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ABSTRACT: In this paper, we investigate the superconvergence of nonlinear elliptic optimal control problems by using
triangular mixed finite element methods. The state and the co-state are approximated by the lowest order Raviart-

Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We obtain the
superconvergence of O(h%?) for the control variable and coupled state variable. Numerical results demonstrating these

superconvergence results are also presented.
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INTRODUCTION

Optimal control problems play increasingly impor-
tant role in multi-disciplinary applications such as
engineering design, fluid mechanics, physical, bio-
logical, medicine, finance, and social-economic sys-
tems. There are various numerical methods to solve
these complex problems. Among these numerical
methods, finite element methods for state equations
have many applications. Papers devoted to linear-
quadratic optimal control problems include those
by Falk! and Geveci?. The authors studied the
numerical approximation of distributed nonlinear
optimal control problems with pointwise constraints
on the control®. Meyer and Rosch* analysed finite
element discretization of the dimensional (2-d) el-
liptic optimal control problem. These approxima-
tions have convergence of order h%. A posteriori er-
ror estimates for distributed convex optimal control
problems and nonlinear optimal control problems
have been obtained > °.

Compared with standard finite element meth-
ods, mixed finite element methods have many ad-
vantages. In many control problems, the objective
functional contains the gradient of the state vari-
ables. Thus the accuracy of the gradient is important
in the numerical discretization of the coupled state

equations. Mixed finite element methods are ap-
propriate for the state equations in such cases since
both the scalar variable and its flux variable can be
approximated to the same accuracy by using such
methods.

Recently, we obtained a priori error estimates
and a posteriori error estimates of mixed finite
element methods for linear and nonlinear opti-
mal control problems’™. Then we used the post-
processing projection operator to prove a quadratic
superconvergence of the control for linear elliptic
optimal control problem by a mixed finite element
method 1012,

We are concerned with the 2-d nonlinear elliptic
optimal control problem

.1 2,1 2, @ 2
min {3 Ip—pall*+ 3 Iy —yall* + 5 I’} 1)

subject to the state equations

divp+¢(y)=u, p=—AVy, x€Q, (2
with the boundary condition
y=0, x€dqQ, 3)

where Q is a rectangular domain, p4 and y,4 are two
known functions, p and y are state variables, u is a
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control variable, and v > 0 is a constant. We denote
the set of admissible controls by U,4, where

Ug={uel?Q):u>0ae.inQ}.

Let us state the assumptions on the operator A
and the functional ¢: (Al) the coefficient matrix
function A(x) = (a;;(x)) is symmetric with a;;(x) €
WL°°(Q), which satisfies the ellipticity condition
CJER < Xl a0 < FIER VE, x) € RExT,
c,,c* > 0; (A2) ¢ is of class C? with respect to
the variable y, for any R > 0 the function ¢(-) €
W2 (—R,R), ¢'(y) € L2(Q) forany y € H'(Q2), and
¢'(y)=A1>0.

Lemma 1 (Ref. 13) For every function g € LP(Q)
(p = 1), the solution y of

—div(AVy)+¢(y)=gin Q, ylsq =0,

belongs to Hé(ﬂ) NW?2P(Q). Moreover, there exists a
positive constant C such that

||}’||w2,p(n) <C ”gHLP(Q)-

Next, we introduce the co-state elliptic equa-
tions

divg+¢'(¥)z=y—y4, a=—A(Vz+p—pg), (4

with boundary condition z = 0, x € Q. The
existence of a unique solution of (2) and (4) is
justified by Lemma 1. Furthermore, we make the
following realistic assumption (A3): u € WH°(Q),
v,z € H3(Q).

MIXED METHODS FOR OPTIMAL CONTROL
PROBLEM

We shall construct a discretized scheme for the
nonlinear optimal control problem (1)-(3) by using
mixed finite element methods and give its equiva-
lent optimality conditions.

Let W = L2(Q),

V=H(div; Q) = {ve L?(Q)?, divv e L2(Q)}.

The Hilbert space V is equipped with the following
norm: [[vllg, = IVlluacey = (V1P + [IdivvlP)/2. A
weak formulation of the optimal control problem
(1)-(3) is to find (p, y,u) € Vx W x U,y such that

- f1 2,1 2 %2

min {3 Ip—pall*+ 3 Iy —yall* + 5 I’} (5)
Vvev, (6
Ywew, ()

At p,v)—(y,divv) =0,
(divp,w)+ (¢ (y), w) = (u,w),
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where the inner product in L2(Q2) or (L2())? is
denoted by (-, -). It is well known!* that the convex
control problem (5)-(7) has a solution (p*, y*,u*),
and that if a triplet (p*,y*,u*) € Vx W x U is
the solution of (5)-(7), then there exists a co-state
(q*,2*) € Vx W such that (p*, y*, q", z*, u*) satisfies
the following optimality conditions:

(A p*,v)—(y*,divv) =0, 8
(divp",w) + (¢ (¥y"), w) = (u*, w), )
(A7'q",v)—(z",divv) = —(p* —pg,v),  (10)
(divg",w)+(¢'(y")z*, w) = (¥y" —yq,w), (A1)
(z*+au*,i—u*) =0, (12)

whereveV,we W and il € Uy.

We now introduce the discretized problem by
considering a family of triangulations J, of . With
each element T; € ;,, we associate two parameters
p(T;) and o(T;), where p(T;) denotes the diameter
of the set T; and o (T;) is the diameter of the largest
ball contained in T;. The mesh size of the grid is
defined by h = maxr.c, p(T;). We suppose that
the following regularity assumptions are satisfied.
There exist two positive constants g, and p, such
that (p(T;)/o(T;)) < 1, (h/p(T:)) < g, hold for all
T, € J, and all h > 0.

Let V,, x W, € V x W denote the lowest or-
der Raviart-Thomas mixed finite element space'®,
namely,

V,={veV:VT, € J,vl;, € PZ(T)+x-Py(T)},
Wy ={weW :VT; € Z,wly, € Py(T))},
where Py(T;) indicates a constant on T;. To ap-

proximate the control, we use the following cone of
nonnegative piecewise constant functions:
Uy={i €U, : ily, =constant, V T;€Z}.

Then we introduce the following Raviart-Thomas

projection '6:

Hhxph:VXW—>VhXWh,

which has the following properties.
(i) P, is the local L%() projection.
(ii) II, and P, satisfy

divoell;, = P, odiv. (13)
Using property (i) and (13), we can obtain

(div(v—TI,v),wy) = 0, wy € Wy,

(divvy,, w—P,w) =0, v, €V},
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(iii) The following approximate properties hold!”:

lv—"11,vlly, < Ch" IVl , 1 <r<k+1,
(14
ldiv(v—TI,v)||_, < Ch"*" ||divv]],,  (15)
os<rt<k+1, (16)
lw—Pwll_,, <Ch""|lwll,,, (17)
osnt<k+1, (18)

where |||, denotes the norm of the usual
Sobolev space W™ (£2) for 1 < p < 400 and
r=0.
The mixed finite element approximation of (5)-(7)
is to find (py, ¥, up) € Vi, X Wy, x Uy, such that

min 3 {[[py —Pall* + lyn — yall®* + allusl’}  (19)
ueu,

(20)
(21)

(A7'py, Vi) — (yp, divvy) =0,
(divpp, wi) + (D (4), wi) = (up, wy),

where v, € V, and wy, € Wj,.

The optimal control problem (19)-(21) again
has a solution (p;,y;,u;), and that if a triplet
Py, y;>up;) € Vi x Wy, x Uy, is the solution of (19)-
(21), then there is a co-state (qj,z;) € V, x Wy
such that (p;,y;,q;,2;,u;) satisfies the following
discretized optimality conditions:

(A_lp}*l,vh) —(y;,divv,) =0, (22)
(divpy, wp) + (¢ (y;), wp) = (w, wp), (23)
(A7'q;,vy)— (3, divvy) = —(p; —pa, Vi), (24

(divay, wy) + (@' (y)z wi) = (V5 — Ya W), (25)
(2, + auyp,ti, —uy) >0, (26)

where v, €V, wy, € W), and i, € Uj,.

We now shall use some intermediate variables.
For any control function & € U,4, we define the state
solution (p*(@1), y*(i1), q*(@1),z*(i1)) associated with
i which satisfies

A'p*(@),v)— (y*(@),divv) =0,  (27)
(divp*(@), w) + (¢ (y* (@), w) = (&L, w),  (28)
(A7'q* (@), v) — (z*(@), divv)
=—(p*(@) — pa, V), (29)
(divq* (@), w) + (¢’ (y*(@))z* (i), w)
= (y* (@) —yq, W), (30)

where veVand w € W. We define the discrete state
solution (p; (i), y; (@), q;(i1),2;(i)) corresponding
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to it which satisfies

(A'p; (@), vi) — (y; (@), divvy) = 0, (31
(divpy (@), wy) + (¢ (v, (@), wp) = (@, wy),  (32)
(A q; (@), vi,) — (2 (), divvy,)
= —(p;(@) — P4, Vi), (33)
(div q; (@), wp,) + (¢’ (v (@))z;; (@), w,)
= (y, (@) — y4,wp), (34)

where v, € V,, and w, € W,,. With these definitions,
the exact state solution and its approximation can
be written as

Py q%2") = (P (), y* (), q"(u),z" ("),
(Pr> Yo U 2) = (P (), vy (), @ (), 2, ().
For ¢ € W, we shall write '

P(P)— () =—¢"(¢)p— )
=—¢'(p)p— )+ " (¢)p— )2,

where ¢/(p) = [, ¢'(¢ + t(p — ©))dt, $"(9) =
fol(l —t)¢”(p+t(¢—p))dt are bounded functions
in Q.

(35)

SUPERCONVERGENCE

Firstly, we can obtain the following technical re-
sults1?:

Lemma 2 Suppose (A1) hold. Let y € C*(2), w €V,
¢ € L*(Q)?%, and +p € L?(Q). If T € W, satisfies

(A w,v)— (7, divvy) = (¢, vp),
(divew,wp) + (yT, wp) = (Y, wy),

Vvh EVh,
V Wh GWh,

then there exists a constant C such that

lizllo < C(Rllello +h* Idiv wllo + [l llo + 1% llo ),
(36)
for h sufficiently small.

For any ii € U, let
&y :=p (@) —py(@), e :=y"(@)—y, (@)

To analyse the intermediate errors, let us first note
the following error equations from (22)-(23) and
(27)-(28):

(A_lel,vh) —(eq,divvy,) =0,
(divey, wy) + (@' (y*(@))ey, wy) =0,

where v, €V, and wy, € W,,.
By using Lemma 2, we can establish the follow-
ing error estimates:

(37)
(38)
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Lemma 3 Suppose that assumptions (A1-3) are ful-
filled. Let y*(ii) and y;(ii) be the solutions of (27)-
(30) and (31)-(34), respectively. If the intermediate
solutions satisfy p*(ii) € [H2()]% y*(i) € H*(Q)
then we have

|yr@—y*@| +|

Lemma 4 Suppose that assumptions (A1-3) are ful-
filled.  Let z*(ii) and z;(ii) be the solutions of
(27)-(30) and (31)-(34), respectively. If the in-
termediate solutions satisfy p*(it), q*(ii) € [H*(2)]?,
y*(i1), 2*(i1) € H*(Q) then

7, (i) — 2 (10) || + || @} (@) — q* (@) 5, < CH*.

Lemma 5 Suppose that assumptions (Al-3) are
valid. Let Pyu* be the local L?(2) projection of
the exact control u* and z*(P,u*) and z*(u*) be the
solutions of (27)-(30) with @i = Pyu* and i = u¥,
respectively. Then we have

P (@ —p (@], < CH*.
(39)

ll2*(Pyu*) —2* (")l < Ch. (40)

Let (p*(u*), y*(u*)) and (p}(u}), y; (u})) be the
solutions of (8)-(12) and (22)-(26), respectively.
Let J(-) : U — R be a G-differential convex func-
tional with the following form:

a
J@) = Ip" = pall*+ 3 " —yall?+ 5 |
It can be shown that

(J'W*),v) = (z* + au*,v),

'(W)),v) = (2" (up) + au;, v).

In many applications, J(-) is uniform convex near
the solution u* (see Ref. 5). Then there is a ¢ > 0,
independent of h, such that

@) = ), u —u) > c | 2 @D

* *
u uh

where u* and u,’fl are the solutions of (12) and

(26), respectively. The convexity of J(-) is closely

related to the second order sufficient conditions of

the optimal control problem, which are assumed in

many studies on numerical methods of the problem.
Let

Q+ = {UTI . Tl EQ, u*|Ti > 0},
Q% ={UT;: T,€Q, u*l; =0},
Q" =0\ (QtuQ).

We will assume that u* and J, are regular such that
|2P| < Ch. We are now able to obtain our first main
result.
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Theorem 1 Suppose that assumptions (A1-3) are
satisfied. Let Pyu* be the local L?(2) projection of the
exact control u* and u;‘1 be the solution of (22)—(26).

Then we have the estimate
(| P — || < cR?2, (42)

Proof: Let v=uj in (12) and v, = P,u* in (26). We
have

Adding the two inequalities gives
(z; + auy —2" —au™, Pyu™ —uy)
+ (2" + au*, Pou* —u*) = 0.
So we obtain

a(Pyu* —uy, Pyu* —uy)
= a(u* —uy, Pyu* —uy)

< (g —2", Py —uy)

+(z* + au*, P,u* —u*). (43)
Clearly,
(2 — 2", Ppu* —up) = (2 —2"(u}), Pyu* —uy)
+ (2" (uy) — 2" (Pyu”), Pyu™ —uy)
+ (" (Pu) — 2" (u"), Pu* —uy).  (44)
Then
a(Pyu* —uy, Ppu™ —uy)
— (" () — =" (Ppu), Ppu” — )
< (27 —2"(wp), Pou™ —uy)
+ (2" (Ppu™) — 2" (u"), Pu* —u;)
+ (2" + au*, Pyu* —u*)
=E, +Ey+Es. (45)

Now we find bounds for the E;. From Lemma 4, we
have

Ey = (2, —2"(u}), Ppu" —uy)

<C|z == @ - [P =]
< Ch? || Py —uj| - (46)
From (40),
Ey = (" (Ppu") —2"(u"), Piu* —up)
< Cllz*(Pu) —2* ()| - || Paw” — s
< Ch? ||Phu*—uZH. 47)
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Finally,

E; = (z* + au®, Pyu* —u®)

f (z* + au*, P,u* —u*)dx
Q+

+ | (" +au*, Ppu* —u*)dx
Qo0

+ j (z* + au*, P,u* —u*)dx. (48)
Qb

From the definition of Q° we note that (P,u* —
u*)|qo = 0. It is clear that

f (z*+au*, P,u* —u*)dx = 0. (49)
QO

From (12), we have pointwise a.e. 2"+ au* =
0. We choose iilg+ = 0 and {i|g o+ = u* so that
(z* + au*,u*)|g+ < 0. Hence (z*+ au*)|q: = 0. Let
n°u* be the integral operator such that mu*|;, =
le_ u*/ f T 1. It follows from the definition of ¢ that

(2" + au*, P,u* —u*)

= (" +au*, Pyu* —u)gp

<
< CR?|lz* + au*{|y oo lluly oo

< CR? ||2* + au*||1 oo lu*]l1 00 - {Qb|
< Che. (50)

Then it follows from assumption (41), (45)-(50),
and the Schwartz inequality that

c |y —u*|l3
< (V' (Ppu®)—J'(up), Pou* —u*)
= a(Pyu* —uy, Pu* —uy)
—(z"(up) — 2" (Pyu™), Ppu* —uy)
< Ch? + CR? || P —uj|

< CH +6 ||Pu —uz || 1)

The estimate (42) follows from taking 6 = %c. O
Next, we establish the following superconver-
gence result for state and co-state.

Theorem 2 Suppose that assumptions (A1-3) are
satisfied. Let (p*,y*,q*, 2%, u*) € (VxW)?xU,q be the
solutions defined in (8)-(12) and (PZ’ y;:, q;‘l, z;, u;fl) IS
(V, x W,,)? x U, be the solutions of (22)-(26). Then

we have
h2, (52)

(53)

HHhP*_PZ daiv T “Phy"—y;[

<cC
Imtea” =i s, + [Pr=” —=il| < €

h3/2.
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Proof: It follows from (8)-(12) and (22)-(26) that
we have the error equations:

A (p* —p;), Vi) — (v — ¥4, divv,) =0,
(div(p* —p;)s wi) + (@' (I — ¥ wi)
= (u* —up, wy),
(AN(q" —q)), V) — (2" — =, divy)
=—(P"— Py, Va)s
(div(q* —qp), wp) + (' (y) (=" —2;), wy)
=" =y w) — (@ I — ¥z wh),

for all v, € V, and wj, € W,,. By using the definitions
of projections I, and Py, the above equations can
be rewritten as

(A (I0,p* —p}), vi)) — (Phy* — vy, divvy)

= ¢1(vp), (54)
(div(IT,p" —py), wr)

+(@' Oy = y)wi) = Y1(wy),  (55)
(AN (I, q* —q}), vy)

—(Ppz" — 25, divvy) = ¢o(vy), (56)
(div(IT,q" —qj), w)

+(@')(Puz" —z), wp) =o(wy),  (57)

for all v, € V,, and w;, € W,,, where

¢1(vy) =—(A'(p* —TI,p"), V),
Pr(wy) = @ —uj, wy) — (@' (" =Py ™) wh),
$2(vi) =—(p* —p;, Vi) — (A" (q" —T1,q"), v3),
Po(wy) = (v =y, wn) — (' (y )" —Pyz*), wy)
— (") =¥z, wh).

since the terms ¢, (vy,), Y1 (W), d2(v), Yo (wy,) can
be regarded as linear functionals of v, and wy
defined on V, and W, respectively. Then we know
from the stability result!®2° that

Tp" = B3 g, + [Py =i

sy 10

Vi E€Vy ”Vh”div

[Ttha* = |, + [|Prz* ==
|2 (vi)l

<o {sp 251,
V4EV), ”Vh”div wpEW,

I%(Wh)l}

wpEW, [lwhll

llwall

www.scienceasia.org
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It is easy to see that

(P* —p;, Vi) = (p* —11,p", V)

+ (IT,p* — Py, Vi), (58)
O =ypwn) = (" —Pyy*,wy)
+(Pry" =¥y, wi)
= (Phy™ — ¥, Wh)- (59)

By the standard superconvergence of mixed finite
element methods?'?%, we have

(@' I —Poy™ ), wi) < CR* |1y "l Il

(60)

(¢'(y)z* —Pyz*), wy) < Ch* [|2* | llwi
(61)

(") —Puy )z, wh) < Ch2 1y [l Wil
(62)

Here we only give the proof of (60). By using the
definition of the local L?(£2) projection P,, we obtain

P(@ Y NG* —Pry™) wi)

=(y* =Py P('(y*))wy) =0. (63)

Then

(@' (I —Puy™), wp)
= (@' ") = Pu(@' Y IM* = Pry™), wy)
< Chll¢lly00 ly* —Pry*Il lwyl]
<

Ch* ||y *Ilgaay lIwall - (64)

Under the condition y*, z* € H3(Q), applying the
integral identity technique?*, we see that

(A7 (P —T1,p"), Vi) < CR* |y *llgsey IVl (65)
(A7N(q" —T1,q%), V) < CR? ||zl ooy IVl (66)
(p* — 11", i) < CR [y *llsqey IVall . (67)

By adding (54) and (55) to v, = I1;,p* —p;“l and
wy, = Ppy* —y;, we have

(A7 (Typ* —p}), TIyp* —p})
+(' P =Y Py —y7)
=W —u, Py —y,)
— ('O =Py Py — ;)
— (A7 (p* —T1,p*), TIyp* — p}).

www.scienceasia.org
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Table 1 The errors of Example 1 on sequential uniform
refined meshes.

resolution [l —u;l| (| Pyu* —up ||
16 x 16 1.133x 107! 2.112x 1072
32 x32 5.668 x 1072 7.168 x 1073
64 x 64 2.834 x 1072 2.138 x 1072
128 x 128 1.417 x 1072 6.948 x 1074

Using the assumption of A(x), ¢ and Holder’s in-
equality, for any small 6 > 0, we obtain

2+7LHPhy*—y;f 2

I,p* —p;,
< (A7 Y(Typ* —p}), ,p* —p})

+(' P =Y Py —y7)
=W —uw, Py —y;)
—(' I =Py ) Py =)
— (A7 (p* ~11,p"), T1,p* —p;)

c*

<l —wl| - |Poy* ~;
+ 1@l 00 17" —Poy* Il || Py — ¥i|
+C|lp* — ;" - | 11,p* — P}

<|jw =]l |Poy* —;

+CR2 ||y ey - ||Pry™ — ¥1|

+ Ch2 |y ls(ey - | Tp* — P |
<cht+Clur—u||”

+5(|Py* =yl + e —p; .

The formula is equivalent to

[0p* =P || + [|Poy* — yi]| < ch?+C|

u* —u,’fl” .
Note that
(U —up, wy) = (U — Pyu’, wy) + (P —uy, wy,).

It is easy to see that (u* — P,u*,wy) = 0. By using
Theorem 1, we clearly see that

(Pt — s, wy) < || Py’ — g || - 1w
<

CR32 |lwyl.
From the above analysis, we can obtain (52) and
(53). O
NUMERICAL EXAMPLES

We present two examples to test the supercon-
vergence results of the control. The optimiza-
tion problems were solved numerical by projected
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Fig. 2 Convergence orders of u* —uj and P,u* —uj.

gradient methods, with codes developed based on
AFEPACK?. The control function u is discretized by
piecewise constant functions, where the state (y, p)
and the co-state (z,q) were approximated by the
lowest order Raviart-Thomas mixed finite element
functions. In the two examples, we choose the
domain 2 =[0,1] x[0,1].

Example 1 We consider the two-dimensional non-
linear elliptic optimal control problem

L1 2 2 2
min 3 {|[p—pall” + lly — yall” + llull”}
u€eU,y

subject to the state equation
x €N,

divp+y]=u+f, p=—Vy,

with the boundary condition y = 0, x € 9%, and
the admissible set U,q = {u € L2(€2) : u > 0}. Next,
we introduce the co-state elliptic equation divq +

219

Table 2 The errors of Example 2 on sequential uniform
refined meshes.

resolution [l —u;l| (| Pyu* —up ||
16 x 16 1.189 x 1073 2.621 x 1074
32 x32 5.843 x107* 8.932x107°
64 x 64 2.891 x 107* 3.129 x 107°
128 x 128 1.438 x107* 1.109 x 107°

3y%2 =y —y4, q=—(Vz+p—py), x € Q, with the
boundary condition z = 0, x € Q2. We choose

u = max(0,—z),
f=8n’y+y’—u,
ya=(1-1671%)y —3y%z,
y =sin(27x;)sin(27x,),
2z = 2sin(27mx; ) sin(27x,),
p = —2m(cos 27, sin 27X, COS 27X, SIN 27X 1),
q = —mt(cos 27x; sin 27tx5, cOS 27X, Sin 277X ),

Pq = m(cos2mx; sin 27x,, cos 27X, sin 277 ).

In the numerical implementation, the profile of the
numerical solution is shown in Fig. 1 and the errors
|lu* —uy || and ||P,u* —uj|| obtained on a sequence of
uniformly refined meshes are presented in Table 1.
The convergence orders on triangle mesh grids are
depicted in Fig. 2. It is clear that ||P,u* —u;|| has a
superconvergence of O(h*/?).

Example 2 We consider the following nonlinear op-
timal control problem:

min 3{|lp—pall* + ly — yall* + llull*},
u€lUyy
divp+y’ =u+f, p=—Vy, x€Q,
y=0, xe€9qQ,
and we introduce co-state elliptic equation divq +
7y%2 =y —yq4, a=—(Vz+p—pyq), x € Q, with the
boundary condition z = 0, x € dQ2. We choose that
f=divp+y’ —u,
ya=y—divq—7y%, q=-Vz—p+pq,
¥ =2x1x5(1—x3)(1—x3)*sin(87x;),
2= —x1x2(1 x3)(1 x,)? sin(87mx;),
P= _v}’:

u = max(—z,0),

Pa=pP+q+Vz.

The profile of the numerical solution is pre-
sented in Fig. 3. The superconvergence behaviour
of ||Pyu* —uy || is illustrated in Table 2 and Fig. 4.
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Fig. 3 The profile of the numerical solution of Example 2.

- -uu

c—#— P U-u.

Iogm(Errors)

‘N
-5 i i i i i i i i * i
2.6 2.8 3 3.2 34 3.6 3.8 4 4.2 4.4
Iogm(DOF)

Fig. 4 Convergence orders of u* —uj and P,u* —uj.

From the numerical results of the examples, the
superconvergence phenomenon can be observed
clearly.
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