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ABSTRACT: In this paper, we investigate the formation of spatiotemporal patterns in ecological systems via numerical
simulations. We study the diffusive prey-predator model and observe the rich dynamical structure as a result of prey-
predator interactions in one and two spatial dimensions. In 1-d numerical investigations we show that, for a large class of
initial conditions, the evolution of the model leads to the emergence of non-stationary irregular patterns, given that the local
kinetics of the system is oscillatory. This corresponds to spatiotemporal chaos. The irregular patterns first emerge inside a
subdomain of the system. This subdomain then steadily grows with time and, finally, the irregular chaotic patterns invade
the whole space, displacing the regular pattern. For 2-d numerical simulations we observed the formation of spiral waves,
patchy structures, spiral defect chaos and spatiotemporal chaos due to Turing instability in our prey-predator model. These
two-dimensional patterns are very beautiful and very interesting to be observed and interpreted from the ecological point of
view.

KEYWORDS: reaction-diffusion equations, local stability analysis, spatiotemporal chaos, spiral defect chaos, diffusion-
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INTRODUCTION

The study of complex population dynamics involv-
ing a prey-predator interaction has received much
attention since the early days of ecology. Lotka
and Volterra independently developed a simple model
of interacting species1, 2. There are several types
of interaction between species, namely, competition,
mutualism and prey-predator. But among these three
interactions, the dynamic relationship between preda-
tors and their prey has long been and will continue to
be one dominant research area in mathematical ecol-
ogy owing to its importance and universal existence3.

Generally, the prey-predator model obeys two
fundamental principles: one is that population dynam-
ics can be decomposed into birth and death processes;
and the other one is the conservation of mass prin-
ciple, stating that predators can only grow only as a
function of what they have eaten4. Hence the basic
prey-predator interaction can be described by using a
system of ordinary differential equations which model
the spatial distribution of species as a function of time.

However, the presence of a diffusion mechanism

in prey-predator interaction, which is considered as
the principal process of motion, changes the behaviour
and nature of the whole model. It is now a partial
differential equation, which can be categorized as a
reaction-diffusion system. The diffusive prey-predator
model has been studied extensively in Refs. 5–7.

The inclusion of diffusion terms has made our
prey-predator model more complicated and it is very
difficult to analyse and solve analytically. According
to Ref. 8 the non-uniform stationary state of a prey-
predator model, which corresponds to the spatiotem-
poral patterns, cannot be found analytically. Thus
many scientists resort to numerical simulations to
study the behaviour of the system. If the model param-
eters are selected properly, the numerical simulations
will give rise to rich spatiotemporal dynamical struc-
ture in one-dimensional space. If we consider 2-d nu-
merical simulations, it will result in two-dimensional
patterns, namely, homogeneous distributions, station-
ary patterns (striped, spotted, or both), emergence of
spatiotemporal chaos and spiral waves.

Many researchers have performed analytical and
numerical investigations of diffusive prey-predator
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model from different aspects: e.g., the spatiotemporal
dynamics of multi-species host-parasitoid interactions
and its ecological effects9, the role of diffusion coef-
ficients on Turing instability in a prey-predator sys-
tem10. Other scientists have also studied the prey-
predator problems extensively: for instance, the prob-
lem of biological invasion in prey-predator model and
the dynamics of population through non-Turing pat-
tern formation with specified initial conditions11–13.

In this paper, we study the rich dynamical struc-
ture as the result of prey-predator interactions in
one and two-space dimensions. In particular, we
investigate the spatiotemporal pattern of diffusive
prey-predator model and the emergence of irregular
chaotic patterns. We also investigate the occurrence of
diffusion-driven instability (Turing instability or dif-
fusive instability). A necessary condition to observe
the Turing instability is that the predator must diffuse
faster than the prey.

MATHEMATICAL MODEL

We consider

ut = α∆u+ F (u, v)
vt = β∆v +G(u, v)

(1)

where u and v represent the prey and predator popu-
lation densities, α and β are diffusion coefficients of
prey and predator, respectively, and ∆ is the Lapla-
cian. We analyse the above model under the initial
conditions

u(x, y, 0) = f(x, y)
v(x, y, 0) = g(x, y),

(2)

with x, y ∈ Ω. Equations (1) are subject to reflective
boundary conditions (i.e., Neumann boundary condi-
tions):

∂u

∂n
=
∂v

∂n
= 0, (x, y) ∈ ∂Ω, t > 0 (3)

where n is the outward normal to ∂Ω.
We assume that the local growth of the prey

species is logistic and the predator community dis-
plays the Holling type II functional response. Hence

F (u, v) =
ϕ

γ
u(γ − u)− η uv

u+H

G(u, v) = κη
uv

u+H
−mv

(4)

where ϕ is the maximum growth rate of the prey
population, γ is the carrying capacity for the prey
population, andH is the half-saturation density for the
prey population.

Let

ū =
u

γ
, v̄ =

vη

ϕγ
, t̄ = ϕt, δ =

H

γ
, µ =

m

ϕ
, ε =

κη

ϕ
.

Then

F (ū, v̄) = ū(1− ū)− ūv̄

ū+ δ

G(ū, v̄) =
εūv̄

ū+ δ
− µv̄.

(5)

After dropping the bars, our diffusive prey-predator
model becomes

ut = α∆u+ u(1− u)− uv

u+ δ

vt = β∆v +
εuv

u+ δ
− µv.

(6)

There are three positive equilibrium states. Two
of them are trivial: (0, 0) corresponds to total ex-
tinction of prey-predator population; (1, 0) indicates
the persistence of prey and extinction of predator
population. Both are saddle points. The non-trivial
equilibrium state is (û, v̂) where

û =
δµ

ε− µ
, ε > µ

v̂ = (1− û)(û+ δ), δ <
ε− µ
µ

.

(7)

We start by choosing δ = 0.4, ε = 2, and µ = 0.8
in which case (û, v̂) = ( 4

15 ,
22
45 ) and standard linear

stability analysis shows that this is an unstable spiral.

NUMERICAL SIMULATIONS

In this section, we look at 1-d simulations. For
simplicity of computation, we choose α = 1. We
use β = 1 so as to exclude the possibility of Turing
instability. We use the initial conditions

u(x, 0) = û

v(x, 0) = v̂ + φx− σ.
(8)

We can see that the two populations oscillate
which indicates the unstable behaviour for the prey
and predator populations (Fig. 1). There is no indi-
cation of irregular (chaotic) dynamics.

When φ is small, the initial conditions evolve
to a smooth non-monotonic spatial distributions of
species, and this results in the prey-predator densities
as in Fig. 1. Now, let us try to change φ and σ as
illustrated in Fig. 2.

The initial conditions (8) with φ = 2× 10−5 and
σ = 4 × 10−2 leads the system to evolve into an
irregular non-stationary pattern. And if we plot the
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Fig. 1 The one-dimensional approximate prey-predator
densities using φ = 10−5 and σ = 10−2. Parameter values
are δ = 0.4, ε = 2 and µ = 0.8, with zero flux boundary
conditions and initial conditions as in (8).

Fig. 2 The one-dimensional approximate prey-predator
densities using φ = 2×10−5 and σ = 4×10−2. Parameter
values are δ = 0.4, ε = 2 and µ = 0.8, with zero flux
boundary conditions and initial conditions as in (8).

local phase plane of the system after the formation of
the above irregular dynamics, we can observe closed
trajectories as in Fig. 3. It shows the local phase
plane of model (6) after the formation of an irregular
non-stationary pattern as in Fig. 2. Observe that
the boundary of the domain coincides with the limit
cycle, or in other words the irregular spatiotemporal
oscillations have invaded the local phase plane and
have caused chaotic dynamics (see Ref. 13).

Fig. 3 Local phase plane of model (6) with initial conditions
as in (8).

Fig. 4 The one-dimensional approximate prey-predator
densities using β = 150. Parameter values are δ = 0.4,
ε = 2 and µ = 0.8, with zero-flux boundary conditions and
initial conditions as in (9).

We now use the initial conditions

u(x, 0) = û

v(x, 0) = v̂ + 0.02 sin
(

2Π(x− 1500)
100

)
.

(9)

In order to observe the formation of a diffusive in-
stability in the 1-d space prey-predator model, let us
choose β = 150. Consider the 1-d approximate prey-
predator densities in Fig. 4 that we obtained from our
numerical simulations. The analysis confirmed the
existence of Turing instability. In Turing mechanism,
a homogeneous steady state which is stable with
respect to spatially uniform perturbations becomes
unstable under the influence of diffusion, relating to
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Fig. 5 Spiral pattern at times (a) t = 300, (b) t = 1000,
(c) t = 3000.

perturbation with appropriate spatial frequencies10.
Hence these patterns show the diffusive instability
from a numerical point of view.

For the 2-d model, the initial conditions are

u(x, y, 0) = û− (2× 10−7)(x− 0.1y − 225)
× (x− 0.1y − 675)

v(x, y, 0) = v̂ − (3× 10−5)(x− 450)

− (1.2× 10−4)(y − 150)

(10)

and are chosen so as to induce non-trivial spatiotem-
poral dynamics. These ‘perturbed’ initial conditions
will also be used in order to test the sensitivity to initial
conditions. As in the previous section, we will choose
δ = 0.4, ε = 2 and µ = 0.8.

We solve the diffusive prey-predator model (6) in
two dimensions using a finite difference method, with
a square numerical domain L×L where L = 700. We
fix the initial conditions as in (10) and β = 1.

Consider the two-dimensional approximate prey-
predator densities in Fig. 5 that we obtained from
our numerical simulations by increasing the time of
experiments. In Fig. 5a we observe the formation
of spirals which confirms the local stability analysis

result that we obtained. After the spirals form, they
grow slightly for a certain time and later their spatial
structure becomes more distinct. Then, these spirals
separate into two circles. Notice that the destruction
of the spirals begins in their centres (Fig. 5b). These
circles steadily grow bigger and when t = 3000, we
observe the emergence of patchy structure inside these
circles (Fig. 5c). The blue and green coloured regions
indicate the areas of low population density while the
red and orange coloured regions represent the areas of
high population density. We can see the emergence
of irregular patches covering the whole domain as
t = 3000 (Fig. 5c). The patches first appear inside
a subdomain of the system. This subdomain then
steadily grows with time and the patchy structures
invade the whole space, displacing the regular pattern.

This observation is consistent with the results re-
ported in Refs. 7, 14. They studied the spatiotemporal
dynamics in an aquatic community and discovered
that the size of these patches is related to the character-
istic length of observed plankton patterns in the ocean.
Apart from that, Ref. 9 also reported similar results
on the formation of patchiness phenomenon in multi-
species host-parasitoid (prey-predator) interactions.
They described the appearance of patchy structures
and chaos developing behind periodic waves. It is
suggested that a small instability in the periodic waves
causes a small asymmetry to develop and this gives
rise to chaotic dynamics.

We now investigate the effect of varying parame-
ter δ on the spatiotemporal dynamics of model (6). We
will use the same parameters as in Fig. 5, and we solve
model (6) in two dimensions with a square numerical
domain with L = 500. Consider the two-dimensional
approximate prey-predator densities in Fig. 6 that we
obtained from our numerical simulations by varying
δ. We choose δ in the range 0 < δ < 0.5 and see the
formation of spirals (Fig. 6). The diameter of spiral
pattern increases as we decrease δ.

Spiral structures emerge in Fig. 6c but with small
defects in their patterns. The zone in which defects
occur appear to oscillate and these oscillations seem to
continue in the stationary structures. Ref. 14 also con-
ducted the same experiment as in Fig. 6. They studied
the dynamics of system (6) in the one-dimensional
case and discovered the occurrence of chaos covering
almost the entire domain when δ = 0.05. Based on
Ref. 15, spiral structures which form around some
defects are known as spiral defect chaos.

Next, let us investigate the spatiotemporal dynam-
ics of model (6) through a Turing instability. Consider
the snapshots of spatiotemporal patterns in Fig. 7.
As β increases, we observe the formation of spiral
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Fig. 6 Two-dimensional numerical solutions of prey-
predator system using finite difference discretization (time-
step ∆t = 1

384
) at t = 150: (a) δ = 0.45(û = 3

10
, v̂ = 21

40
),

(b) δ = 0.3(û = 1
5
, v̂ = 2

5
) and (c) δ = 0.05(û = 1

30
, v̂ =

29
360

).

patterns. The spiral structures get larger as we vary
β in the range of 1 6 β 6 15.

When we change β to 50, we can see in Fig. 8a
that the spiral pattern loses its stability. In order to
verify this situation, we increase β to 100 (Fig. 8b).
Consequently, we observe that the dynamics becomes
unstable and spatiotemporal chaos develops.

Comparing the snapshots, we can see that the
formation of chaotic spiral patterns is caused by
the Turing instability. Turing16 considered reaction-
diffusion equations of two chemicals (morphogens)
and found that diffusion could destabilize an other-
wise stable equilibrium. This leads to non-uniform
spatial patterns. Since we fix α = 1, Turing instability
will occur with large β.

If β/α is large enough, the prey growth rate
will reach negative values and prey population will
be driven by predators to a very low level in those
regions. In other words, where the prey density is at
the maximum, diffusion will lower the prey density at
that point. Conversely, where the prey density is at the

Fig. 7 Numerical solutions of 2-d prey-predator system at
t = 500, (û = 6

35
, v̂ = 116

245
): (a) β = 1, (b) β = 10 and

(c) β = 15.

Fig. 8 Numerical solutions of 2-d prey-predator system at
t = 500: (a) β = 50 and (b) β = 100.

minimum, diffusion will increase the prey density at
that point17.
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CONCLUSIONS

A number of open problems remain. First, it is very
interesting to investigate the formation of spatiotem-
poral dynamics with other choices of parameters.
Next, different forms of ‘disturbed’ initial conditions
can be considered so as to induce the non-trivial
spatiotemporal patterns. Another aspect to be studied
is the choice of boundary conditions; we could instead
use Dirichlet and Robin boundary conditions. We
expect the appearance of even more complicated phe-
nomena using other boundary conditions. All this will
help with understanding the ecological interactions
between prey and predator.
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