Flavonoid profile and antioxidant activity of pink guava

Khalid Hamid Musaa,*, Aminah Abdullaha, Vimala Subramaniamb

a School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
b Medicinal Plant Program, Biotechnology Division, Forest Research Institute Malaysia (FRIM), Kepong, Selangor, Malaysia

*Corresponding author, e-mail: khalid.hamid@ukm.edu.my

Received 26 Jan 2015
Accepted 23 Mar 2015

ABSTRACT: This article determines ascorbic acid, total phenolic content and the antioxidant capacity of whole fruit, flesh, and skin fractions of two varieties of pink guava widely produced in Malaysia (semenyih and sungkai). They were analysed and specific flavonoid compounds (apigenin, isorhamnetin, kaempferol, luteolin, myricetin, and quercetin) were determined. Ascorbic acid, total phenolic content and antioxidant capacity was found to be higher in semenyih than in sungkai, mainly in the skin fraction. The predominant flavonoid in all pink guava fractions was kaempferol, with sungkai flesh having the highest kaempferol content. The pink guava represents an important source of antioxidant flavonoid compounds that may have health benefits.

KEYWORDS: Psidium guajava, variety, DPPH, FRAP

INTRODUCTION

Several studies to determine the relationship between fruits and health have found that eating five or more servings of fruit and vegetables daily might reduce the chance of disease incidence1,2. Since fruits and vegetables provide a mixture of phytochemicals, a hypothesis on the role of antioxidants in protective against chronic diseases has been proposed3.

Guava (Psidium guajava) is one of the most important commercial fruit crop in tropical and subtropical countries and claims superiority over different fruits by virtue of its commercial and nutritional values. Guava is considered a common man’s fruit and is called the ‘apple of the tropics’4. Guava, like many other fruits and vegetables, is rich in antioxidant compounds such as polyphenols5, ascorbic acid6, and carotenoids7. The chemical composition of the fruits depends on factors such as variety, maturity and the environmental conditions within which they are grown8,9.

The objective of this study was to report the antioxidant activities of two varieties of Malaysian pink guava. Selected flavonoid compounds were quantified (apigenin, isorhamnetin, kaempferol, luteolin, myricetin, and quercetin). Various functions and actions such as antioxidants and anticarcinogens have been attributed to flavonoid compounds, making determination of their concentrations in food highly desirable.

MATERIALS AND METHODS

Samples

Two varieties of Malaysian pink guava namely sungkai and semenyih were collected from Perak State, Malaysia. Samples were transferred in ice on the same date to the Food Analysis Laboratory, University Kebangsaan Malaysia. The estimated time of transportation was about 4 h. For the purposes of this study approximately 20 fruits pooled sample portion (taken from a 60 sample lot) were used on the same day.

Physicochemical properties

Fruit weight and seed weight were measured using digital balance (SK-5001, A&D, Japan). The flesh weight was computed by subtracting seed weight from fruit weight. The fruit volume was determined by water displacement (ml) and specific gravity was calculated by dividing the weight of the fruit by the volume of the fruit. To determine the titratable acidity (TTA), samples were crushed and blended in a Waring blender (USA). Ten ml of blended samples were diluted with 50 ml of water before titrated with 0.1 N NaOH and calculated as percent citric acid. Blended undiluted sample was used to measure the total soluble solids, results were expressed as Brix using Abbe refractometer at 20 °C and the pH was determined using a pH meter from the undiluted samples. Lycopene was extracted using a mixture
of acetone, ethanol, and hexane. For L. ascorbic acid determination, 1 g was extracted with 25 ml 1% cold metaphosphoric acid and determined using spectrophotometer.

Extraction of antioxidants

Fruits were deseeded and the skins were removed using fruit peeler to get skin and flesh fraction as well as whole fruit. Samples were extracted with 50% aqueous acetone.

Total phenolic contents

A 100 µl aliquot of fivefold diluted pink guava extract was oxidized with diluted Folin-Ciocalteu reagent (500 µl). After 5 min, the mixture was neutralized with 1 ml Na₂CO₃ (8%, w/v), and incubated for 120 min before reading absorbance at 765 nm.

Ferric reducing antioxidant power (FRAP)

The FRAP assay method of Benzie and Strain was modified to determine antioxidant activity using trolox as the standard. The FRAP reagent was prepared using 300 mM acetate buffer, pH 3.6 (3.1 g sodium acetate trihydrate, plus 16 ml glacial acetic acid made up to 1 l with distilled water). The acetate buffer was mixed with 10 mM TPTZ (2,4,6-tri(2-pyridyl)-s-triazine) in 40 mM HCl and 20 mM FeCl₃·6H₂O at the ratio of 10:1:1 to produce the working reagent. For assays, 3950 µl of freshly prepared FRAP reagent was mixed with 50 µl sample, standard, or blank and incubated for 30 min before reading absorbance at 595 nm.

Radical scavenging activity

In the radical scavenging activity (RSA) assay, 3900 µl methanolic DPPH solution (40 mg/l) and 100 µl sample extract were mixed, incubated in the dark, and followed the absorbance change at 517 nm. The experiment was performed using different sample concentrations (10–50 mg fresh sample/ml extraction solvent). The experiment was also performed using sample extract of 50 mg fresh sample/ml extraction solvent at different time levels. The decrease in absorbance was monitored until the reaction reached a plateau, graphs were then constructed showing radical scavenging activity versus time. RSA was calculated as \((A_0 - A_t) / A_0 \), where \(A_0 \) is the absorbance of DPPH solution without sample and \(A_t \) is the absorbance of DPPH and sample. The efficient concentration (EC₅₀) was also calculated as the amount of antioxidant necessary to decrease the initial DPPH by 50%.

Table 1 Physicochemical properties of pink guava fruits.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Sungkai variety</th>
<th>Semenyih variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit weight (g)</td>
<td>257 ± 73<sup>a</sup></td>
<td>209 ± 25<sup>b</sup></td>
</tr>
<tr>
<td>Flesh weight (g)</td>
<td>249 ± 72<sup>a</sup></td>
<td>202 ± 25<sup>b</sup></td>
</tr>
<tr>
<td>Seed weight (g)</td>
<td>8.1 ± 2.5<sup>a</sup></td>
<td>7.0 ± 3.2<sup>b</sup></td>
</tr>
<tr>
<td>Fruit volume (ml)</td>
<td>268 ± 78<sup>a</sup></td>
<td>216 ± 40<sup>b</sup></td>
</tr>
<tr>
<td>Specific gravity</td>
<td>0.96 ± 0.05<sup>a</sup></td>
<td>0.98 ± 0.10<sup>b</sup></td>
</tr>
<tr>
<td>Brix<sup>c</sup></td>
<td>7.50 ± 0.39<sup>a</sup></td>
<td>8.57 ± 0.53<sup>a</sup></td>
</tr>
<tr>
<td>Brix<sup>c</sup>/TA</td>
<td>16.30 ± 0.91<sup>b</sup></td>
<td>17.1 ± 1.1<sup>a</sup></td>
</tr>
<tr>
<td>Acidity</td>
<td>0.46 ± 0.00<sup>a</sup></td>
<td>0.50 ± 0.00<sup>a</sup></td>
</tr>
<tr>
<td>Vitamin C (mg/100 g FW)</td>
<td>- Fruit 135 ± 28<sup>b</sup></td>
<td>202 ± 13<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>- Flesh 130 ± 27<sup>b</sup></td>
<td>190 ± 12<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>- Skin 172 ± 36<sup>b</sup></td>
<td>308 ± 57<sup>b</sup></td>
</tr>
<tr>
<td>Lycopene (mg/kg)</td>
<td>40.5<sup>b</sup></td>
<td>52.8<sup>a</sup></td>
</tr>
<tr>
<td>L (lightness)</td>
<td>48.24<sup>b</sup></td>
<td>49.39<sup>a</sup></td>
</tr>
<tr>
<td>a<sup>+</sup> (redness)</td>
<td>11.25<sup>b</sup></td>
<td>16.06<sup>a</sup></td>
</tr>
<tr>
<td>b<sup>+</sup> (yellowness)</td>
<td>13.77<sup>b</sup></td>
<td>10.17<sup>b</sup></td>
</tr>
<tr>
<td>pH</td>
<td>4.27<sup>a</sup></td>
<td>4.21<sup>a</sup></td>
</tr>
</tbody>
</table>

Values are means of triplicate samples ±SD. Different letters in the same row indicate significant differences \(p < 0.05 \).

Extraction and determination of flavonoid compounds

Freeze-dried sample (0.5 g) was mixed with 10 ml of 2.0 M HCl in 80% aqueous methanol using an Ultra-Turrax disperser (IKA, Germany) and the mixture was heated up at 90°C for 2 h. The extract was diluted with water and then filtered through a 0.22 µm nylon filter (Whatman, Kent, UK) prior to injection into HPLC (Shimadzu, Japan). A sample of 10.0 µl was injected to Symmetry-C18 column (Waters, USA) at 40°C. The mobile phase used was 1% formic acid ratio has been shown to be a good indicator for reducing fruit quality during storage. The
Table 2 Folin-Ciocalteu index and ferric reducing antioxidant power (FRAP) values for different pink guava fruit fractions from two different varieties (sungkai and semenyih).

<table>
<thead>
<tr>
<th>Fruit fraction</th>
<th>Total phenolic content†</th>
<th>FRAP‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sungkai skin</td>
<td>671 ± 32b</td>
<td>66.9 ± 3.9b</td>
</tr>
<tr>
<td>Sungkai fruit</td>
<td>227.9 ± 9.8c</td>
<td>27.1 ± 1.1c</td>
</tr>
<tr>
<td>Sungkai flesh</td>
<td>193.1 ± 4.9f</td>
<td>25.8 ± 1.1c</td>
</tr>
<tr>
<td>Semenyih skin</td>
<td>841 ± 22a</td>
<td>82.7 ± 3.2a</td>
</tr>
<tr>
<td>Semenyih fruit</td>
<td>383 ± 33c</td>
<td>56.3 ± 1.9c</td>
</tr>
<tr>
<td>Semenyih flesh</td>
<td>344.7 ± 7.6d</td>
<td>39.2 ± 1.5d</td>
</tr>
</tbody>
</table>

Values are mean ± SD. Different letters in the same column indicate significant differences (p < 0.05).

† mg gallic acid equivalent/100 g fresh weight.
‡ µMtrolox equivalent/g fresh weight.

amounts of total ascorbic acid (TAA) in semenyih were significantly higher (p < 0.05) than sungkai. TAA contents in the skin of both varieties were significantly higher (p < 0.05) compared to their respective fleshes or fruit fractions. Ascorbic acid content of fruits depended highly on the varieties and the cultivation conditions. Distinct varieties of the same fruit type showed significantly different concentrations.

Compared to sungkai, semenyih fruit showed significantly (p < 0.05) higher lycopene content that gives the red colour for the pink guava fruit. Wilberg and Rodriguez-Amaya reported lycopene content in Brazilian pink flesh guava is in a range from 48.20–54.20 mg/kg fresh ripe fruits. The colour value of sungkai showed significantly (p < 0.05) lower redness value (a∗), lower lightness value (L), and higher yellowness value (b∗) when compared to semenyih.

Total phenolic content and ferric reducing antioxidant power (FRAP)

Individual fruit fractions showed a wide variation of their total phenolic content and FRAP value (Table 2). Maximum total phenolic content and FRAP values were obtained for semenyih fruit variety fractions when compared to sungkai variety. Among each variety fractions, skins showed the highest total phenolic content and FRAP values followed by fruit and flesh, respectively. The size of sungkai fruit is much bigger and this may affect the results, in small fruit the ratio of the skin will be higher compared to the total fruit. Total phenolic content and FRAP values for the pink guava fruit in this study were higher than the values reported by Thaipong et al, Luximon-Ramma et al, and Guo et al. Differences in extraction methods and solvent, cultivation location, ripening stage, harvested condition and seasons could be the most likely factors.

In this study the reaction time of FRAP was prolonged and compared to the 4 min in the original procedure of Benzie and Strain. The rate of the reactions of individual fraction differs substantially (Fig. 1). FRAP value was calculated at 30 min since the order of antioxidant efficiency of samples were maintained after 30 min. Trolox standards react quickly with FRAP reagent, reaching the maximum in less than 2 min and the absorbance was constant after that. Pulido et al observed similar results based on different standards but not plant extracts. The results of our observation are in agreement with published data.

DPPH radical scavenging activity of pink guava

The radical scavenging activity values in Fig. 2 indicate a different activity of each pink guava fruit samples towards the stable free radical. Skin fraction extract reacted faster towards the DPPH radical and the reaction reached the plateau in 2 min for semenyih skin and 3 min for sungkai skin, whereas slow reaction took place for other samples. The flesh fractions in both variety reactions reached the plateau in 4 min for semenyih flesh and 12 min for sungkai flesh. Trolox standards also react quickly towards DPPH radical.

The RSA for pink guava extract at different concentrations are shown in Table 3. As anticipated, the higher the concentration of sample, the higher the scavenging activity. However, at certain concen-
Flavonoids in pink guava fruit

Kaempferol was the dominant flavonoid in fruits and quercetin was the minor flavonoid in both varieties (Fig. 3). The total flavonoid content was significantly higher ($p < 0.05$) in sungkai fruit and flesh compared to semenyih; while semenyih skin was higher ($p < 0.05$) compared to sungkai skin. As for luteolin, both sungkai and semenyih fruit showed no significant difference ($p < 0.05$) in their luteolin content while sungkai flesh and semenyih skin both
showed higher values. The levels of myricetin in sungkai fruit, flesh, and skin were 80.38, 93.75, and 51.60 mg/kg, respectively, and for semenyih the levels were 83.05, 84.00, and 73.75 mg/kg for fruit, flesh, and skin, respectively. Apigenin was not detected in all fractions from both fruit varieties which is in agreement with published work.\(^\text{27}\)

Conclusion

Pink guava shows valuable nutraceutical properties in terms of high antioxidant activity as well as vitamin C and lycopene. The flavonoid content is reported with kaempferol as the main flavonoid compound. Moreover, since these fruits show the highest antioxidant content in the peel, they seem to be particularly suitable for peeled whole fresh fruit consumption and thus promote health related benefits.

Acknowledgements: This study was supported by Universiti Kebangsaan Malaysia under project no. STGL 004-2006.

REFERENCES

15. Lee J, Jnn CE, Wrolstad RE (2004) Comparison of anthocyanin pigment and other phenolic compounds of *Vaccinium membranaceum* and *Vaccinium ovatum*