p2(1+ p), p < 1,

2, p ¾ 1,

which implies the statement.
In particular, if fi(x) and zi(x) are strongly

semismooth, which means that p ¾ 1, the sequence
{xk} converges to x∗ quadratically. 2

NUMERICAL TESTS

In this section, we present some numerical results
to show the performance of the LM method. We
coded the algorithm in MATLAB R2010A, and set the
parameters µ0 = 1, m= 1.0×10−6, M = 1.0×1012.
The stop criteria is ‖G(x)‖¶ 1.0×10−6.

Example 1 Consider the nonsmooth nonlinear
complementarity problem (1), where

F(x) =max{x−2,2x−5}, Z(x) =max{x , 1
2 x− 3

4}.

There are two exact solutions, namely, 0 and 2.

Example 2 Consider the nonsmooth nonlinear
complementarity problem (1), where

F(x) =

�

|2x1−1|
|4x2+ x1−

1
2 |

�

,

Z(x) =

�

max{x1, x1−6}
max{x2, x2−

1
2 x2

2}

�

.

There are three exact solutions: ( 1
2 , 0), (0, 1

8 ), (0, 0).
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Table 2 Numerical results for Example 2.

Initial point G(xk) k CPU (s)

(0, 1
6 ) (0,0.2285)×10−7 2 0.82

(0,1) (0,0.6289)×10−19 4 0.92
( 1

2 , 1
2 ) (0, 0.9693)×10−12 3 0.89

(1, 1
2 ) (0.7696,0)×10−19 6 0.90

(1,1) (0.9631, 0.0028)×10−16 5 1.00

Table 3 Numerical results for Example 3.

Initial point G(xk) k CPU (s)

(1, 1,0, 0) (0.1786,−0.0595,
−0.0888, 0)×10−14 5 1.35

(1, 0,0, 1) (0.0368,−0.0976,
0.2928, −0.0235)×10−9 3 1.26

(0, 1,2, 1) (0.4858,0.4778,
−0.1430, −0.0884)×10−12 4 1.61

(2, 0,1, 0) (0.0702,−0.0890,
0.2675, 0.1780)×10−12 4 2.35

(2, 1,1, 0) (0.1067,−0.1284,
0.4100, 0.2692)×10−10 4 1.38

Example 3 Consider the nonsmooth nonlinear
complementarity problem (1), where

F(x) =







|2x1− x2+3x3+2x4−6|
3x1−3x2+3x3+2x4−5
3x1− x2+3x3+2x4−3
3x1− x2+3x3− x4−4






,

Z(x) = (x1, x2, x3, x4). The exact solutions of this
problem are (1,1, 1,1), ( 7

4 , 0, 0, 5
4 ), (0, 0, 11

5 , 13
5 ),

(3, 0,0, 0).

Example 4 Consider the nonsmooth nonlinear
complementarity problem (1), where

F(x) = ( f1(x), f2(x), f3(x), f4(x)),

Z(x) = (x1, x2, x3, x4)with fi(x) =
∑3

j=1 max{−x j−
x j+1,−x j− x j+1+(x2

j + x2
j+1−1)}, i = 1, 2, 3, 4. The

exact solution of this problem is (0,0, 0,0).

Table 4 Numerical results for Example 4.

Initial point G(xk) k CPU (s)

( 1
2 , 0, 0, 0) (0.9693,0, 0,0)×10−12 3 2.00
( 1

2 , 1, 0, 0) (0.0740, 0.1480, 0,0)×10−16 4 2.34
( 1

2 , 0, 0, 1
2 ) (0.1488,0, 0,0.1488)×10−8 3 2.02

(0,0, 0,1) (0, 0,0,0.6289)×10−19 4 2.30
(1, 1

2 , 0, 1) (0.3108,0.1554, 0.3108,0)×10−11 4 2.35

Table 5 Numerical results for Example 5.

Dim Initial point G(xk) k CPU (s)

4 (1,0, 0,0) (0.9854, 0,
0, 0)×10−6 10 1.79

(1,0, 1,0) (0.4737, 0,
0.4737, 0)×10−6 19 3.88

5 (1, 1
2 , 0, 0, 0) (0.3154, 0,

0, 0, 0)×10−6 11 1.92
( 1

2 , 0, 1
2 , 0, 0) (0.3004, 0,

0.3004, 0, 0)×10−6 13 3.14
( 1

2 , 0, 0, 1, 0) (0,0,
0, 0.3154, 0)×10−6 11 1.74

10 ( 1
2 , 0, . . ., 1

2 , 1) (0,0,
. . ., 0.3806)×10−6 11 2.35

(1,0, . . ., 1
2 , 1) (0.5289, 0,

. . ., 0.5289)×10−6 19 5.52
(1, 1

2 , 0, . . ., 1
2 , 1) (0.5864, 0,

. . ., 0.5864, 0)×10−6 20 4.97

Example 5 Consider the nonsmooth nonlinear
complementarity problem (1), where

F(x) = ( f1(x), . . ., fm(x)), Z(x) = (x1, . . ., xm)

with fi(x) = max{x2
1 , . . ., x2

m}, i = 1, . . . , m. The
exact solution of this problem is (0, . . ., 0).

CONCLUSIONS

In this paper, a Levenberg-Marquardt method is pre-
sented and its local behaviour is shown for general
nonlinear nonsmooth complementarity problem. In
each iteration of this method, an element of the
B-differential of the nonsmooth function fi(x) or
zi(x), rather than the B-differential of G is needed,
which is always difficult or time consuming to obtain
in most cases. Since the nonlinear complementarity
problems here includes many types, such that the
smooth cases and the convex cases, the correspond-
ing local convergence rate is obtained based on the
present subdifferential.
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