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ABSTRACT: Fault-tolerance is an important research topic in the study of distributed systems. In a distributed system,
cooperating tasks must achieve an agreement. This is to cope with the influence of faulty components. Reaching a common
agreement in the presence of faults before performing certain tasks is essential. Nowadays, network bandwidth and hardware
technology are developing rapidly, resulting in the vigorous development of the internet. However, cloud computing, an
internet-based development in which dynamically scalable and often virtualized resources are provided as a service over the
internet has become a significant issue. In addition, the Byzantine Agreement (BA) problem is a fundamental problem in
fault-tolerant distribute systems. In previous studies, the BA algorithm was used in traditional network topology. However,
this algorithm does not perform well in dynamically changing networks. To enhance fault-tolerance, a new protocol VSACS
(virtual subnet agreement of cloud storage) is proposed to solve the BA problem in this study. VSACS uses the minimum
number of message exchange rounds to make all correct processors agree on a common value and can tolerate the maximum
number of allowable faulty components.
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INTRODUCTION

Cloud computing has become a significant technology
trend, many applications of cloud computing increase
convenience for users, e.g., Google Storage, Dropbox
or Microsoft SkyDrive, and so on. Furthermore, cloud
storage (or data centre, data storage as a service) is
the concept of storage behind an interface where the
storage can be administered on demand1, 2. However,
one of the fundamental cloud storage issues is repli-
cation, which combined with cloud computing based
infrastructure; the target mobile processors connected
to cloud service provider, listen to some tasks from
server and application recovery is in needed2.

As wireless and cloud computing have become
increasingly popular, network topology has shown a
trend towards wireless connectivity, thus providing
enhances support for cloud computing. Shortly, this
technological trend has greatly encouraged distributed
system design and lent practical support to mobile
processors. The virtual subnet has attracted significant
attention recently because they require less infrastruc-
ture, they can be deployed quickly, and they can auto-
matically adapt to changes in topology. Hence virtual
subnets suit military communication, emergency dis-

aster rescue operations, and law enforcement3.
The reliability of the mobile processor is one of

the most important aspects in virtual subnet. In order
to provide a reliable cloud storage application within
replication management of cloud in a virtual subnet,
a mechanism to allow a set of mobile processors
to agree on an agreement value is required. The
Byzantine Agreement (BA) problem4, 5 is one of the
most fundamental problems to reach an agreement
value in a distributed system, like cloud computing1.
The original BA problem defined by Lamport et al6.,
is assumed as follows:

(1) There are n > 4 processors in a synchronous
distributed system.

(2) Each processor can communicate with each other
through reliable fully connected network.

(3) One or more of the processors might fail, so
a faulty processor may transmit incorrect mes-
sage(s) to other processors.

(4) After message exchange, all correct processors
should reach a common agreement, if and only
if the number of faulty processors t is less than
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Fig. 1 The topology of virtual subnet within cloud storage.

one-third of the total number of processors in the
network (t 6 (n− 1)/3).

The traditional BA problem focused on fixed
and well-defined networks4, 5. However, the network
structure of a virtual subnet is not fixed, and its topol-
ogy can change as a result of this mobility. Hence, the
traditional solutions to the BA problem are not suited
to the topology of virtual subnet within a cloud storage
environment.

In this study, the BA problem is revisited in
the topology of virtual subnet within cloud storage
environment. The proposed protocol is called the
virtual subnet agreement of cloud storage (VSACS).
VSACS allows each correct processor in the topology
of virtual subnet within cloud storage environment
reach an agreement value.

RELATED WORK

Nowadays, the virtual subnet is practical more and
more due to it can provide processors join to the
network or leave anytime with non-infrastructure. A
group of multiple processors in virtual subnet is co-
operating to achieve some objectives; each processor
communicates with other processors by using the
broadcast in virtual subnet, but also leads to a severe
problem, such as broadcast storm7. Many researchers
proposed cluster schemes, broadcast limited and vir-
tual subnet3, 8 to improve the broadcast storm9. How-
ever, virtual subnet has been a more important topic
than the other topics recently10. The virtual subnet
is composed of several groups by overlap network
approach3, 7. Fig. 1 shows a topology of virtual subnet
within cloud storage environment. There are three
situations that the processors communicate underlying
virtual subnet:

(1) Processors in the same group communicate to
each other directly by virtual backbone.

(2) Processors in different groups exchange mes-
sages with each other via virtual subnet or phys-
ical communication media (internet IP based),
e.g., host agent communication.

(3) Host agent processors can communicate with
the cloud service via physical communication
media in different groups and exchange messages
with each other via virtual subnet or physical
communication media (internet IP based).

In addition, virtual backbone can be used to (1)
collect topology information for routing; (2) provide
a backup route; (3) multicast or broadcast messages7

and so on. Hence, virtual subnet can improve the
broadcast storm efficiently.

However, the symptoms of processor failure in the
topology of virtual subnet within cloud storage envi-
ronment can be classified into dormant fault (crash or
omission) and malicious fault (also called Byzantine
fault)11, 12. The dormant fault means the processor
does not work correctly (i.e., fails to send or receive a
required message on time). In the malicious fault, the
processor can do anything arbitrary at any time. Thus
the behaviour of a mobile processor with malicious
fault is unpredictable. According to above description
about malicious fault, the malicious fault generates
any kind of failures randomly, it is the most severe
failure type, and causes the worst problem in dis-
tributed system. The dual failure mode on processor
is one where both dormant fault and malicious fault
exist simultaneously with the faulty processor in the
distributed system.

The topology of virtual subnet within cloud stor-
age environment is different with the traditional net-
work topology, so the pervious protocols of BA are
not suit for the topology of virtual subnet within cloud
storage environment. As the result, the new protocol
that we proposed can use a minimum number of mes-
sage exchanges and can tolerate a maximum number
of allowable faulty components to make each correct
processor reach a common agreement in the topology
of virtual subnet within cloud storage environment
with dual failure processors.

THE PROPOSED PROTOCOL

In the distributed system, the purpose of the BA
protocol is to make all correct processors to reach
a common agreement. For the reason, processors
should exchange messages to all other processors.
Each correct processor receives messages from other
processors by a number of rounds of message ex-
change. Afterwards, all correct processors can get
enough messages to make a decision value that is

www.scienceasia.org

http://www.scienceasia.org/2013.html
www.scienceasia.org


ScienceAsia 39S (2013) 87

called agreement value or common value. Thus all
correct processors agree on the same value.

The notation and parameters of the proposed pro-
tocol VSACS in the topology of virtual subnet within
cloud storage environment are shown in following:

(1) Let N be the set of all processors in the network
and |N | = n, where n is the number of proces-
sors in the underlying network.

(2) Let G be the set of all groups in the network and
|G| = g, where g is the number of groups in the
underlying network and g > 4.

(3) Let x, y be the group identifier where 1 6 x,
y 6 g and g > 4.

(4) Let ηx be the number of processors in group
Gpx, 0 6 x 6 g. If there are at least dηx/2e
malicious faulty processors in Gpx, then Gpx

will be the malicious faulty group. If there are at
least dηx/2e dormant faulty processors in Gpx,
then Gpx will be the dormant faulty group.

(5) Let fm be the total number of malicious faulty
processors.

(6) Let fd be the total number of dormant faulty
processors.

(7) Let fGm be the maximum number of malicious
faulty groups allowed.

(8) Let fGd be the maximum number of dormant
faulty groups allowed.

(9) Let TFP be the total number of allowable faulty
processors, TFP = fm + fd.

(10) Let TFG be the total number of allowable faulty
groups, TFG = FGm + FGd.

(11) Let ηx be the number of processors in Gpx, 0 6
x 6 g.

(12) Let c be the connectivity of the virtual subnet,
where c is g − 1.

In BA protocol, the first step is to count the
number of required rounds of messages exchange,
which is determined by the total number of processors
at the beginning of protocol execution. Hence if the
variety of faulty processors can be discovered, then
the number of rounds of messages exchange can be
reduced, and then the fault tolerance capability is
moved up.

Procedure iTRANSMISSION
Defmition:
1. For the virtual subnet, each processor has the 
    common knowledge of entire graphic information
    Ĝ = (E, Gp), where Gp is the set of groups in the 
    network and E is a set of group pairs (Gp

x
 , Gpy) 

    indicating a physical communication medium
    (the sensing is covered) between group Gp

x
 and 

    group Gpy.
2. Each processor communicates with all other 
    processors via virtual subnet, virtual backbone 
    or physical communication media [2,11].
3. The processor plays sender, receiver or agent, 
    depends on the behavior of which kinds of 
    iTRANSMISSION [2].
4. The host agent processor communicates with 
    cloud service via physical communication media
    (Internet based).
5. The host agent processor cannot garble the 
    message between the sender processor and 
    receiver processor; this assumption has achieved
    by the technology of encryption (such as RSA [8]).

Step 1. The sender processor Pi (l≤i≤n) transmits the 
            value vi to the receiver group.
Step 2. If the group-disjoint path from sender
            processor to destination group passes through 
            any dormant faulty processor or if the sender 
            processor has dormant faults, then stores λ0

            itself.
Step 3. The processors in the receiver group take the 
             local majority value from the same group
             paths and then construct the vector 
             Vi = [ vpath 1, vpath 2,..., vpath c-1, vpath c].
Step 4. The processors in the destination group apply
            VMAJ on vector Vi.

Function VMAJ (for each vector Vi) 
1. Count the received value: Take the majority
2. If the majority value is  λ0 and the number of 
    value λ0 is greater than or equal to c– (g-l)/3 , then 
    output the value λ0.
3. Else set majority value m, where mϵ{0, 1}.
    If the majority value does not exist,
    then Output the maiority value λ0.
    Otherwise, output the majority m, where mϵ{0, 1}.

˩˩

Fig. 2 The procedure iTRANSMISSION.

The proposed protocol VSACS can solve the BA
problem due to faulty processor(s), which may send
wrong messages to influence the system to reach
agreement in the topology of virtual subnet within
cloud storage environment. By using the proposed
protocol VSACS and procedure iTRANSMISSION,
all correct processors in the topology of virtual subnet
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VSACS (source processor with initial value vs)

Pre-Execute. Computes the number of rounds required c– (g-1)/3  

Message Exchange Phase:
Case θ = 1, run
A. The source processor transmits its initial value vs to each group’s 
 processors by using iTRANSMISSION.
B. Each receiver processor obtains the value and stores it in the root of 
 its mg-tree.
C. If the source processor is dormant fault, and then the value “λ0” has 
 replaced the initial value received from source processor.
Case θ > 1, run
A. Each processor without the source processor uses ITRANSMISSION 
 to transmit the values at level θ-1 in its mg-tree to each group’s 
 processors. If the value at level θ-1 is “λi”, and the value λi will be 
 replaced by λi+1, where 0≤i≤TFG–1.
B. Each receiver processor applies RMAJ on its received messages and 
 stores RMAJ value in the corresponding vertices at level θ of its 
 mg-tree.

Decision Making Phase:
Step 1. Reorganizing the mg-tree into a corresponding ic-tree. (The vertices 
  with repeated group names are deleted).
Step 2. Using function VOTE on the root s of each processor’s ic-tree, then 
  the common value VOTE(s) has obtained.
Function RMAJ(V)
1. The majority value in the vector Vi = [v

1
, ⋯, v

ηx-1
, v
ηx
], if it 

 exists.
2. Otherwise, choosing a default value (Φ).

Function VOTE(μ)
1. If the μ is a leaf or the number of value λ0 is 3 * (TFG–θ+1)+
 (g–1)% 3, then output μ.      //*    Rule 1    *//
2. Else if the majority value is not existed, then output Φ.
      //*    Rule 2    *//
3. Else if the majority value is λi, where 1≤i≤TFG, then output λi-1.
                                               //*    Rule 3   *//
4. Otherwise, output m, where m  {0, 1}    //*    Rule 4   *//

Fig. 3 The proposed protocol VSACS.

within cloud storage environment can reach a com-
mon agreement only requires θ rounds of messages
exchange, where θ = b(g − 1)/3c + 1. The proce-
dure iTRANSMISSION used to transmit messages in
VSACS. Based on the distinctions of the topology
of virtual subnet within cloud storage environment,
iTRANSMISSION can provide a virtual channel for
each processor to transmit messages to each other
without influence from faulty inter-communication
medium. The description of iTRANSMISSION is
shown in Fig. 2.

The proposed protocol VSACS is organized as
two phases with the procedure iTRANSMISSION.
One is message exchange phase and the other is de-
cision making phase. In the first round of the message
exchange phase, the source processor sends its initial
value to all processors by using iTRANSMISSION,
and then receiver processor stores the received value
in the root of its mg-tree. The mg-tree is a tree
structure that is used to store the received message13.
If the source processor is dormant fault, then the value
λ0 has replaced the initial value from source proces-
sor. After the first round of message exchange phase
(θ > 1), each processor without source processor
uses iTRANSMISSION to transmit the value at level
θ − 1 in its mg-tree to all processors. If the value

at level θ − 1 is λi (the value λi is used to report
absent value), then the value λi will be replaced by
λi+1, where 0 6 i 6 TFG − 1. At the end of each
round, the receiver processor uses the function RMAJ
on it received VMAJ values, which are from the same
group by iTRANSMISSION, to get a single value.
Moreover, each receiver processor stores the received
messages (VMAJ values) and function RMAJ value in
its mg-tree.

Subsequently, in the decision making phase, each
processor without the source processor reorganizes its
mg-tree into a corresponding ic-tree13. The ic-tree is
a tree structure that is used to store a received message
without repeated group names14. Hence the common
value VOTE(s) has obtained by using function VOTE
on the root s of each processor’s ic-tree. The function
VOTE counts the non-value λ0 (expert the last level
of the ic-tree) for all vertexes at the θth level of an ic-
tree, where 1 6 θ 6 TFG + 1. The conditions in the
function VOTE are similar to conventional majority
vote15, 16. The detail steps of the proposed protocol
VSACS is presented in Fig. 2.

AN EXAMPLE OF VSACS EXECUTED

An example is given to execute our protocol VSACS,
the topology of virtual subnet within cloud storage
environment is shown in Fig. 4. There are 23 proces-
sors falling into eight groups. Gp1 includes source
processor P1 and P2. Gp2 includes P3, P4, P5 and P6.
Gp3 includes P7, P8, P9 and P10. Gp4 includes P11

and P12. Gp5 includes P13 and P14. Gp6 includes
P15 and P16. P17, P18, P19, P20 and P21 belong to
Gp7, P22 and P23 belong to Gp8.

In BA problem with fallible processors, the worst
situation is that the source processor is no longer
honest17. Simply, here is the worst case example.
Suppose the application server of cloud storage is the
source processor Cs, which has a malicious fault. Cs

may send arbitrarily different replication commands
to different groups. Hence in order to solve the BA
problem among correct processors of the example,
VSACS requires θ (b(g−1)/3c+1) rounds of message
exchange phase. Pre-Execute counts the number of
rounds required before the message exchange phase in
VSACS. There needs to be three (b(8−1)/3c+1 = 3)
rounds to message exchange for this example.

The source processor Cs uses iTRANSMISSION
to transmit replication commands to all other proces-
sors in the first round of the message exchange phase.
The replication command obtained of each correct
processor is listed in Fig. 5. In the σth (1 < σ 6 θ)
round of message exchange, except for the Cs, each
processor uses iTRANSMISSION to transmit RMAJ
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The messages sent from the source processor by iTRANSMISSION and then 
start to execute VSACS.
 The source processor Cs (Cloud-Storage Application Source) is a 
 malicious faulty processor.
 Cs sends the replication processing command (let this command is 1) to 
 the processors of Gp2, Gp4, 
 Gp5, Gp6, Gp7 and Gp8.
 Cs sends replication process c command (let this command is 0) to the 
 processors of Gp1 and Gp3.

Fig. 4 The initial status of executing VSACS.
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Fig. 5 The mg-tree of each processor at the first round.

values at the (σ− 1)-th level in its mg-tree to all other
processors and itself. Subsequently, each receiver
processor applies RMAJ to its received messages

s
l

RMAJ

0
1
0
1
1
1
0
λ0

(0, 0)
(1, 1, 0, 1)
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Root s

Level 2 Function VMAJ

Fig. 6 The mg-tree of correct processor P1 at the second
round.
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s s1  s11 0 (0,0)
0 0(0,0)  s12 0 (0,0,0,0)
 RMAJ s13 0 (0,1,0,0)
   s14 0 (0,0)
   s15 0 (0,0)
   s16 0 (0,0)
   s17 1 (1,1,1,0,1)
   s18 λ0 (λ0,λ0)
    
 s2  s21 1 (1,1)
 1(1,1,1,1) s22 1 (1,1,1,1)
 RMAJ s23 1 (1,1,1,1)
   s24 1 (1,1)
   s25 1 (1,1)
   s26 1 (1,1)
   s27 0 (0,0,1,0,1)
   s28 λ0 (λ0,λ0)
    
 s3     s31 0 (0,0)
 0(0,0,0,0) s32 0 (0,0,1,0)
 RMAJ s33 0 (0,1,0,0)
   s34 0 (0,0)
   s35 0 (0,0)
   s36 0 (0,0)
   s37 0 (0,0,1,0,1)
   s38 λ0 (λ0,λ0)
    
 s4  s41 1 (1,1)
 1(1,1)  s42 1 (1,1,0,1)
 RMAJ s43 1 (1,1,1,1)
   s44 1 (1,1)
   s45 1 (1,1)
   s46 1 (1,1)
   s47 1 (1,1,1,0,1)
   s48 λ0 (λ0,λ0)
    
 s5  s51 1 (1,1)
 1(1,1)  s52 1 (1,1,1,1)
 RMAJ s53 1 (1,0,1,1)
   s54 1 (1,1)
   s55 1 (1,1)
   s56 1 (1,1)
   s57 0 (0,0,1,0,1)
   s58 λ0 (λ0,λ0)
    
 s6  s61 1 (1,1)
 1(1,1)  s62 1 (1,1,1,1)
 RMAJ s63 1 (1,1,1,1)
   s64 1 (1,1)
   s65 1 (1,1)
   s66 1 (1,1)
   s67 1 (1,1,1,1,1)
   s68 λ0 (λ0,λ0)
    
 s7  s71 0 (0,0)
 0(0,0,1,0,1) s72 1 (1,1,1,1)
 RMAJ s73 0 (0,0,0,0)
   s74 1 (1,1)
   s75 0 (0,0)
   s76 1 (1,1)
   s77 0 (0,0,1,0,1)
   s78 λ0 (λ0, λ0)
    
 s8  s81 λ1 (λ1,λ1)
 λ0(λ0, λ0) s82 λ1 (λ1,λ1,λ1,λ1)
 RMAJ s83 λ1 (λ1,λ1,λ1,λ1)
   s84 λ1 (λ1,λ1)
   s85 λ1 (λ1,λ1)
   s86 λ1 (λ1,λ1)
   s87 0 (0,0, λ0,0,λ0)
   s88 λ0 (λ0,λ0)

Level 1 Level 2 Level 3 Function VMAJ

Fig. 7 The final mg-tree of processor P1 after the message
exchange phase.

and stores the received messages (VMAJ values) and
RMAJ values at the corresponding vertices at level σ
of its mg-tree. The mg-tree of correct processor P1 at
the second and final round in the message exchange
phase are shown in Fig. 6 and Fig. 7.

s s1   
0 0(0,0)  s12 0 (0,0,0,0)
   s13 0 (0,1,0,0)
   s14 0 (0,0)
   s15 0 (0,0)
   s16 0 (0,0)
   s17 1 (1,1,1,0,1)
   s18 λ0 (λ0,λ0)
    
 s2  s21 1 (1,1)
 1(1,1,1,1)   
   s23 1 (1,1,1,1)
   s24 1 (1,1)
   s25 1 (1,1)
   s26 1 (1,1)
   s27 0 (0,0,1,0,1)
   s28 λ0 (λ0,λ0)
    
 s3  s31 0 (0,0)
 0(0,0,0,0) s32 0 (0,0,1,0)
    
   s34 0 (0,0)
   s35 0 (0,0)
   s36 0 (0,0)
   s37 0 (0,0,1,0,1)
   s38 λ0 (λ0,λ0)
    
 s4  s41 1 (1,1)
 1(1,1)  s42 1 (1,1,0,1)
   s43 1 (1,1,1,1)
    
   s45 1 (1,1)
   s46 1 (1,1)
   s47 1 (1,1,1,0,1)
   s48 λ0 (λ0,λ0)
    
 s5  s51 1 (1,1)
 1(1,1)  s52 1 (1,1,1,1)
   s53 1 (1,0,1,1)
   s54 1 (1,1)
    
   s56 1 (1,1)
   s57 0 (0,0,1,0,1)
   s58 λ0 (λ0,λ0)
    
 s6  s61 1 (1,1)
 1(1,1)  s62 1 (1,1,1,1)
   s63 1 (1,1,1,1)
   s64 1 (1,1)
   s65 1 (1,1)
    
   s67 1 (1,1,1,1,1)
   s68 λ0 (λ0,λ0)
    
 s7  s71 0 (0,0)
 0(0,0,1,0,1) s72 1 (1,1,1,1)
   s73 0 (0,0,0,0)
   s74 1 (1,1)
   s75 0 (0,0)
   s76 1 (1,1)
    
   s78 λ0 (λ0, λ0)
    
 s8  s81 λ1 (λ1,λ1)
 λ0(λ0, λ0) s82 λ1 (λ1,λ1,λ1,λ1)
   s83 λ1 (λ1,λ1,λ1,λ1)
   s84 λ1 (λ1,λ1)
   s85 λ1 (λ1,λ1)
   s86 λ1 (λ1,λ1)
   s87 0 (0,0, λ0,0,λ0)

Level 1 Level 2 Level 3

Fig. 8 The ic-tree of processor P1.

After the message exchange phase, the tree struc-
ture of each correct processor is converted from mg-
tree to ic-tree by deleting the vertices with duplicated
names. The example ic-tree h (Fig. 8). Eventually,
using the function VOTE to root the value s for each
correct processor’s ic-tree VOTE(s) = VOTE(s1), . . . ,
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 VOTE(s1) = (VOTE(s12),VOTE(s13),VOTE(s14),VOTE(s15),VOTE(s16),VOTE(s17),VOTE(s18))
= (0, 0, 0, 0, 0, 1, λ0) = 0
 VOTE(s2) = (VOTE(s21),VOTE(s23),VOTE(s24),VOTE(s25),VOTE(s26),VOTE(s27),VOTE(s28))
= (1, 1, 1, 1, 1, 0, λ0) = 1
 VOTE(s3) = (VOTE(s31),VOTE(s32),VOTE(s34),VOTE(s35),VOTE(s36),VOTE(s37),VOTE(s38))
= (0, 0, 0, 0, 0, 0, λ0) = 0
 VOTE(s4) = (VOTE(s41),VOTE(s42),VOTE(s43),VOTE(s45),VOTE(s46),VOTE(s47),VOTE(s48))
= (1, 1, 1, 1, 1, 1, λ0) = 1
 VOTE(s5) = (VOTE(s51),VOTE(s52),VOTE(s53),VOTE(s54),VOTE(s56),VOTE(s57),VOTE(s58))
= (1, 1, 1, 1, 1, 0, λ0) = 1
 VOTE(s6) = (VOTE(s61),VOTE(s62),VOTE(s63),VOTE(s64),VOTE(s65),VOTE(s67),VOTE(s68))
= (1, 1, 1, 1, 1, 1, λ0) = 1
 VOTE(s7) = (VOTE(s71),VOTE(s72),VOTE(s73),VOTE(s74),VOTE(s75),VOTE(s76),VOTE(s78))
= (0, 1, 0, 1, 0, 1, λ0) = Φ
 VOTE(s8) = (VOTE(s81),VOTE(s82),VOTE(s83),VOTE(s84),VOTE(s85),VOTE(s86),VOTE(s87))
= (0, 1, 0, 1, 0, 1, λ0) = Φ

 VOTE(s)=(VOTE(s1),VOTE(s2),VOTE(s3),VOTE(s4),VOTE(s5),VOTE(s6),VOTE(s7),VOTE(s8))
=(0, 1, 0, 1, 1, 1, Φ, Φ) = 1

Fig. 9 The common value VOTE(s) by correct processor P1.

VOTE(s8) = 1, an agreement value 1 can be ob-
tained, (Fig. 9), and the decision making phase has
completed.

VSACS CORRECTNESS AND COMPLEXITY

The following lemmas and theorems are used to prove
the correctness and complexity of VSACS.

Correctness of VSACS

In order to prove the correctness of the proposed
protocol, a vertex µ is called common3 if each correct
processor has the same value for µ. That is to
say, if vertex µ is common, then the value stored in
vertex µ of each correct processor mg-tree or ic-tree is
identical. When each correct processor has a common
initial value of the source processor in the root of an
ic-tree, if root s of an ic-tree in a correct processor is
common and the initial value received from the source
processor is stored in the root of the tree structure,
then an agreement can be reached because the root
is common. Thus the constraints, Agreement and
Validity can be said as

Agreement: Root s is common, and
Validity: VOTE(s) = vs for each correct proces-

sor, if the source processor is fault-free.
To prove that a vertex is common, the term

common frontier3 is defined as follows: When every
root-to-leaf path of the mg-tree contains a common
vertex, the collection of the common vertices forms
a common frontier. In other words, every correct
processor has the same messages collected in the
common frontier if a common frontier does exist in
a correct processor’s mg-tree. Subsequently, using the
same function VOTE to compute the root value of the
tree structure, every correct processor can compute

the same root value because the same input (the
same collected messages in the common frontier) and
the same computing function will produce the same
output (the root value).

Lemma 1 Correct destination processor can detect
the influence of the messages through dormant faulty
components.

Proof : If the protocol appropriately encodes a trans-
mitted message by using either the NRZ Code18

(Non-Return-to-Zero Code) or the Manchester code18

before iTRANSMISSION, then the correct destina-
tion processor can detect the messages from dormant
faulty components. �

Theorem 1 Each processor can receive messages
without influences of faulty components between the
sender processor via iTRANSMISSION in each round
and g > 2FGm + FGd

Proof : Inasmuch as Lemma 1, we can eliminate the
influences of the dormant faulty components between
any pair of processors in each round of message
exchange. Hence we can ignore the influences of
the malicious faulty components between any pairs
of processors in each round of message exchange and
g > 2FGm+FGd. The reason is that the correct sender
processor sends g copies of a message to correct
destination processors. In the worst case, a correct
destination processor can receive g − FGd messages
transmitted via the correct sender processor. A correct
destination processor can decide which the correct
messages are by taking the majority value since NRZ-
Code or Manchester code18 can detect the dormant
faulty components and g > 2FGm + FGd. �
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Lemma 2 By iTRANSMISSION, the correct destina-
tion processor can detect the dormant faulty sender
processor.

Proof : When the sender processor is in dormant fault,
thus the number of value λ0 must be greater than or
equal to (g − 1) − b(g − 1)/3c. That is, there are at
most b(g − 1)/3c malicious faulty components in the
network. Hence there are at most b(g− 1)/3c without
value λ0 in the vector Vi. �

Theorem 2 In the network, each correct processor
can detect the dormant faulty processor.

Proof : There are at least θ rounds of message ex-
change in the protocol VSACS, where θ 6 b(g −
1)/3c+ 1 and g > 4. For the reason, there are at least
two rounds of message exchange in the message ex-
change phase. Each correct processor can receive the
message from the source processor in the first round
of message exchange and receives other processors’
message(s) in the second round of message exchange.
Each processor can receive all other processor’ mes-
sage(s) in the network without source processor after
at least two rounds of message exchange. In terms
of Lemma 2, each correct processor can detect the
dormant faulty processor in the network. �

Lemma 3 In an ic-tree, all correct vertices are com-
mon.

Proof : When the tree structure has conversed from
mg-tree to ic-tree, there is no duplicate vertex in the
ic-tree. At the level θ or upon, the correct vertex
µ has at least 2θ − 1 children, in which at least θ
children are correct. The real value of these θ correct
vertices is common, and the majority value of vertex
µ is common. The correct vertex µ is common in the
ic-tree if the level of µ is less than θ. For the reason,
all correct vertices of ic-tree are common. �

Lemma 4 The common frontier exists in the ic-tree.

Proof : There are θ vertices along each root-to-leaf
path of an ic-tree that the root is marked by the origin
name, and the others are marked by an order of group
name, so that most θ− 1 groups can be failed, at least
one vertex is correct along each root-to-leaf path of
the ic-tree. The correct vertex is common, and the
common frontier exists in each correct processor’s ic-
tree by Lemma 3. �

Lemma 5 Let µ be a vertex, and µ is common if there
is a common frontier in the subtree rooted at µ.

Proof : When the height of µ is 0, and the common
frontier exists, thus µ is common. If the height of µ
is θ, the children of µ are all in common by using
induction hypothesis with the height of the children
at θ − 1, then the vertex µ is common. �

Corollary 1 If the common frontier exists in the ic-
tree, then the root is common.

Theorem 3 The root of a correct processor’s ic-tree
is common.

Proof : Lemma 3, Lemma 4, Lemma 5 and Corollary 1
prove the theorem 3. �

Theorem 4 In the topology of virtual subnet within
cloud storage, the proposed protocol VSACS solves
the BA problem.

Proof : Inasmuch as the theorem has to describe
that VSACS meets the constraints (Agreement’ and
Validity’). Agreement: Root s is common, and
by Theorem 3, Agreement’ is satisfied. Validity:
VOTE(s) = v for each correct processor, if the initial
value of the source processor is vs, then v = vs.
iTRANSMISSION to communicate with all others.
The value of correct vertices for all correct processors’
mg-tree is v. When the tree structure has converted
from mg-tree to ic-tree, the correct vertices still exist.
Hence every correct vertices of the ic-tree is common
by Lemma 3, and its true value is v. This root is
common by Theorem 3. The value v is computed by
VOTE(s), and it value v is stored in the root for all
correct processors. Validity’ is satisfied. �

Complexity of VSACS

The complexity of VSACS is evaluated in terms of (1)
the minimal number of rounds; and (2) the maximum
number of allowable faulty components. Theorems 5
and 6 are shown that the optimal solution is reached.

Theorem 5 VSACS requires θ rounds to complete and
solve the BA problem with dual fallible processors
virtual subnet within cloud storage environment if g >
b(g−1)/3c+2FGm+FGd where b(g−1)/3c+1 > θ,
and θ are the minimum number of rounds of message
exchange.

Proof : The message passing is required in the mes-
sage exchange phase; in other words, the phase is a
period-consuming phase. Wang et al13. argued out
that t + 1 (where t 6 (g − 1)/3) rounds are the min-
imum number of rounds to get enough messages to
reach BA with processor fault. The network topology
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of Wang et al13. is traditional network architecture,
and the unit of Wang et al is group-oriented network;
In the topology of virtual subnet within cloud stor-
age environment, there are several groups by overlap
network approach3, 7. Hence, the number of required
rounds of message exchange in the topology of virtual
subnet within cloud storage environment is θ (where
θ > b(g − 1)/3c + 1). Hence, VSACS requires θ
rounds and the number θ is minimum. �

Theorem 6 The total number of allowable faulty
components by VSACS is FGm malicious faulty groups
and FGd dormant faulty groups, where g > b(g −
1)/3c+ 2FGm + FGd.

Proof : In the past, Wang et al pointed out that the
constraints of BA problem for processor faults is only
g > b(g − 1)/3c + 2FGm + FGd. The unit of Wang
et al13. is group-oriented network, and the topology
of virtual subnet within cloud storage environment is
composed of several groups, so that a processor in
the topology of virtual subnet within cloud storage
environment is similar to a group-oriented network14.
Consequently, g > b(g−1)/3b+2FGm+FGd in Wang
et al is same to the topology of virtual subnet within
cloud storage environment. �

As a result, VSACS requires a minimal number of
message exchange rounds and tolerates a maximum
number of faulty components to reach a common
agreement with correct processors. The optimality of
the protocol is proven.

CONCLUSIONS

Due to the mobility of the mobile network, these
processors may immigrate into or move away from the
network at any time. Furthermore, some of the pro-
cessors in the network may be fallible, so the network
would not be stable. The network topology developed
in recent years3, 19 shows a mobile feature. The
previous protocols6, 16, 17 cannot adapt to solve BA
problem in the topology of virtual subnet within cloud
storage environment, and none of the BA protocol
is designed for the topology of virtual subnet within
cloud storage environment. In this paper, the proposed
VSACS can ensure that all the correct processors of
the topology of virtual subnet within cloud storage
environment can reach a common value to cope with
the influences of the dual faulty processors by using a
minimum number of message exchanges and tolerate
a maximum number of faulty processors at any time.
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