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ABSTRACT: The gradient method is a classical technique for calculating optical flows in image sequences. In spite of its
serious limitations, including the extreme sensitivity to changing illuminations, it is still popular and widely used in various
image processing and computer vision applications because of its efficiency in computation. We previously proposed an
improved version of the gradient method based on gradient orientations instead of intensities. Since gradient orientations
are known to be stable to global changes of intensities, the proposed technique can perform optical flow estimation regardless
of irregular lighting. We refer to this method the gradient orientation based gradient method (GOGM). This paper is a further
study of the GOGM. New simulation and experimental results show that this technique works at a video rate of 16 Hz and
outperforms the traditional gradient method where the aperture problem and illumination changes are involved.
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INTRODUCTION

Motion estimation is an important task in the fields
of image sequence processing and computer vision.
It finds a variety of applications, including object-
based video coding (e.g., MPEG-4), object detection
and tracking, scene change detection for video in-
dexing, image stabilization for digital cameras and
camcorders, and dynamic 3-D scene analysis for au-
tonomous navigation. Motion estimation techniques
in the spatial domain may be classified into two
groups: gradient-based methods and correlation-based
methods. This paper is concerned with the former
group, the gradient-based approaches, which is more
suitable for computing a dense optical flow field. The
spatiotemporal gradient method is one of the gradient-
based techniques and it is often more simply referred
to as gradient method (GM)1–4. This technique as-
sumes that the image intensity is constant along the
motion trajectory over time. Because of the assump-
tion of brightness constancy, it is extremely sensitive
to varying image intensities that are often caused by
irregular illuminations. The approach, however, is
still widely used for research purposes, partly because
one can easily obtain the sophisticated code that can
execute motion estimation at a video rate such as
the OpenCV library for free5. Meanwhile, various
approaches have been also proposed to cope with

the varying lighting conditions. One approach is to
model the intensity changes, for example, linearly that
can handle both multiplicative and additive change of
image intensities. The model is incorporated in the
process of the computation for motion estimation6.
The effectiveness of this approach, however, will be
limited to the case where the model is a good approx-
imation of real intensity changes. The employment of
a more robust feature, instead of image intensities, is
another promising approach. The use of the gradients
of image intensities is described in Ref. 7. It is certain
that image gradients are a more robust feature than
image intensities. This technique assumes that the
image gradient is constant along the motion trajec-
tory over time8. We call this approach the gradient
vector-based method or GVGM. However, it is yet
susceptible to multiplicative changes of intensities9.
To cope with the irregular lighting condition problem,
we previously proposed a method that employs unit
gradient vectors (UGVs) in place of image intensities
and gradients. This is because UGVs are known to be
robust to varying lighting conditions10, 11. By theory,
the UGVs are invariant to both additive and multi-
plicative changes of intensities. We call this technique
the gradient orientation based gradient method or
GOGM12. This paper focuses on the implementation,
analyses, and evaluations of the GOGM on both syn-
thetic and real image sequences, and comparing with
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the GM and GVGM. The rest of the paper is organized
as following. In the Methods section, we first review
the conventional spatiotemporal gradient method (or
GM) and then describe the proposed method GOGM
together with a related method GVGM. In Results and
Discussion, we demonstrate the performances of the
GM, GVGM, and GOGM under a constant lighting
condition, those under a varying lighting condition,
and those on various real image sequences. Finally,
we state our conclusions and future work in the last
section.

METHODS

Gradient method

Image flow is the velocity field in the image plane due
to the motion of the observer, the motion of objects
in the scene, or apparent motion which is a change
in the image intensity between frames that mimics
object or observer motion. Gradient-based methods
are one of the schemes devised for calculating image
flow. They exploit the relationship between the spatial
and temporal gradients of intensity13. When image
intensities are assumed to be constant along motion
trajectory over time, we have

g(x, y, t) = g(x+ dx, y + dy, t+ dt), (1)

where g(x, y, t) indicates the image intensities at pixel
coordinates (x, y) at time t, and (dx,dy) denotes the
image displacements over time dt. By taking the first-
order Taylor series expansion of the right-hand side of
(1), we obtain

g(x+ dx, y + dy, t+ dt) ≈ g(x, y, t) + gx dx

+ gy dy + gt dt, (2)

where the subscripts denote partial derivatives. From
(1) and (2), one can derive the well-known optical flow
constraint equation or OFCE

gx u+ gy v + gt = 0, (3)

where (u, v) = (dx/dt,dy/dt) denotes the optic
flow (image flow), and (gx, gy, gt) = (∂g(x, y, t)/∂x,
∂g(x, y, t)/∂y, ∂g(x, y, t)/∂t) express the spatiotem-
poral image gradients. Eq. (3) is underdetermined
because it contains two unknowns, u and v. To
solve the equation for the optical flow (u, v), we
may introduce either a local or global smoothness
constraint. The simplest local smoothness constraint
is the assumption that the motion is constant within
the small area where a motion vector is estimated,
though it is possible to extend the assumption to

polynomial or other parametric models2–5. The global
smoothness constraint assumes that the optical flow
changes smoothly over the entire image1, 5, 13. A
comparative study between these two optimization
techniques can be found in Ref. 2. The local approach
is more suitable for the applications that require well-
defined boundaries between areas with different mo-
tions because each motion vectors is computed within
a block independently of its neighbouring blocks. On
the contrary, the boundaries by the global approach
are blurred because of its smoothing operation among
adjacent motion vectors. In this paper, we employ the
local smoothness constraint. The most popular local
approach for optical flow computation is the linear
differential method of Lucas and Kanade3. Under the
local smoothness constraint, the optical flow (u, v)
can be determined by minimizing the quadratic cost-
function F

F =
∑

(gx u+ gy v + gt)
2, (4)

where
∑

indicates the sum over a small region or a
block for computing a flow vector. The least squares
solution of (4) is given by

u =
(
∑
gxgy)(

∑
gygt) − (

∑
g2y)(

∑
gxgt)

(
∑
g2x)(

∑
g2y) − (

∑
gxgy)2

v =
(
∑
gxgy)(

∑
gxgt) − (

∑
g2x)(

∑
gygt)

(
∑
g2x)(

∑
g2y) − (

∑
gxgy)2

(5)

Gradient orientation based gradient method

In practice, however, the assumption for the OFCE is
often violated by varying lighting conditions. As a
result, all the motion estimation techniques based on
the OFCE are susceptible to the changes of lighting
conditions. To overcome the problem, we propose to
use gradient orientation information (GOI) in place
of traditional image features such as intensities and
gradients, because gradient orientation is known to be
insensitive to varying illuminations10, 11. We devise a
novel technique, called the gradient orientation based
gradient method or GOGM, by introducing GOI to
the GM. Our previous work shows that GOI can be
effectively utilized in the form of UGVs14. We first
summarize the procedure of the GOGM. Let g(x, y)
be the image intensities at pixel coordinates (x, y).
The gradient vectors of g(x, y) are approximated by
partial derivatives{

gx(x, y) = g(x, y) ∗ kx
gy(x, y) = g(x, y) ∗ ky

where the symbol ∗ denotes convolution, and kx and
ky are the first-derivative operators in the x and y
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directions, respectively. The Sobel operators may
be used as the first-derivative operators. Note that
gx(x, y) and gy(x, y) are image gradients which are
employed in GVGM. Next, GOI can be obtained as
UGVs by dividing gradient vectors by their magni-
tudes 

nx(x, y) =
gx(x, y)√

gx(x, y)2 + gy(x, y)2

ny(x, y) =
gy(x, y)√

gx(x, y)2 + gy(x, y)2

where zeros are assigned to (nx, ny) if the denomina-
tor is equal to or close to zero. In this way, we extract
GOI only by discarding the magnitude information of
the gradient vectors.

Fig. 1a shows an 8-bit grey-scale image, Baboon,
of size 256 by 256 pixels. Figs. 1b and 1c show the
gradient orientation patterns nx and ny of the Baboon
image. The patterns are scaled between 0 and 255 for
visualization purposes. It should be emphasized that
horizontal lines, i.e., vertical gradients are rich in nx
(Fig. 1b), while vertical lines, i.e., horizontal gradients
are more dominant in ny (Fig. 1c).

The use of nx and ny is more advantageous than
directly using angular values θ (radius) as GOI be-
cause there is no need to take an extra precaution when
computing the derivatives of GOI (difference between
two angles cannot exceed π)10. Fig. 1d shows part
of the Baboon image of size 40 by 40 pixels. Fig. 1e
plots the gradient vectors (gx, gy) within the subim-
age. Prominent vectors can be seen where intensities
change rapidly, whereas no distinguished vectors are
seen where intensities change gradually. Meanwhile,
Fig. 1f shows the UGVs in the same subimage. By
the comparison between Fig. 1e and (f), it is evident
that a gradient orientation pattern carries rich spatial
information even in areas where intensities change
gradually.

Furthermore, Fig. 1g shows the same subimage
as in Fig. 1d except that the intensity of the upper
half of it is reduced by 50%. All image intensity
based motion estimation techniques are inevitably ill
affected by varying intensities like this. Fig. 1h shows
the gradient vectors of the subimage. The gradient
vectors in the upper half of the subimage are consid-
erably different from those of Fig. 1e. This indicates a
weakness of gradient vector based motion estimation
techniques such as GVGM. In contrast, Fig. 1i shows
GOI represented by UGVs. It is identical to that of
Fig. 1f except for the boundaries between shaded and
non-shaded areas. This comparison demonstrates that
UGVs are remarkably invariant to uniform changes

of image intensities, and thus can maintain the infor-
mation on local gradient orientations under varying
illuminations.

We make use of the robust feature UGVs, nx and
ny , in place of image intensities g as expressed in
(6), which corresponds to (1) in the gradient method
(GM):{

nx(x, y) = nx(x+ dx, y + dy, t+ dt)

ny(x, y) = ny(x+ dx, y + dy, t+ dt)
(6)

where nx and ny indicate the UGVs in the x and
y directions, respectively. By taking the first-order
Taylor series expansion of the right hand sides, we
can get the new OFCEs as shown in (7), which
corresponds to (3) in the GM:{

nxx u1 + nxy v1 + nxt = 0

nyx u2 + nyy v2 + nyt = 0
(7)

where the first subscript of each element denotes
which of nx and ny components of the UGVs are
used, and the second the direction of the partial
derivative, either x, y, or t. The subscripts 1 and
2 are used for defining the estimated optical flow
on the patterns nx and ny , respectively. We have
used the Sobel operators for computing the partial
derivatives because they yield good approximations of
the derivatives with minimal computation15. In place
of (4), we then have the following two cost functionsF1 =

∑
(nxx u1 + nxy v1 + nxt)

2

F2 =
∑

(nyx u2 + nyy v2 + nyt)
2

(8)

From (8), we obtain two motion estimates (u1, v1)
and (u2, v2) using the least squares method as in the
GM:
u1 =

(Σnxxnxy)(Σnxynxt) − (Σn2xy)(Σnxxnxt)

(Σn2xx)(Σn2xy) − (Σnxxnxy)2

v1 =
(Σnxxnxy)(Σnxxnxt) − (Σn2xx)(Σnxynxt)

(Σn2xx)(Σn2xy) − (Σnxxnxy)2
u2 =

(Σnyxnyy)(Σnyynyt) − (Σn2yy)(Σnyxnyt)

(Σn2yx)(Σn2yy) − (Σnyxnyy)2

v2 =
(Σnyxnyy)(Σnyxnyt) − (Σn2yx)(Σnyynyt)

(Σn2yx)(Σn2yy) − (Σnyxnyy)2

It should be noted that motion estimates (u1, v1) are
based on the pattern nx while motion estimates (u2,
v2) are based on the pattern ny . Because there should
be only one motion vector per block, we need to
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Fig. 1 (Right then down) (a) an 8-bit grey-scale image, gradient orientation patterns, (b) nx, and (c) ny; (d) an 8-bit grey-
scale subimage of (a), (e) the gradient vectors of (d), (f) the unit gradient vectors of (d); (g) partially shaded subimage,
(h) the gradient vectors of (g), and (i) the unit gradient vectors of (g).

unify those two motion estimates into one. For this,
we introduce a weighting factor that is dependent on
the gradient orientation patterns12, 16. The reliability
of each motion estimate may be judged from the
diversity of gradient orientations (directions) in its
local area. The diversity of gradient orientations can
be quantitatively measured by the two eigenvalues of
the empirical estimator of the covariance matrix, N ,
between nx and ny ,

N =

( ∑
n2x

∑
nxny∑

nxny
∑
n2y

)
where

∑
indicates the integration area in a local 2-D

space. By applying principal component analysis to
this matrix, we obtain two eigenvalues λ1 and λ2
where λ1 > λ2 > 0. We then use these eigenvalues as
a weighting factor as in:

u =
λ1

λ1 + λ2
u1 +

λ2
λ1 + λ2

u2

v =
λ2

λ1 + λ2
v1 +

λ1
λ1 + λ2

v2

(9)

Eq. (9) achieves the weighted average between
the two motion estimates (u1, v1) and (u2, v2).
When the two eigenvalues hold such relationship as
λ1>>λ2 ≈ 0, the gradients in the block are close
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Fig. 2 (a) image block with a horizontal edge, (b) normalized vertical gradients nx, and (c) normalized horizontal gradients
ny .
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Fig. 3 (a) image block with a 2-D Gaussian function, (b) normalized vertical gradients nx, and (c) normalized horizontal
gradients ny .

to unidirectional and we can only estimate motion
along the direction parallel to the gradients. Image
blocks normally contain various directions of gradi-
ents. However, what if one direction of gradient is
dominant, namely, λ1>>λ2 ≈ 0. Fig. 2 shows such
a pattern where the vertical gradient is dominant.
Note that the estimation of the optical flow (u1, v1)
is based on the pattern nx shown in Fig. 2b while the
estimation of the optical flow (u2, v2) depends on the
pattern ny in Fig. 2c. The two estimates are integrated
as shown in (9).

It is obvious that the pattern nx provides reliable
information for estimating the vertical motion u1.
Thus a large weight should be assigned to the first term
of the first equation. In contrast, the pattern nx may
contribute to a large error in estimating the horizontal
motion v1 because of the aperture problem. Hence the
first term of the second equation should be assigned a
small weight. In this manner, the weight is adjusted
automatically, depending on the relationship between
the two eigenvalues. Meanwhile, Fig. 3a shows an

image block that has various directions of gradients,
namely, λ1 ≈ λ2 > 0. The patterns nx (Fig. 3b) and
ny (Fig. 3c) are both useful for estimating vertical and
horizontal motions. Thus we evaluate two motion
estimates (u1, v1) and (u2, v2) nearly equally.

RESULTS AND DISCUSSION

For quantitative evaluations of the three motion esti-
mation techniques, the GM, GVGM, and GOGM, we
create six synthetic image sequences using six 8-bit
grey-scale images of size 256 by 256 pixels. They
are standard test images widely used in the image pro-
cessing community, i.e., Lena, Girl, Peppers, House,
Bridge, and Baboon images. Those images are used
as the first frames and the second frames are generated
by translating the first frames (test images) by a known
amount of pixels.

Under a constant lighting condition

We first compare the performances of the GM,
GVGM, and GOGM under a mildly noisy (40 dB)
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Fig. 4 (Right then down) successful motion estimation rates for mildly noisy (40 dB) (a) Baboon, (b) Bridge, (c) Girl,
(d) House, (e) Lena, and (f) Pepper images under a constant lighting condition.

and constant lighting condition. The input image is
partitioned to blocks of size 16 by 16 pixels. We
estimate 14 by 14, i.e., 196 motion vectors within
the image. It is relevant to note here that gradient-
based methods are sensitive to high frequency in
an image and an application of a certain low-pass
filter is always necessary prior to motion estimation.
Consequently, the outmost blocks are not used for
motion estimation because they contain invalid pixels
after the spatial filtering (convolution). The low-pass
filter is a normalized Gaussian function where the sum
of the coefficients in the filter is 1. The size of the filter
kernel is chosen from (9× 9)–(13× 13) pixels as they
are found to be the appropriate sizes in our previous
study12, 17. For simplicity, the standard deviation of
the normalized Gaussian function is set to be the half
of the filter kernel.

We evaluate the rates of successful motion estima-
tion for different amount of image motions. Estimated
motions are considered successful when the deviations
between the estimates and the known amount of mo-
tion (ground truth) are less than 0.5 pixels in both
x and y directions. The mount of image motions is
varied from (0, 0) to (5, 5) pixels. The simulation is re-
peated 10 times with different Gaussian noise patterns
of the SNR 40dB every time. The means and standard
deviations of the successful motion estimation rates
are plotted against the varied image motions in Fig. 4.
The GVGM and GOGM produce higher success rates
on all the six image sequences, especially around

the motion (2, 2) pixels. Hence, we can state that
the GVGM and GOGM outperform the GM under a
mildly noisy and constant lighting condition.

Under a varying lighting condition

Next, the intensities of the second frames are uni-
formly reduced from 0–50%. Gaussian noise of the
SNR 40dB is again added to every frame. The image
motion is set (2, 2) pixels and the size of the low-
pass filter mask is 11 by 11 pixels. The number
of estimated motion vectors is the same as before,
i.e., 14 by 14 vectors. Fig. 5 shows the successful
motion estimation rates versus the amount of intensity
reductions from 0% to 50%. It is obvious that the
GM completely breaks down and the decline of the
GVGM also clearly appears when the amount of
multiplicative intensity reduction increases, while the
GOGM performs motion estimation regardless of the
variations of image intensities. This stark contrast
clearly exhibits an advantage of the proposed method,
GOGM.

Motion estimation on real image sequences

We compare the feasibility of the proposed method
on real image sequences which contain local motions.
The real image sequences are captured by a USB
camera with resolution 480-pixel height and 640-
pixel width. They are converted to 8-bit grey-scale
images. The size of the block is set at 24× 32 pixels
height and width, respectively. We calculate 18× 18
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Fig. 5 Successful motion estimation rates for mildly noisy (40 dB) (a) Baboon, (b) Bridge, (c) Girl, (d) House, (e) Lena,
and (f) Pepper images when images intensities are varied from 0% to 50%.

Fig. 6 (Right then down) part of the motion estimation results on a real image sequence with a horizontal translational
motion under a constant lighting condition in the (a) 20th, (b) 23rd, (c) 32nd, and (d) 35th frames. Motion vectors estimated
by (e–h) the GM, (i–l) the GVGM, and (m–p) the GOGM.
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Fig. 7 (Right then down) part of the motion estimation results of a real image sequence with zooming out under a constant
lighting condition in the (a) 108th, (b) 110th, (c) 117th, and (d) 119th frames. Motion vectors estimated by (e–h) the GM,
(i–l) the GVGM, and (m–p) the GOGM.

motion vectors each frame. The Gaussian low-pass
filter of size 13× 13 pixels is used for smoothening
input images. Figs. 6–8 show real image sequences
(first row) together with the motion vectors estimated
by the three techniques GM (second row), GVGM
(third row), and GOGM (fourth row). Fig. 6 shows
a translational motion while Fig. 7 and Fig. 8 show
zooming and rotational motions under a constant
lighting condition. Since there is no ground truth for
the motions in these image sequences, the GOGM is
compared with the GM and GVGM based on visual
inspection. In this experiment, the flat areas like a wall
are ignored by setting a gradient magnitude threshold,
500. From Figs. 6–8, we may state that the GM,
GVGM, and GOGM are working reasonably well
under constant illuminations. Close observation, how-
ever, reveals that the GM produces more erroneous
motion estimations, especially around the boundaries
of the human subject. These errors are due to the
aperture problem when there is only one directional

gradient in the block. In this case, motion estimation
is possible only along the direction perpendicular to
the boundary and a large estimation error is expected
in the direction tangent to the boundary. Those errors
are well suppressed for the GVGM and GOGM owing
to the weighted sum of the two motion estimates (9).

Meanwhile, Fig. 9 shows experimental results of
motion estimating on the first real image sequence
under irregular lighting. The image intensities of the
odd numbers of frames in the sequence are reduced
uniformly by 30%. It is obvious that the conventional
approaches, the GM, cannot produce reliable motion
estimates at all under the time-varying lighting con-
dition (Fig. 9e–h). The GVGM almost produce the
reliable motion estimated vectors (Fig. 9i–l) but the
GOGM performs very well even under such irregular
lighting condition (Fig. 9m–p).

Finally, the computation times of the GM,
GVGM, and GOGM are 41.43 millisecond (ms),
57.69 ms, and 59.78 ms per frame, respectively.
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Fig. 8 (Right then down) part of the motion estimation results of on a real image sequence with a rotational motion under
a constant lighting condition in the (a) 63rd, (b) 72nd, (c) 76th, and (d) 80th frames. Motion vectors estimated by (e–h) the
GM, (i–l) the GVGM, and (m–p) the GOGM.

These are the CPU times required for convoluting
the Gaussian low-pass filter of size 13× 13 pixels
and calculating 18× 18, namely, 324 motion vectors
within the frame of size 480× 640 pixels. Both
methods are implemented in the Microsoft Visual C++
2008 with the OpenCV library5. The CPU times are
measured on a standard notebook PC with the Intel
Core2 Duo CPU P8600 2.4GHz and 4 GB RAM. The
longer time required for the GOGM is due to the extra
computations for normalizing gradients, obtaining the
eigenvalues of the gradient covariance matrices, and
so on. The CPU time of the GM, 41.43 ms/frame, is
equivalent to 24.14 frames per second (fps), which is
nearly as fast as the PAL TV standard, 25 fps. Further-
more, the CPU time of the GVGM, 57.69 ms/frame,
is equivalent to 17.33 fps. Lastly, the CPU time of the
GOGM, 59.78 ms/frame, equals to 16.73 fps, which
is as fast as many commercial USB cameras (15 fps).
Thus we can state that both methods already work at a
video rate without any spatial down-sampling.

CONCLUSIONS

This paper presents a robust optical flow estimation
technique that is based on the spatiotemporal gradient
method (GM) with a local smoothness constraint.
We propose to use gradient orientation information
(GOI) instead of conventional image features such as
intensities and gradients. Since GOI is stable under
varying illuminations, the proposed method performs
well regardless of varying lighting conditions. We
utilize the GOI in the form of unit gradient vectors
rather than directly using the gradient directions θ for
computational efficiency. An added advantage of the
proposed method, gradient orientation based gradient
method or GOGM, is that it is more robust to the
aperture problem. Since two motion estimates are
averaged with an adaptive weight that is determined
by the diversity of gradients in a local region (block),
the method effectively avoids producing large estima-
tion errors that are common in the traditional gradient-
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Fig. 9 (Right then down) part of the motion estimation results on a real image sequence in the (a) 20th, (b) 23rd, (c) 32nd,
and (d) 35th frames where the odd numbers of frames are uniformly darkened by 30%. Motion vectors estimated by (e–h) the
GM, (i–l) the GVGM, and (m–p) the GOGM.

based methods. The GOGM can estimate as many
as 324 motion vectors at the rate of 16 frames per
second, though it is slower than the traditional method
GM and GVGM because of the extra computation for
normalizing image gradients. As future work, we plan
to employ a strategy for reducing the computation
time to achieve the speed of the PAL (25 fps) and
NTSC (30 fps) video standards.
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